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Turbulent cascade in a magnetized plasma is strongly anisotropic: small-scale
fluctuations are generated mostly in quasi-transverse directions, with associated
frequencies much lower than the ion gyrofrequency.

In the solar wind or the magnetosheath, the cascade extends beyond the ion
Larmor radius: kinetic effects play a significant role ⇒ change in the exponent of
power-law spectrum of magnetic fluctuations.

From Leamon et al. (1998):



From Alexandrova et al., EGU 2006:



From Alexandrova et al., EGU 2006:



Another issue: formation and evolution of mirror structures.

Mirror modes have been reported in various space plasma environments
(solar wind, magnetosheath of solar system planets, cometary environments) in
regions of high enough β and significant proton temperature anisotropy (T⊥ > T‖).

Ultra low frequency waves propagating very slowly in directions making
a large angle with the ambient field.

Appear as magnetic holes (moderate β) or magnetic humps (large β),
with an anticorrelated density profile.
Size of these structures: a few Larmor radii.

Also observed in conditions for which the plasma is linearly stable.







Figure 1: Large beta regime (β ∼ 30): Magnetic humps and plasma density holes

[from Leckband et al. 1995].



It was recently suggested to use the gyrokinetic equation to study turbulent
astrophysical plasmas.

Howes et al. 2006 (astro-ph/0511812): evaluation of dispersion and damping of
KAW’s (0 < k⊥rL < 100). Excellent agreement with hot-plasma kinetic theory,
for a broad range of values of beta and electron-ion temperature ratio.

Computational cost of gyrokinetic simulations in turbulent regimes involving a
broad range of scales is very high.

Question: Can fluid models provide a cheaper alternative to kinetic calculations,
even if they possibly are somewhat less accurate?



From kinetic to fluid approaches

Collisional plasmas: the distribution function relaxes to a Maxwellian before
the plasma can change its properties; description in terms of the parameters
characterizing this Maxwellian.

Collisionless plasmas : the hierarchy for velocity moments derived from the kinetic
equation governing the distribution function, cannot be rigorously closed.

Various approaches were suggested.

We here concentrate on the so-called Landau-fluid models:
• Introduced by Hammett & Perkins (1990) as a closure retaining phase mixing and linear Landau

damping.

• Implemented in the context of large-scale MHD dynamics by Snyder, Hammett & Dorland (1997)

for closing the moment equation hierarchy within the drift kinetic approximation.

• Extended to dispersive MHD by including FLR corrections computed perturbatively within fluid

formalism, starting from Vlasov-Maxwell (Goswami, Passot & Sulem 2005 and references within).

Aim of this talk: revisit Landau fluid approach to resolve transverse scales much
smaller than the ion gyroradius: FLR-Landau fluids.



Landau-fluids are based on a full description of the hydrodynamic nonlinearities
supplemented by a linear (or quasi-linear) description of low-frequency kinetic
effects.

Alternative approach: Gyro-fluids (Brizard 1992, Dorland & Hammett 1993, Beer &

Hammett 1996):
• Obtained by taking velocity moments of the gyrokinetic equation.
• Nonlinear FLR corrections to all order are captured.
• Linear closure of the hierarchy as for Landau fluids.
• Equations are rather complex and not written in the physical coordinates but in
the gyrocenter variables. The transformation from one set of variables to the other
involves additional approximations.
• All fast magnetosonic waves are ordered out, while FLR-Landau fluids retain
large-scale fast magnetosonic waves.

Detailed comparison of gyrofluids and FLR-Landau fluids would be most useful.



Landau fluids

For each species, starting from the Vlasov-Maxwell system,
write the usual fluid equations governing

• density (electron inertia usually neglected)

• velocity: involves pressure tensor

P p = p⊥pn + p‖pτ + Π or P e = p⊥en + p‖eτ

with nij = δij −bbi
bbj and τij = bbi

bbj. Here, bbi = Bi/B0.

• parallel and perpendicular pressures: involve heat flux tensors

• gyrotropic heat fluxes q⊥ and q‖: involve gyrotropic fourth rank tensors
characterized by 3 scalars
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c
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induction equation (retaining Hall-effect and electron pressure gradient)



2 main problems:

(1) Closure relations are needed to express the 4th order cumulants r̃‖‖, r̃‖⊥, r̃⊥⊥
(closure at lowest order also possible, although usually less accurate)

(2) FLR corrections to the various moments are to be evaluated

The starting point for addressing these points is the linear kinetic theory in the
low-frequency limit ω/Ω ∼ ε ¿ 1,

For a unified description of fluid and kinetic scales, FLR-Landau fluids retain
contributions of:

• quasi-transverse fluctuations (k‖/k⊥ ∼ ε) with k⊥rL ∼ 1

• hydrodynamic scales with k‖rL ∼ k⊥rL ∼ ε.



CLOSURE RELATIONS are based on linear kinetic theory (near bi-Maxwellian
equilibrium) in the low-frequency limit.

For example, for each species, (assuming the ambient magnetic field along the z direction),
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It turns out that r̃‖⊥ can be expressed in terms of perpendicular gyrotropic heat
flux q⊥ and the parallel current jz. One has
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The approximation consists in replacing the plasma response function R by its

three pole Padé approximant R3(ζ) =
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This leads to the approximation
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(A lower order approximant would overestimate the Landau damping in the large ζ limit).

This leads to a closure relation in the form of the evolution equation (for each
species)
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In Fourier space, Hilbert transform Hz reduces to the multiplication by i sgn kz.

Improvement: Retain the evolution of the equilibrium state by replacing the (initial) equilibrium

pressures and temperatures by the instantaneous fields averaged on space.

In the large-scale limit, Γ0(0) = 1 and Γ1(0) = 0.

An alternative description of the large-scale dynamics based on a Chapman-Enskog-like approach,

that directly provides a linear closure relation in terms of lower-order moments (typically velocity

and temperature) [Chang and Callen 1995].



Decay instability of parallel Alfvén waves in the long-wavelength limit
(no FLR corrections)

Figure 2: Maximum growth rates of the density modes versus wavenumber (normalized

by the pump wavenumber) resulting from the decay instability of a non dispersive Alfvén

wave of amplitude b0 = 0.447 in a plasma with β‖p = 0.3 and isotropic temperatures

such that T (0)
e /T (0)

p = 33 (left), T (0)
e /T (0)

p = 5 (middle) and T (0)
e /T (0)

p = 1 (right).

Reducing electron temperature tends to broaden the spectral range and to reduce
the growth rate of the instability.



Difficulty: In plasmas with anisotropic ion temperature (T⊥p > T‖p) and β
exceeding a few units, mirror instability can occur. (At β ∼ 1, ion cyclotron instability

that is not captured by low-frequency asymptotics dominates). The growth rate of mirror
instability in the quasi-hydrodynamic limit is accurately captured by Landau fluids
(in contrast with anisotropic MHD models).
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Figure 3: Mirror mode growth rate ζp = Im(ω)/(kzvth) in a quasi-transverse direction

(cot θ = 0.01), predicted by the kinetic theory and given by time integration of the Landau fluid

model, versus equilibrium temperature anisotropy for a plasma with β = (2β⊥ + β‖)/3 = 1 and equal

temperatures for electrons and protons.

Mirror instability extends to transverse scales comparable to ion larmor
radius. Such scales cannot thus be ignored.



Figure 4: Instability growth rate versus the transverse wavenumber for various β⊥p and anisotropy factor

A = T
(0)
⊥p

/T
(0)
‖p − 1 [From Pokhotelov et al. (2004) JGR 109, A09213].

In the quasi-hydrodynamic approach, maximum growth rate proportional to k⊥rL,
whereas kinetic theory predicts a quenching of the instability for perpendicular
scales of the order of the ion Larmor radius.

Retaining only the large scales leads to an ill-posed problem (the smallest retained
scales are the most unstable).

FLR effects at small transverse scales should be retained to reproduce the
quenching of the mirror instability.



Gyroviscous tensor: Π = Π⊥ + Πz ⊗ b̂ + b̂⊗Πz

It is convenient to write 1

p
(0)
⊥p

∇⊥ ·Π⊥ = −∇⊥A+∇⊥ × (Bẑ).

By combining expressions of the various fields provided by the kinetic theory in
order to eliminate the plasma response function, one gets
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Similar description of Π‖ = −∇C + ∇ × (Dẑ) and of the relevant (transverse)

non-gyrotropic heat fluxes S⊥⊥ andS
‖
⊥ .

Specific difficulty: D =
α(b)
Ω

(q⊥ + p
(0)
⊥ uz) + · · ·

The fluid hierarchy provides a dynamical equation for the heat flux q⊥.
Using this determination leads to a spurious instability for a quasi-transverse
non-propagating mode, at a scale of the order of the ion gyroradius.

This phenomenon is related to the difference between fast (ω
k ∼ vth) and slow

(ω
k ¿ vth) dynamics.



For slow dynamics, q⊥ is prescribed by the equation for
the perpendicular pressure, or equivalently the perpendicular
temperature (where ∂t
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√

π
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−1
z ∂t)−1 (sufficient for slow dynamics).

Write the resulting equation in the form of a partial differential equation and replace
the temperature time-derivative by the expression given by the fluid equation.

The resulting (closed) description avoids spurious instabilities.



The resulting model accurately reproduces kinetic Alfvén wave dynamics
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Figure 5: KAW normalized damping rate −γ/(k‖vA) vs k⊥rL for T (0)
e /T (0)

p = 0.01

and βp = 1. Diamonds: FLR-Landau fluid model; Crosses: low-frequency kinetic theory.

• Small-scale inaccuracy (at about rL/30) originates from neglected electron inertia.

• Agreement with gyrokinetic simulations and hot plasma stability analysis (Howes et al. 2006).



Mirror instability:
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Figure 6: Normalized mirror instability growth rate γ/(k‖vA) versus k⊥rL for β‖p = 5,

T⊥p/T‖p = 1.4, T‖e/T‖p = 1, T‖e = T⊥e, cos θ = 0.2. Circles: FLR-Landau fluid

simulations, solid line: low-frequency kinetic theory.



Nonlinear development of the mirror instability: numerical integration of the model

At early times, longitudinal magnetic fluctuations grow in anti-correlation with
density and temperatures ⇒ quasi-monochromatic waves with wavelength close to
that of the most unstable mode.

At the time of nonlinear saturation, strong variations of the parallel and
perpendicular temperatures before they stabilize.
Non trivial transient dynamics resulting in different structures, depending on β.
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Figure 7: Magnetic field amplitude (solid) and density (dotted) as functions of space

in units of inertial length, for β‖p = 5 with T⊥p/T‖p = 1.5 (left) at t = 2000 Ω−1
p

and for β‖p = 20 with T⊥p/T‖p = 1.4 (right) at t = 850 Ω−1
p , when T‖e/T‖p = 1,

T⊥e/T⊥p = 0.05, cos θ = 0.2. Width of the structures: about 6 Larmor radii.

For β‖p = 5: formation of magnetic holes

For β‖p = 20: formation of magnetic peaks.
At very long times (t > 3000 Ω−1

p ), the peak amplitude is observed to decrease and a stable hole

forms. This effect could be due to the absence of Landau damping saturation.

The existence of such quasi-static mirror structures can be interpreted, using a
simple variational argument.



A simple quasi-static model at scale large enough for kinetic effects to be
negligible (with V. Ruban).

When closing the stationary moment hierarchy by assuming bi-Maxwellian

distribution functions, one gets the equations of state (A =
T

(0)
⊥

T
(0)

‖
− 1)

T‖

T
(0)

‖
= 1 ;

T⊥

T
(0)
⊥

=
B/B0

(A + 1)B/B0 − A
,

These expressions can also be obtained by solving the stationary Vlasov-Maxwell system with

bi-Maxwellian distributions as boundary conditions.

The problem of stationary structures is then amenable to a variational formulation
(assume cold electrons for simplicity).

On stationary configurations, the functional
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(where F (B) = ln[(A + 1)B − A]− ln B. and B = B/B(0))

should achieve a minimal value.



One-dimensional solutions: the only solutions are piecewise constant functions.
Reproduce typical large-scale features of mirror structures.

Periodic piecewise constant solutions in 0 < x < 1:

B1 = (cos θ, sin θ − a), B1 = |B1|, n1 = 1 + δ/b if 0 < x < λ,

B2 = (cos θ, sin θ + b), B2 = |B2|, n2 = 1− δ/a if λ < x < 1,

displays discontinuities at x = 0 (or 1) and at x = λ = b/(a + b).

Expressions of λ, n1 and n2 result from the constraint that the magnetic flux and the number of

particles should be the same for the nonlinear state and for the trivial equilibrium.

The solutions are characterized by three parameters δ, a, and b to be determined.

The system admits a trivial solution. In addition, a nontrivial solution is possible.
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Figure 8: Contours H(a, b) = const, with β‖ = 2.0, θ = 70o.

At R = T
(0)

‖ /T
(0)
⊥ = 0.90 (left), the only stationary point is the trivial point, and it is

stable. At R = 0.80 (middle), there is also a nontrivial stable point originating from a

bifurcation that occurs at R∗ ≈ 0.84. At R = 0.69 (right), the trivial point is unstable

and only the nontrivial point is stable.

Stable nontrivial solutions were reported in regimes where the trivial solution is
linearly stable (bistability):
• in anisotropic MHD simulations with spectral filtering to quench the mirror
instability at small scale (Baumgärtel 2001),
• in observations of the Jovian magnetosheath (Erdös and Balogh 1996).



Influence of β‖:
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Near threshold, for moderate values of β‖, λ = b/(a+ b) takes values smaller than
1/2. The periodic pattern thus displays a structure of magnetic holes. In contrast,
for large β‖, λ is larger then 1/2. Such a configuration is associated with magnetic
humps.
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Figure 9: Magnetic field intensity (top) and density (bottom) profiles for β‖ = 2 (left),

displaying magnetic holes and β‖ = 16 (right), displaying magnetic humps, in the case

R = 0.8.



SUMMARY

FLR-Landau fluid model

• extends the Landau-fluid model developed by Snyder et al. [Phys. Plasma
(1997) 4, 3974] for (non-dispersive) MHD scales to the much smaller (quasi-
transverse) kinetic scales that are excited by the turbulence cascade.

• retains all the hydrodynamic nonlinearities, but kinetic effects (Landau damping
and FLR corrections) are treated quasi-linearly.

• acurately reproduces the dispersion and damping of kinetic Alfvén waves up to
scales ∼ (1/30)× ion inertial length. Discrepency at smaller scales could be due to

electron inertia that is not retained.

• accurately reproduces the mirror instability (including its quenching at small
scales), First simulations of its nonlinear development were presented.

• retains large-scale fast magnetosonic waves (in contrast with gyrokinetic
approach).



FORTHCOMING DEVELOPMENTS

• Further benchmarks of the model by comparison with Vlasov-Maxwell and hybrid
simulations: evaluation of the importance of (neglected) nonlinear kinetic effects,
depending on the plasma parameters.

• Simulations of Alfvén turbulence and of the coherent structures (magnetic
holes, magnetic filaments, shocklets) observed in the solar wind and the
magnetosheath.

• Detailed analysis of the nonlinear development of the mirror instability.

– FLR-Landau fluids predict that the development of the mirror instability leads to magnetic

holes for moderate β and magnetic humps for larger β, indicating that these structures are

then stable, as suggested by satellite observations.

– However, hybrid simulations (Baumgärtel et al. 2003) lead to magnetic humps even at

moderate β.

Vlasov or gyrokinetic simulations of mirror mode nonlinear dynamics are needed.

• Challenge: Modeling of particle trapping within a fluid formalism (Mattor 1999).


