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Preliminaries
• Hamilton’s principle

• Dirichlet’s principle

• Constants of motion → Constraints
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a review of classical mechanics

• classical mechanics ⇔ symplectic 2-form

• If Aij has a unique inverse Aij, we have
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Equilibrium  (stationary points)

• Characterized by δH = 0   (but, often trivial)
• Relaxation process (cf. Dirichlet’s principle) 

drives the system towards the equilibrium.
• Constraints may yield non-trivial class of 

equilibria characterized by  
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Topological constraints 
(Casimir invariants)

• A “non-canonical” Hamiltonian system 
admits the Poisson bracket (operator A) to 
have a kernel, i.e., 

• Such C is called a “Casimir invariant”.
• Casimir invariants poses topological 

constraints.
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Helicity (Casimir)
• Vortex dynamics system:

(We assume incompressible u.  P is the “projection” onto the function 

space of incompressible fields.)

• Helicity:
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MHD case
• Canonical form of MHD

• Casimirs (helicities)
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Structured equilibria

• Parameterized Hamiltonian:

• Parameterized stationary points:

• Beltrami-class of equilibria:
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Duality

• isoperimetric problem:
max S for given L ⇔ min L for given S

• ill-posed problem:
min S for given L or max L for given S



problem in function spaces 
(∞-dimension)

• well-posed problem and its dual:

• ill-posed problem:
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∞-dimension dynamical system

• If min     occurs at an isolated point x0, this 
x0 is an equilibrium.

• x0 is surrounded by contours of     .
• The       is a Lyapunov function.
• In an infinite dimension space (Hilbert 

space), the      must be coercive. 

H~

H~

H~

H~
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Coercivity and well-posedness
• Some Casimirs may impose ill-posed 

constraints, and destroy the coercivity. 

Z. Yoshida and S.M. Mahajan, Phys. Rev. Lett. 88 (2002) 095001.



Summary

• Variational principles → self-organization

• Topological constraints on dynamics: 
helicity, Casimir invariants, singularity

• Lyapunov functions ← coercivity
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