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In any Markov chain with finite state space the distribution of transition records always belongs to
the exponential family. This observation is used to prove a fluctuation theorem, and to show that the
dynamical entropy of a stationary Markov chain is linear in the number of steps. Three applications
are discussed. A known result about entropy production is reproduced. A thermodynamic relation
is derived for equilibrium systems with Glauber dynamics. Finally, a link is made with recent results
concerning a one-dimensional polymer model.

Introduction The fluctuation theorem, discovered in 1993 by Evans, Cohen and Morriss [1], was the start of a
series of new developments in the study of stationary non-equilibrium systems (see for example [2] for an overview).
A formulation of the fluctuation theorem in stochastic context was given in [3, 4]. These authors showed that the
theorem holds in full generality for any stationary probability distribution of any Markov process. The proof given
here is restricted to Markov chains with finite state space. In this way technicalities can be avoided.

The method of proof of the present paper is based on the observation that a certain probability distribution,
hereafter called distribution of transition records, always belongs to the exponential family. From this result the
fluctuation theorem follows immediately. Indeed, Lebowitz and Spohn [3] and Maes [4] already observed that a Gibbs
distributed random variable is all what is needed to derive a fluctuation theorem of the Gallavotti-Cohen type [5] in
a stochastic context. This point has been further elaborated in [6].

The motivation for studying the distribution of transition records was twofold. At one hand the present authors
had noticed [7, 8] that, in the Markov chain of increments of some model of random walk describing a polymer, this
distribution belongs automatically to the exponential family. At the other hand, it is a straightforward generalization
of a distribution introduced in recent work of Carati [9, 10]. This author assumed a Poisson distribution based on
the assumption that subsequent visits to macrocells in phase space of a system of classical mechanics are mutually
independent.

Paths of Markov chains Throughout the paper we consider a fixed state space Γ, containing a finite number N of
states. A Markov chain with state space Γ is determined by initial probabilities p(x), with x in Γ, and by transition
probabilities w(x, y), with x and y in Γ.

The probability distribution p(x) is stationary if

p(x) =
∑
y∈Γ

p(y)w(y, x) (1)

for all x ∈ Γ. A stronger condition is detailed balance

p(x)w(x, y) = p(y)w(y, x) (2)

for any pair of states x, y ∈ Γ. Summing this equality over y yields (1).
The w(x, y) are parameters of the Markovian model. However, they are not independent because of the normaliza-

tion condition
∑

y w(x, y) = 1. Introduce therefore parameters θx,y and ηx such that

w(x, y) = w0(x, y)e−θx,y if x �= y
w(x, x) = e−ηx , (3)

with a priori transition rates w0(x, y) satisfying w0(x, y) = w0(y, x), and w0(x, y) = 1 or w0(x, y) = 0. The parameters
ηx are considered to be functions of the θx,y. For convenience, let θx,x = 0 and w0(x, x) = 1 for all x.

A Gibbs distribution for transition records The record of transitions k is a sequence of numbers kx,y, one for each
pair of states x, y, counting how many times the transition from x to y is contained in a given path of the Markov
chain. Our key quantity is the probability dx(k) that a path starting in x results in a given record of transitions k.

It is not difficult to see that one can write

dx(k) = cn(x, k)
∏
y,z

w(y, z)ky,z
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= cn(x, k) exp (−Ψθ(k)) . (4)

In this expression, cn(x, k) counts the number of paths that have the same record of transitions k and that are allowed
by the a priori transition rates w0(x, y). The quantity Ψθ(k) is given by

Ψθ(k) =
∑

y

ηyky,y +
∑
y,z

θy,zky,z. (5)

The special form of (4) makes it easy to calculate the following identities

0 =
∂

∂θ(u, v)

∑
k

dx(k)

= −〈ku,v〉x +
w(u, v)
w(u, u)

〈ku,u〉x, (6)

with

〈ku,v〉x =
∑

k

dx(k)ku,v. (7)

This can be written as

w(u, u)〈ku,v〉x = 〈ku,u〉xw(u, v). (8)

The latter result is clearly also valid for u = v. This means that 〈ku,v〉x, the average number of transitions from u to
v, is proportional to w(u, v), the probability to go from u to v.

Linear production of dynamical entropy A path γ = (x0, x1, · · ·xn) of the Markov chain has probability p(x0)w(γ)
with

w(γ) = w(x0, x1) · · ·w(xn−1, xn). (9)

Let γi = x0 denote the initial and γf = xn the final state of γ. The dynamical entropy S
(n)
θ of the Markov chain is

defined by

S
(n)
θ = −

∑
γ

p(γi)w(γ) lnw(γ). (10)

The time-reversed dynamical entropy [11] is defined by

S
(n)

θ = −
∑

γ

p(γi)w(γ) lnw(γ),

= −
∑

γ

p(γf )w(γ) lnw(γ), (11)

where γ is the reversed path γ = (xn, xn−1, · · ·x0).
Observe that the dynamical entropy S

(n)
θ can be expressed in terms of the distributions dx(k)

S
(n)
θ =

∑
x

p(x)〈Ψθ〉x. (12)

If p(x) is stationary then this expression can be further simplified. One expects intuitively that each occurrence of
some state y contributes to the dynamic entropy production with an amount

Iy = −
∑

u

w(y, u) lnw(y, u). (13)

Indeed, this is the result of Theorem 1 below.
The corresponding relations for the time-reversed paths are

S
(n)

θ =
∑

x

p(x)〈Ψθ〉x. (14)
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with Ψθ(k) = Ψθ(k), kx,y = ky,x, and

Iy = −
∑

u

w(y, u) lnw(u, y). (15)

Given a path with record of transitions k, the number of occurrences of the state y (neglecting the final state) is∑
z ky,z. The probability distribution of the latter quantity is the distribution studied by Carati [9, 10]. Using (8),

the average number of occurrences of state y is

∑
z

〈ky,z〉x =
1

w(y, y)
〈ky,y〉x. (16)

The average entropy produced when leaving y is Iy. Hence

∑
y

1
w(y, y)

〈ky,y〉xIy (17)

is the average production of dynamical entropy per step. One therefore expects the following result.

Lemma 1 Assume w(x, x) > 0 for all x. Then one has

〈Ψθ〉x =
∑

y

1
w(y, y)

〈ky,y〉xIy, (18)

〈Ψθ〉x =
∑

y

1
w(y, y)

〈ky,y〉xIy. (19)

Next, one proves by full induction that

Lemma 2 Let p be a stationary probability distribution. Then∑
x

p(x)〈ky,y〉x = nw(y, y)p(y). (20)

Combining the different pieces gives the result

Theorem 1 Assume p is stationary. Then

S
(n)
θ = n

∑
x

p(x)Ix, (21)

S
(n)

θ = n
∑

x

p(x)Ix. (22)

Fluctuation theorem Without any assumption about the Markov chain, the probability distribution dx(k) belongs
automatically to the exponential family. As noted in the introduction, this observation suffices to derive a fluctuation
theorem.

Let C(x, k) denote the class of all paths that start in state x and have the same record of transitions k. The
probability of this class is dx(k). It is easy to see that all paths of this class have the same final state, denoted f(x, k).
This implies that there is a one-to one-correspondence between paths of C(x, k) and reversed paths belonging to
C(f(x, k), k). Introduce the quantity

Wx(k) = ln
dx(k)

df(x,k)(k)
(23)

(called action functional in [3]). Then (4) implies that

Wx(k) = −Ψθ(k) + Ψθ(k). (24)

It is now straightforward to derive the fluctuation theorem
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Theorem 2

Prob(Wx(k) = K)
Prob(Wx(k) = −K)

= eK . (25)

Proof
One has

Prob(Wx(k) = K) =
∑

k

dx(k)δ−Ψθ(k)+Ψθ(k),K

= eK/2
∑

k

cn(x, k)w0(k) exp
(
−1

2
Ψθ(k) − 1

2
Ψθ(k)

)
δ−Ψθ(k)+Ψθ(k),K

= eK/2
∑

k

cn(f(x, k), k)w0(k) exp
(
−1

2
Ψθ(k) − 1

2
Ψθ(k)

)
δ−Ψθ(k)+Ψθ(k),K

= eKProb(Wx(k) = −K). (26)

�

Note that the condition of Lemma 1 that w(x, x) > 0 for all x is not essential for the theorem to hold. It can be
removed by a limiting procedure.

Entropy production The standard and the time-reversed dynamical entropies are related by

S
(n)

θ − S
(n)
θ =

∑
x

p(x)〈Wx〉x. (27)

Application of the fluctuation theorem then gives

S
(n)

θ − S
(n)
θ =

∑
x

p(x)
∑
K

KProb(Wx(k) = K)

=
1
2

∑
x

p(x)
∑
K

Prob(Wx(k) = K)

×K(1 − e−K)
≥ 0. (28)

But using Theorem 1 and assuming stationarity, it is possible to write

S
(n)

θ − S
(n)
θ = n

∑
x

p(x)(Ix − Ix) = n∆S, (29)

with

∆S =
1
2

∑
x,y

(p(x)w(x, y) − p(y)w(y, x))

× ln
p(x)w(x, y)
p(y)w(y, x)

. (30)

∆S is the entropy production [3, 11, 12]. It vanishes for distributions satisfying the detailed balance condition.
A one-parameter model of equilibrium states We now restrict ourselves to equilibrium, which means that proba-

bility distributions satisfy the detailed balance condition. We start from a symmetric matrix ax,y labelled by x, y in
state space. We fix a parameter ξ, which is the analogue of the inverse temperature β. In fact, in the case of Glauber
dynamics the matrix ax,y is given by

ax,y = max{H(x),H(y)}, (31)

where H(x) is the Hamiltonian, and ξ equals β.
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Introduce a partition function Ξ(ξ), a probability distribution p(x), and transition probabilities w(x, y), given by

Ξ(ξ) =
∑
x,y

e−ξax,y , (32)

p(x) =
1

Ξ(ξ)

∑
y

e−ξax,y , (33)

w(x, y) =
1

Ξ(ξ)p(x)
e−ξax,y . (34)

Clearly, ax,y = ay,x implies that the detailed balance condition is satisfied. It is now straightforward to calculate the
distributions dx(k). They are given by (4), with

Ψθ(k) = ξ
∑
x,y

kx,yax,y +
∑

x

(∑
y

kx,y

)
ln p(x)

+n ln Ξ(ξ). (35)

A short calculation, using (35) and the results of the section on linear production of entropy, gives

lnΞ(ξ) = S(p) +
1
n

S
(n)
θ − ξ〈a〉. (36)

Here, S(p) is the Boltzmann-Gibbs entropy, and 〈a〉 is the path average of the matrix ax,y. Expression (36) should
be compared with the well-known result for the Massieu function ln Ξ(β) = S − βU , where U = 〈H〉 is the average
energy. This comparison shows that in (36) the thermodynamic entropy is replaced by the sum of two contributions,
a static S(p) and a dynamic 1

nS
(n)
θ . Thermodynamic relations similar to (36) are derived by Carati [9, 10]. Here, we

do not need a Legendre transformation to define entropy. In addition, (35) contains a path dependent term, which is
absent in [9, 10].

Related results are found in [12, 13], where the parameter s, appearing in the dynamical partition function, is the
argument of a Laplace transform. Its role is comparable to that of our parameter ξ, which controls the transition
probabilities of the Markov chain.

A model of random walk Let us finally make the connection with the non-Markovian random walk model of [7, 8].
The position after n steps is denoted Xn. The increments xn = Xn+1 − Xn are Markovian with transition matrix

w =
(

ε 1 − ε
1 − µ µ

)
. (37)

The two states are denoted + and −. The a priori rates are all equal to 1.
Let X0 = 0. The position Xn after n steps is related to the record of transitions k by Xn = k++ +k−+−k−−−k+−

(number of steps to the right minus number of steps to the left). The energy of the polymer may be assumed to
be proportional to k+− + k−+, which is the number of changes of direction. Finally, let ∆ = k+− − k−+ and note
that ∆ is either 0 or ±1. Together with the identity n = k++ + k−+ + k−− + k+−, this means that the record of
transitions k can be expressed in terms of the physical quantities energy and position of the end point, up to an
error ∆. This observation was used in [7, 8] to prove that the joint probability distribution of energy and position of
endpoint automatically belongs to the exponential family, up to a small error which is negligible in the limit of large
n.

Discussion We have shown that some known results about Markov chains can be formulated in terms of the
distributions dx(k) which give the probability of a transition record k for paths of the Markov chain starting in state
x. These results are connected with what is known as the fluctuation theorem. In addition we have pointed out,
without going into much detail, that recent work of Carati [9, 10], and of the present authors [7, 8] involves the
same or related probability distributions. We expect many more applications of our approach. We believe that the
distribution of transition records dx(k) will be the preferred tool, rather than the fluctuation theorem (Theorem 2).

Like in [14, 15], the fluctuation theorem and the extensivity of the entropy production, as proved here, hold for
arbitrary number of steps n because of the Markov assumption. Usually, these results hold only in average. In
particular, the assumption of a Gibbsian field in space-time, as studied in [4], is more general than Markovianity. A
generalization of our approach to this context is unlikely because it spoils the equivalence of paths that have the same
transition record.
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