

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR.1763-28

SCHOOL and CONFERENCE on COMPLEX SYSTEMS and NONEXTENSIVE STATISTICAL MECHANICS

31 July - 8 August 2006

<u>Thermodynamical formalism for stationary states of</u> <u>Markov chains</u>

J. Naudts

Departement Fysica Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium

Thermodynamical formalism for stationary states of Markov chains

Jan Naudts and Erik Van der Straeten

Universiteit Antwerpen

Thermodynamical formalism for stationary states of Markov chains

Jan Naudts and Erik Van der Straeten

Universiteit Antwerpen

A too ambitious title ?

I will introduce the notion of record of transitions, and make the link with recent work of Carati, and recent work about the fluctuation theorem.

At the end I will discuss thermodynamics of a one-parameter model.

J Naudts, E Van der Straeten, Transition records of stationary Markov chains, arXiv:cond-mat/0607485.

Contents

1 Intro

2 Markov chains

3 Distribution of transition records

4 Linear production of dynamical entropy

5 Fluctuation theorem

6 A one-parameter model

7 Two-parameter extension

8 Summary

1 Intro

Current interest in

- stationary non-equilibrium states
- non-Gibbsian states

Markovian dynamics

- start from dynamical system
- partition phase space into cells
- describe dynamics by transition probabilities.

Thermodynamics out of equilibrium stationary states, non-equilibrium characterised by (energy) currents results depend on path in thermodynamic parameter space

2 Markov chains

EXAMPLE A 3-state system

$$w(x,y) = \begin{pmatrix} 1-2w & w & w \\ w & 1-2w & w \\ w & w & 1-2w \end{pmatrix}$$
 transition probability
$$p(x) = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 stationary probability distribution
satisfies $\sum_{x} p(x)w(x,y) = p(y)$ (stationarity condition)

Trieste, August 2006

p(x) satisfies also p(x)w(x,y) = p(y)w(y,x) (detailed balance condition)

- detailed balance \equiv equilibrium (minus stability)
- detailed balance implies stationarity:

$$\sum_{x} p(x)w(x,y) = \sum_{x} p(y)w(y,x) = p(y)$$

- interest in non-equilibrium stationary states

EXAMPLE

$$w(x,y) = \begin{pmatrix} 1-2w & w(1+\zeta) & w(1-\zeta) \\ w(1-\zeta) & 1-2w & w(1+\zeta) \\ w(1+\zeta) & w(1-\zeta) & 1-2w \end{pmatrix}$$

Now, p(x) is still stationary, but detailed balance is not satisfied.

3 Distribution of transition records

Exercise

path 11332331 has probability $p(1)w(1,1)w(1,3)w(3,3)^2w(3,2)w(2,3)w(3,1)$ same probability as 13323311 or 11323331 or ...

transition record

$1 \rightarrow 1$	1
$1 \rightarrow 2$	0
$1 \rightarrow 3$	1
$2 \rightarrow 1$	0
$2 \rightarrow 2$	0
$2 \rightarrow 3$	1
$3 \rightarrow 1$	1
$3 \rightarrow 2$	1
$3 \rightarrow 3$	2

probability of all paths starting in x = 1 and having transition record k = (1, 0, 1, 0, 0, 1, 1, 1, 2), is of form $d_x(k) = c_n(x, k) \prod_{y,z} w(y, z)^{ky,z}$ $c_n(x, k)$ is the number of equivalent paths of length n

A. Carati, Thermodynamics and time averages, Physica A348, 110-120 (2005).

record of visits is (3,1,4) — used by Carati

"Record of transitions" is more general than "Record of visits" because $\sum_{y} k_{x,y}$ is number of visits to state x (neglecting the last state of the path)

The distribution $d_x(k)$ always belongs to the exponential family (Boltzmann-Gibbs distribution)

$$d_x(k) = c_n(x,k) \exp(-\Psi_\theta(k))$$

with
$$\Psi_{\theta}(k) = -\sum_{x,y} k_{x,y} \ln w(x,y)$$
 (the entropy variable)

Consequence: $w(u, u)\langle k_{u,v}\rangle_x = \langle k_{u,u}\rangle_x w(u, v)$

This means that $\langle k_{u,v} \rangle_x$, the average number of transitions from u to v, is proportional to w(u, v), the probability to go from u to v.

EXAMPLE

Let p(x) be an arbitrary probability distribution for example $p(x) = \frac{1}{7} \exp_q(-\beta H(x))$ with deformed exponential \exp_q and Hamiltonian H(x)Detailed balance is satisfied with w(x,y) = p(y), independent of x. The distribution $d_x(k)$ is exponential with $\Psi_{\theta}(k) = -\sum_{y} \left(\sum_{x} k_{x,y}\right) \ln p(y)$ $= n \ln Z - \frac{1}{1-q} \sum \left(\sum k_{x,y} \right) \ln \left(1 - \beta (1-q) H(y) \right)$

Only the distribution of visit records is needed!

4 Linear production of dynamical entropy

DYNAMIC STABILITY REQUIREMENT:

Because $d_x(k)$ is exponential, it satisfies the Maximum Entropy Principle for the Boltzmann-Gibbs entropy. We have no choice of entropy!

Probability of a path
$$\gamma = (x_0, x_1, \dots, x_n)$$
 of given length $n + 1$
is $p(x_0)w(\gamma)$ with $w(\gamma) = w(x_0, x_1)w(x_1, x_2)\cdots w(x_{n-1}, x_n)$.

The dynamic entropy is
$$S_{\theta}^{(n)} = -k_B \sum_{\gamma} p(\gamma_i) w(\gamma) \ln w(\gamma).$$

Notation $\gamma_i \equiv x_0$.

Result of calculation: $S_{\theta}^{(n)} = \sum_{x} p(x) \langle \Psi_{\theta} \rangle_{x}$ with $\langle \Psi_{\theta} \rangle_{x} = \sum_{k} d_{x}(k) \Psi_{\theta}(k)$.

The dynamic entropy is the average of the entropy variable.

THEOREM If p is stationary then
$$S_{\theta}^{(n)} = n \sum_{x} p(x) I_x$$

with $I_x = -k_B \sum_{y} w(x, y) \ln w(x, y)$.

Dynamic entropy increases lineraly with every step of the Markov chain.

Proof ...

Example

If w(x,y) = p(y) then $I_x = -k_B \sum_y p(y) \ln p(y) \equiv S(p)$. In this case the dynamic entropy is n times the static B-G entropy. In general is $S_{\theta}^{(n)} \leq nS(p)$.

5 Fluctuation theorem

- discovered in 1993 by Evans, Cohen and Morriss

D.J. Evans, E.G.D. Cohen, G.P. Morriss, Probability of second law violations in shearing steady states, Phys. Rev. Lett. 71, 2401-2404 (1993).

- "The probability of observing an entropy production opposite to that dictated by the second law of thermodynamics decreases exponentially with time." cfr Wikipedia

Inverted path of Markov chain: $(x_0, x_1, \cdots x_n)$ inverted is $(x_n, x_{n-1}, \cdots x_0)$.

Given initial state $x = x_0$ and transition record k, let $y = x_n$ denote the final state and \overline{k} the transition record of the inverted path.

 $W_x(k) = \ln \frac{d_x(k)}{d_u(\overline{k})}$ entropy production variable, Let

(called action variable by Lebowitz and Spohn)

J. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)

Note that $W_x(k) = -\Psi_{\theta}(k) + \Psi_{\theta}(\overline{k}).$

FLUCTUATION THEOREM

$$\frac{\operatorname{Prob}(W_x(k) = K)}{\operatorname{Prob}(W_x(k) = -K)} = e^K. \quad (*)$$

Proof: 4 lines ...

The probability distribution of the action variable $W_x(k)$ has symmetry (*). EXAMPLE

$$\begin{split} q(K) = & \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(K-K_0)^2/2\sigma^2} \text{ satisfies } \frac{q(K)}{q(-K)} = e^K \\ \text{when } \sigma = & 1/\sqrt{2}\pi \text{ and } K_0 = 1/4\pi. \end{split}$$

Trieste, August 2006

Experimental verification ... and verification by computer simulations

NOTE The fluctuation theorem holds for more general systems than Markov chains!

- D.J. Evans, E.G.D. Cohen, G.P. Morriss, *Probability of second law violations in shearing steady states,* Phys. Rev. Lett. **71**, 2401-2404 (1993).
- S. Ciliberto, C. Laroche, *An experimental test of the Gallavotti-Cohen fluctuation theorem* Journal de physique IV, **8**, 215-219 (1998).
- G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, *Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales*,

Phys. Rev. Lett. 89, 050601 (2002).

D.M. Carberry, J.C. Reid, G.M. Wang, E.M. Sevick, D.J. Searles, D.J. Evans, *Fluctuations and Irreversibility: An Experimental Demonstration of a Second-Law-Like Theorem Using a Colloidal Particle Held in an Optical Trap*,

Phys. Rev. Lett. 92, 140601 (2004).

• • •

NOTE Other fluctuation theorems exist, for example that of Crooks

G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free-energy differences,

Phys. Rev. E60, 2721-2726 (1999).

The thermodynamic entropy production is the average of the entropy production variable $W_x(k)$.

$$\sum_{x} p(x) \langle W_x \rangle_x = \overline{S}_{\theta}^{(n)} - S_{\theta}^{(n)} \ge 0.$$

THEOREM If p is stationary then
$$\overline{S}_{\theta}^{(n)} - S_{\theta}^{(n)} = n\Delta S$$

with $\Delta S = \frac{1}{2} \sum_{x,y} (p(x)w(x,y) - p(y)w(y,x)) \ln \frac{p(x)w(x,y)}{p(y)w(y,x)}$.

P. Gaspard, Time-Reversed Dynamical Entropy and Irreversibility in Markovian Random Processes,

J. Stat. Phys. 117, 599-615 (2004).

The entropy production is zero when the detailed balance condition holds.

6 A one-parameter model

The model is determined by a symmetric matrix $a_{x,y}$ indexed by the states x, y of the Markov chain. Fix one parameter $\xi > 0$.

 $\begin{array}{ll} \mbox{Example of Glauber dynamics} & a_{x,y} = \max\{H(x), H(y)\}\\ & \mbox{with Hamiltonian } H(x)\\ \mbox{In this case is } \xi = \beta, \mbox{ the inverse temperature.} \end{array}$

Introduce a partition function
$$\Xi(\xi) = \sum_{x,y} e^{-\xi a_{x,y}}$$
.
Then $p(x)$ and $w(x,y)$ are given by

$$p(x) = \frac{1}{\Xi(\xi)} \sum_{y} e^{-\xi a_{x,y}}$$
 and $w(x,y) = \frac{1}{\Xi(\xi)p(x)} e^{-\xi a_{x,y}}$.

Trieste, August 2006

Detailed balance is satisfied $(p(x)w(x,y) = \frac{1}{\Xi(\xi)}e^{-\xi a_{x,y}}$ is symmetric).

 $\ln \Xi(\xi)$ is a Massieu function - it satisfies

$$\frac{\mathrm{d}}{\mathrm{d}\xi}\ln\Xi(\xi) = -\sum_{x,y}p(x)w(x,y)a_{x,y} \equiv -\langle a \rangle.$$

and $\ln \Xi(\xi) = S(p) + \frac{1}{n}S_{\theta}^{(n)} - \xi \langle a \rangle.$

Compare with

$$\frac{\mathrm{d}}{\mathrm{d}\beta} \ln Z(\beta) = -\sum_{x} p(x) H(x) \equiv -\langle H \rangle$$

and $\ln Z(\beta) = S(p) - \beta \langle H \rangle.$

CONCLUSION This model extends thermostatistics to path-depending 'Hamiltonians' $a_{x,y}$.

Trieste, August 2006

7 Two-parameter extension

Notation Add an index 0 to quantities of the 1-parameter model Let be given an anti-symmetric matrix $\epsilon_{x,y}$ and a solution r_y of the eigenvalue equation $\sum_{y} w_0(x,y)\epsilon_{x,y}r_y = 0$ (*).

Given ζ , let $w(x,y) = w_0(x,y)(1+\zeta b_{x,y})$ with $b_{x,y} = r_x \epsilon_{x,y} r_y$.

$$|\zeta|$$
 should not be too large so that $w(x,y) \ge 0$ holds.
 $\sum_y w(x,y) = 1$ follows using (*).

 $\begin{array}{ll} \mathsf{CALCULATION} & p_0(x) \text{ is the stationary state} & \text{independent of } \zeta \\ \\ \mathsf{CALCULATION} & \langle \epsilon \rangle = \zeta \sum_{x,y} p_0(x) w_0(x,y) r_x \epsilon_{x,y}^2 r_y = \zeta \langle b \epsilon \rangle_0. \end{array}$

Linear response theory is exact in this model!

FURTHER CALCULATIONS

Dynamic entropy variable $\Psi_{\theta}(k) = \Psi_{\theta}^{0}(k) - \sum_{x,y} k_{x,y} \ln(1 + \zeta b_{x,y}).$

Distribution of transition records $d_x(k) = d_x^0(k) \prod_{x,y} (1 + \zeta b_{x,y})^{k_{x,y}}$.

NOTE $\langle \epsilon \rangle = \zeta \langle b \epsilon \rangle_0$ and $\langle a \rangle = \langle a \rangle_0$ (using $\langle ab \rangle_0 = 0$ and the fact that ab is antisymmetric) Hence, in general is $\frac{\partial}{\partial \xi} \langle \epsilon \rangle \neq \frac{\partial}{\partial \zeta} \langle a \rangle$. This implies the non-existence of a Massieu function $\Phi(\xi, \zeta)$ such that $\frac{\partial \Phi}{\partial \xi} = -\langle a \rangle$ and $\frac{\partial \Phi}{\partial \zeta} = -\langle \epsilon \rangle$.

EXERCISE Consider the 3-state model with

$$w_0(x,y) = \begin{pmatrix} 1-2w & w & w \\ w & 1-2w & w \\ w & w & 1-2w \end{pmatrix} \text{ and } p_0(x) = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
Let $\epsilon = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ and $r = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. ($|\zeta| < 1$ is needed)
Show that $\langle \epsilon \rangle = 2w\zeta$ and $\Delta S = 2\zeta w \ln \frac{1+\zeta}{1-\zeta}$

8 Summary

- It is easy to derive the fluctuation theorem in the context of Markov chains
- The distribution of transition records is a natural tool
- In the Markov case it belongs automatically to the exponential family
- A related concept is the record of visits, used by Carati
- In the stationary case, the entropy production increases linearly in the number of steps
- The one-parameter model generalizes thermostatistics to path-dependent generators
- Still open is the problem of formulating thermodynamics for stationary non-equilibrium states.

