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INTRODUCTION

❏ The field of quantum plasmas is quite new.

❏ Quantum plasmas are ubiquitous in ultrasmall electronic
devices and micromechanical systems, in laser and
microplasmas, and in dense astrophysical environments.

❏ Traditionally, quantum effects are important when the de
Broglie wavelength of the charge carriers (electrons,
holes/positrons) is comparable to the dimension of the system.

❏ Here quantum mechanical effects (e.g. tunneling) can play an
important role at nanoscales.
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INTRODUCTION (Continued)

❏ We are thus dealing with extremely high density and
low-temperature plasmas, in contrast to traditional plasmas
that have high temperature and low density.

❏ In quantum plasmas, strong electron correlations exist at
quantum scales. They lead to dispersion at quantum scales.
We can have new wave modes and nonlinear structures (dark
& gray solitons, quantum vortices) in ultracold quantum
plasmas.

❏ the ~ physics in quantum plasmas is interesting as it shares
knowledge with the BEC physics.
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PROPERTIES OF QUANTUM PLASMAS

❏ Quantum effects can be measured by the thermal de Broglie
wavelength of the particles composing the plasma

λB =
~

mVT

which roughly represents the spatial extension of a particle’s
wave function due to quantum uncertainty. For classical
regimes, the de Broglie wavelength is so small that particles
can be considered as pointlike, and therefore there is no
overlapping of the wave functions and no quantum
interference.
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PROPERTIES OF QUANTUM PLASMAS (Continued)

❏ It is reasonable to postulate that quantum effects start playing
a significant role when the de Broglie wavelength is similar to
or larger than the average interparticle distance n−1/3, i.e.
when nλ3

B ≥ 1.

❏ Quantum effects become important when the temperature is
lower than the so-called Fermi temperature TF , defined as

kBTF ≡ EF =
~2

2m
(3π2)2/3n2/3.

❏ When the temperature approaches TF , the relevant distribution
changes from Maxwell-Boltzmann to Fermi-Dirac.



UCSD, LA JOLLA, JULY 2006 6

PROPERTIES OF QUANTUM PLASMAS (Continued)

❏ It is easy to see that

χ =
TF

T
=

1
2
(3π2)2/3(nλ3

B)2/3.

Thus quantum effects become important when χ ≥ 1.

❏ The relevant velocity FOR A FERMI-DIRAC distribution is

VF = (2EF/m)1/2 =
~
m

(3π2n)1/3.
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PROPERTIES OF QUANTUM PLASMAS (Continued)

❏ The Fermi screening scalelength

λF =
VF

ωp

is the quantum analogue of the Debye length.

❏ The quantum coupling parameter

Gq =
Eint

EF
∼

(
1

nλ3
F

)2/3

∼
(

~ωp

EF

)2

,

is completely analogous to the classical one when one
substitutes λF → λD.
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Model Equations

❏ The most fundamental model for the quantum N body problem
is the Schroedinger equation for the N-particle wave function
ψ(x1, x2, xN , t). We assume that the N-body wave function can
be factored into the product of N-one body functions:

ψ(x1, x2, ...xN , t) = ψ1(x1, t)ψ2(x2, t)...ψN(xN , t)

For Fermions a weak form of the Pauli exclusion principle is
satisfied if none of the wave functions on the r.h.s. are
identical.

❏ We can then introduce the density matrix formalism-Wigner
and Hartee models.
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Model Equations (Continued)

❏ The Wigner-Poisson model for our purposes is then

∂f

∂t
+ v · ∇f − e

m
∇φ · ∇vf ≈

~2

24m3
∇∇2φ∇3

vf

∇2φ =
e

ε0

(∫
fd3v − n0

)
.
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QUANTUM HYDRODYNAMICAL MODEL

❏ We have

∂n

∂t
+∇ · (nu) = 0

∂u

∂t
+ u · ∇u =

e

m
∇φ+

~2

2m2
∇

(
∇2
√
n√
n

)
− 1
mn

∇P,

where

P =
mV 2

F

3n2
0

n3
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QUANTUM HYDRODYNAMICAL MODEL (Continued)

Introduce the effective wave function

ψ(r, t) =
√
n(r, t) exp(iS(r, t)/~)

where S is defined according to mu = ∇S and n = |ψ|2. It is
easy to show that the QHD equations are equivalent to

i~
∂ψ

∂t
+

~2

2m
∇2ψ + eφψ − mV 2

F

2n2
0

|ψ|4/Dψ = 0

and

∇2φ =
e

ε0
(|ψ2| − n0)

❏ Without the φ term, the NLSE is similar to that found in BECs.
For D = 1, we have analytical solutions (PRL 85, 1146, 2000).
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Dark quantum electron solitons/vortices in D dimensions

Normalized system

i
∂Ψ
∂t

+A∇2Ψ + ϕΨ− |Ψ|4/DΨ = 0,

∇2ϕ = |Ψ|2 − 1,
Conserved quantities

N =
∫
|Ψ|2 d3x

P = −i
∫

Ψ∗∇Ψ d3x

L = −i
∫

Ψ∗r×∇Ψ d3x

E =
∫

[−Ψ∗A∇2Ψ + |∇ϕ|2/2 + |Ψ|2+4/DD/(2 +D)] d3x



UCSD, LA JOLLA, JULY 2006 13

1D DARK SOLITONS

Shukla & Eliasson, PRL 96, 245001 (2006)
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DYNAMICS OF 1D DARK SOLITONS

Electron density (left) & electrostatic potential (right)

Shukla & Eliasson, PRL 96, 245001 (2006)
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2D QUANTUM ELECTRON VORTICES

Shukla & Eliasson, PRL 96, 245001 (2006)
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INTERACTING 2D QUANTUM VORTICES

SINGLE CHARGE STATES (n = 1)

Shukla & Eliasson, PRL 96, 245001 (2006)
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INTERACTING 2D QUANTUM VORTICES

DOUBLE CHARGE STATES (n = 2)

Shukla & Eliasson, PRL 96, 245001 (2006)
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QUANTUM WAVE MODES

❏ The Langmuir wave dispersion relation is

ω2 = ω2
p + k2V 2

F +
~2k4

4m2

❏ Quantum ion-acoustic waves

ω2 =
k2C2

s(1 +H2k2/4)
1 + k2(1 +H2k2/4)

where

Cs =
(

2kBTFe

mi

)1/2

H =
~ωp

2kBTFe
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QUANTUM WAVE MODES (Continued)

❏ In ultracold quantum plasmas, we have

ω =
(
ω2

p + ~2k4/4m2
)1/2 ≡ ΩR

for the Langmuir waves, and

ω = ~k2/2
√
memi ≡ ΩB

for the ion oscillations.
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EXCITATION OF ES QUANTUM MODES BY LIGHT

❏ Both Langmuir waves and ion oscillations couple with light
nonlinearly. The governing equations are

(
∂2

∂t2
− c2∇2 + ω2

p

)
A + ω2

p

ne1

n0
A = 0

for the light

(
∂2

∂t2
+ ω2

p +
~2

4m2
e

∇4

)
ne1 =

n0e
2

2m2
ec

2
∇2|A|2

for the driven Langmuir waves, and

(
∂2

∂t2
+

~2

4memi
∇4

)
ne1 =

n0e
2

2memic2
∇2|A|2

for the driven ion oscillations in ultracold quantum plasmas.
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Parametric Instability Growth Rates

❏ The SRS and SBS growth rates are

γR =
ωpeK|A0|

2
√

2
√
ω0ΩRmec

γB =
ωpeK|A0|

2
√

2
√
ω0ΩBmemic

Shukla & Stenflo, PoP 13 (2006).
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SUMMARY

❏ We have discussed the properties of quantum plasmas.

❏ Provided the appropriate models

❏ Localized nonlinear states can be represented as dark and
gray envelope solitons in a quantum electron gas.

❏ 2D Quantum electron vortices can exist. They are robust
identities.

❏ Discussed possible linear ES quantum modes.

❏ ES quantum modes can be parametrically excited by light.


