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Abstract

The properties of pair-ion plasmas are briefly discussed. Theo-
retical analysis of waves in pair plasmas is presented along with a
low frequency electrostatic mode which can only propagate in pair
plasmas including the electron-positron plasmas. Results of a recent
experiment preformed to produce a pure pair-ion fullerene C±

60 plasma
are compared with the theoretical calculations. It is pointed out that
one of the observed waves in this experiment is the usual ion acoustic
wave which itself is an indication of the fact that this plasma is not
a pure pair-ion plasma. It is also shown that the frequency of the
ion acoustic wave becomes larger as the electron density is reduced in
an effort to produce pure pair-ion plasma. Moreover the quasi neu-
trality can break down in a pair-ion-electron plasma in the perturbed
state. Using kinetic model for an unmagnetized case, it is found that
in the limit 1 << λ2

Dek
2(where λDe is the electron Debye length) the

damping rate is reduced and hence the ion acoustic wave can be easily
excited.

I. Introduction
The electron-ion (EI) plasmas have been studied extensively in laboratory,

space and astrophysical environments [1, 2, 3]. In nature they prevail in
planetary ionospheres, magnetospheres, interstellar medium and intergalactic
space. The interest to confine (EI) plasmas on laboratory scales is mainly for
the purpose of achieving thermonuclear fusion for electricity generation for
the present and future needs of mankind. Both the approaches; the magnetic
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confinement fusion (MCF) [4] and inertial confinement fusion (ICF) [5] are
followed to design a fusion reactor for continuous electricity generation. The
electron-positron (EP) plasmas have also been investigated in detail because
they are believed to be produced by the intense radiation in the presence of
large magnetic fields in the magnetospheres of pulsars [6, 7]. They are also
believed to be present in the early universe and active galactic nuclei (AGN)
[8]. The attempts have been made to collect and confine positrons [10] and
anti hydrogen under laboratory conditions [10]. To study the properties of
pair plasmas, the (EP) system is not suitable because the annihilation time
is very short. The annihilations do not occur in pair-ion plasmas. Therefore
efforts are being made to produce pure (PI) plasmas on experimental scales
[11, 12] to understand the behavior of equal mass plasmas.

In this experiment a cathode is heated over 20000C and thermionically
emitted electrons are accelerated by electric field between the cathode and the
anode forming a hollow electron beam. The fullerene vapors are introduced
into the cylinder. Positive ions C+

60 are produced by the electron impact ion-
ization along with low energy electrons. The negative ions C−

60 are produced
by the attachments of these low energy electrons. The fullerenes have a good
electron attachment cross-section. Then the electrons are separated from the
system by magnetic filtering effect. Finally a so called pure (PI) fullerene
plasma is collected in a cylindrical chamber of diameter ∼ 3cm and about
70cm long. This set up includes an externally applied uniform axial magnetic
field B = 0.3T ,and the density of negative and positive ions in the chamber
is almost the same n0 ' n+

0 ' n−0 = 107cm−3. The plasma is assumed to be
in thermal equilibrium with temperature T = T+

e = T− = 0.5eV . Since the
density and temperature are relatively low and the induction current of the
ions is very small therefore the electromagnetic modes have been neglected.
The electrostatic modes have been excited by temporarily alternating the
annular exciter. Further experimental details can be found in Ref [12]. We
shall concentrate here on the theoretical analysis of the experimental ob-
servations and point out some interesting characteristics of pure (PI) and
pair-ion electron (PIE) plasmas.

In Ref. [12], it has been explained that the three kinds of electrostatic
waves can propagate in this (PI) plasma along the field lines. These waves are
the ion plasma wave (IPW), the ion acoustic wave (IAW) and the third one
has been named as the intermediate frequency wave (IFW). Note that the

speed of IAW in this experiment has been defined as vs =
(

γiTi

mi

)1/2
(where
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Ti(mi) denote the ion temperature (mass), respectively) and γi is the ratio
of the ion specific heats. Note that a general definition of ion acoustic speed
in (EI) plasmas is cs = (Te

m i
) where Te is the electron temperature. Since

n0e ' 0 is assumed in this plasma therefore authors have defined the IAW
frequency as ω

′
s = vsk.

Let us look at Fig.1 which is Fig.2 of Ref.[12]. The authors of this paper
have pointed out that the observed frequency of IAW is larger than the
theoretical value given by the linear dispersion relation,

ω′s = v2
sk

2
z (1.1)

where the external magnetic field is along z- axis i.e.B0 = B0z.
If the plasma is very near to thermal equilibrium and electron density is

not zero then we may expect Ti < Te. Even if Ti ≤ Te (which will cause heavy
Landau damping and IAW many not be excited in this situation) we shall
notice that mathematically the frequency ωs of IAW turns out to be larger

than csk =
(

Te

m i

)1/2
k in a pair-ion plasma comprising electrons. Therefore

the experimental observation of IAW frequency larger than ω′s = vsk =

(γiTi/mi)
1/2

k is perfectly in agreement with the theory. Only point to note
is that the produced fullerene plasma should be treated as a (PIE) plasma.
It will also be pointed out that the quasi neutrality may not hold in (PIE)
plasmas because λDe(whereλDe = ( Te

4πn0ee2 )
1/2 is the electron Debye length)

becomes very large as the equilibrium electron density n0e is decreased in the
system in an effort to produce (PI) plasma. Furthermore in the limit 1 <<
λ2

Dek
2 the damping is reduced and hence acoustic waves can be easily excited.

This can be a reason for the large amplitude of the density fluctuations
n1

n0
∼ 0.1 associated with the IAW in this experiment. A few authors have

presented theoretical analysis of (PI) and (PIE) plasmas using fluid and
kinetic models [13, 14].

In the next section we describe the basic fluid equations for the (PIE)
plasmas. In section III a few linear modes of (PI) plasmas are discussed in the
light of experimental observations using fluid model. The linear dispersion
relation of ion acoustic wave in (PIE) plasmas is also obtained using kinetic
model in section IV to investigate the wave damping. The nonlinear dynamics
of (PI) and (PIE) plasmas are presented in section V. The results are briefly
summarized in section VI.

II. Basic Fluid Equations:
Let us assume that the positive and negative ion species follow the fluid
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equations. Let the magnetic field be constant along the z− axis and consider
the plasma to be homogeneous. The equation of motion for α−species can
be written as,

mαnα∂tvα = nαqα(E +
1

c
vα ×B0z)−∇pα, (2.1)

where the subscript α = ± denotes positive and negative ions. We also
assume E = −∇ϕ and pα = nαTα. The above equation yields,

(∂2
t + Ω2

α)vα⊥ =
qα

mα

(∂tE+ΩαE⊥ × z)−Ωα

mα

∇⊥pα × z

nα

− ∂t

(∇⊥pα

mαnα

)
, (2.2)

and

∂tυαz =
qα

mα

Ez −
(

∂zpα

mαnα

)
, (2.3)

where Ωα = eB0

mαe
. The continuity equation can be written as,

∂tnα + n0α∇⊥.vα⊥ + n0α∂zυαz = 0 (2.4)

Equations.(2.2 - 2.4) give,

{ω2(ω2 − Ω2
α)− υ2

Tαk2ω2 + υ2
Tαk2

zΩ
2
α}nα

.
−n0αqα

mα

k2
⊥ω2ϕ− n0αqα

mα

(ω2 − Ω2
α)k2

zϕ = 0 (2.5)

Writing Eq. (2.5) for α = ± and then subtracting one equation from the
other, we obtain.

[ω2(ω2 − Ω2
i )− υ2

Tik
2ω2 + υ2

Tik
2
zΩ

2
i ](n+ − n−)

−(n0
+ + n0

−)
q

mi

k2
⊥ω2ϕ

−(n0
+ + n0

−)
q

mi

k2
z(ω

2 − Ω2
i )ϕ = 0, (2.6)

Here the superscript naught (0) denotes the equilibrium values.
we have assumed that the magnitude of the charge on both ions is the

same i.e. q− = q+ = q and they have equal mass mi.The temperatures of
both ions have also been assumed to be equal, i.e.,T+ = T− = Ti and hence
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we define the ion thermal velocity as vTi =
(

γiTi

mi

)1/2
where, γi is the ratio of

specific heats for the adiabatic ions. The Poisson equation reads,

−∇2ϕ = 4πq(n+ − n−) (2.7)

We are interested to find a criterion to determine the percentage con-
centration of electrons in the system. For this we have to investigate the
ion acousitic wave frequency and, therefore, we shall also need an electron
Boltzmann density distribution which is given as,

ne = n0e exp
(

eϕ

Te

)
(2.8)

III. Linear Modes in PI and PIE Plasmas
Now we discuss a few linear waves in (PI) and (PIE) plasmas.The set of

equations (2.6)-(2.8) yield a few simple but interesting results. Let us discuss
the limiting cases one by one.

We observe that a new mode which may be called a finite frequency pair
plasma convective cell (PPCC) can exist in such systems in the quasi-neutral
approximation with ω << Ωi. Let us assume that the concentration of
electrons is negligible in the system and the net electron momentum exerted
on the collective plasma motion can be ignored. In this situation we obtain
from Eq. (2.6) using n+ ' n−,the linear dispersion relation as,

ω2 =
k2

z

k2
Ω2

i (3.1)

It may be noted that this mode requires the condition kz << k and
hence the assumption ω << Ωi remains valid. Otherwise the ion cyclotron
and also the ion plasma waves should appear which do not allow us to assume
quasi-neutrality in the absence of electrons.

This mode may exist, in principle, in (EP) plasmas as well with ω = kz

k
Ωe

where Ωe = eB0

mec
. However, in pulsar magnetospheres since ωpe << Ωe (where

ωpe and Ωe are the electron plasma oscillation and gyro-frequencies, respec-
tively), therefore this mode has not been studied yet (to the best of author’s
knowledge). The oscillations of electrons and positrons in the parallel elec-
tric field will produce the plasma wave which has a much smaller frequency
than the gyro-frequency of these light particles in the strong magnetic field
of the order of 1012 Gauss. Hence, the plasma wave may appear where the
quasi-neutrality approximation does not remain valid. In laboratory (EI)
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plasmas, however, the condition Ωe << ωpe generally holds. Nevertheless, a
mode with the dispersion relation ω = [n0emi/(n0ime)]

1/2(kz/k⊥)Ωi has been
obtained in the dusty plasma environment. A detailed discussion about this
mode and the conditions for its existence can be found in Ref [15].

When kz and Ti are assumed to be zero, and the Poisson equation is used
instead of quasi-neutrality in Eq(2.6) one obtains ω2 = Ω2

i +2ω2
pi, which is the

analogue of the upper hybrid oscillations in (EI) plasmas. Here ωpi =
(

4πn0q2

mi

)
is the ion plasma oscillation frequency and n0 is the background number
density of positive and negative ions which are equal in this case.

Now we discuss the purely parallel propagating waves. Assuming quasi-
neutrality along with k⊥ = 0 and B0 = 0, Eqs. (2.6)and (2.8) yield,

ω2 =
q

2
N0c

2
sk

2
z + υ2

Tik
2
z , (3.2)

where N0 = 1+ε
1−ε

and ε = n0
−/n0

+ ≤ 1. If we have 1 << N0, the frequency
of the wave may exceed the ion cyclotron frequency that is we may have
Ωi < ω even if cskz < Ωi. Not that we have ε = 0 for the case of ordinary
(EI) plasmas and ε = 1 for the pure (PI) plasmas. It may be noticed that for
ε = 1, the Eq. (3.2) is trivially satisfied if we multiply it with (1 − ε) since
cs → 0 as ε → 1.The dispersion relation (3.2) shows that the frequency of
the (IAW) will be greater than the ion thermal speed even if Te = Ti and
q = e due to the first term on the right-hand side which can have 1 << N0.
This seems to be the reason that the observed IAW frequency line is above
the ion thermal wave plot in Fig.2 of Ref.[12]. Thus the observation of the
IAW frequency can be a test to determine the percentage concentration of
electrons in the system. For IAW we must have Ti << Te.

On the other hand, if we assume n0e = 0 and B0 = 0, and we use Poisson
equation along with k⊥ = 0 in Eq. (2.6), we obtain the (IPW) dispersion
relation ω2 = 2 ω2

pi + υ2
Tik

2
z . Now we show that the ion cyclotron wave

dispersion relation will be modified in plasma with the same positive and
negative ions. Let us assume that the plasma is quasi-neutral in the presence
of Boltzmann electrons. For simplicity we ignore the ion temperature effects.
Equations (2.5) and (2.7) then yield,

ω4 −
(
Ω2

i +
q

e
N0c

2
sk

2
)

ω2 +
q

e
N0c

2
sk

2
zΩ

2
i = 0 (3.3)

In the (EI) plasma case N0 = 1 and for the ion cyclotron wave we have
kz << k⊥, therefore Eq.(3.3) yields the well-known dispersion relation ω2 =
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Ω2
i + c2

sk
2
z

In the present situation, 1 << N0 is possible along with ω2 < N0c
2
sk

2
z

therefore we retain the last term in Eq. (3.3). It gives for q = e,

ω2 =
1

2
[(Ω2

i + N0c
2
sk

2)

±((Ω2
i + N0c

2
sk

2)2 − 4N0c
2
sk

2
zΩ

2
i )

1/2]. (3.4)

This is the modified ion cyclotron wave dispersion relation. In the limit
ω << Ωi it reduces to the ion acoustic wave,

ω2 =
qN0c

2
sk

2
z/e

1 + qN0ρ2
sk

2/e
. (3.5)

It may also be noticed that low frequency electromagnetic Alfven waves
are not dispersive in a pair-ion plasma. If we assume ne0 = 0 and use
quasi-neutrality because of the low frequency limit along with E = −∇φ −
(∂Az/∂t)z then we obtain the following Alfven wave dispersion relation

ω2 = υ2
Ak2

z/2, (3.6)

where υ2
A = (B2

0/4πn0mi)
IV. Kinetic Theory of IAW in PIE Plasmas
Since n0e << n+

0 is generally the case in (PIE) plasmas, therefore one
must not use quasi-neutrality because the inequality 1 << λ2

Dek
2can be eas-

ily satisfied in such systems. The charge separation plays a crucial role in
increasing and decreasing the Landau damping of the IAW in (PIE) plasmas
in certain limits.

It will be shown through analytical calculations that the IAW can not be
easily excited in the system if n0e << n+

0 holds which seems quite reasonable.
The observation of acoustic wave frequency ω significantly larger than csk in
the experiment [12] indicates that Te 6= 0 and the electron density is smaller
than positive ion density and hence 1 < N0.

However, we can not predict the electron concentration n0e in this exper-
iment because Te has not been measured and hence cs is unknown.

Let us consider the linear dispersion relation of low frequency electrostatic
waves propagating parallel to the external magnetic field (k || B0) in a hot
plasma as follows,

1 +
∑
j

1

k2λ2
Dj

{1 + i
√

πZjW(Zj)} = 0 (4.1)
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where Zj = ω√
2kvTj

, λDj =
υTj

ωpj
, ωpj = (

4πn0jq2
j

mj
)1/2, vTj = (Tj/mj)

1/2 and qj(Tj)

are the charge (temperature) of the j-th species, respectively. The plasma
dispersion fuction J(Zj) = 1√

π

∫
c

e−y2

z−y
dy is defined as J(Zj) = i

√
πW (Zj).

For j = e, +,−, the Eq. (4.1) can be expressed as,

1 +
1

λ2
Dek

2
{1 + ι

√
πZeW(Ze)}+

1

λ2
D+k2

{1 + ι
√

πZ+W(Z+)}

+
1

λ2
D−k2

{1 + ι
√

πZeW(Z−)} = 0 (4.3)

The IAW exists in an (EI) plasma in the limit vTik � ω � vtek. To
investigate the linear dynamics of IAW in (PIE) plasmas, we use the same
approximation i.e. υTik � ω � υTek. Following (EI) plasma case, we use
the limit |Ze| << 1 and 1 << |Z±| to obtain,{

(1 + λ2
Dek

2)− λ2
De

λ2
D+

(
1

2Z2
+

+
3

4Z4
+

)
− λ2

De

λ2
D−

(
1

2Z2
−

+
3

4Z4
−

)}

+ι
√

π

{
Ze +

λ2
De

λ2
D+

Z+e−z2
+ + +

λ2
De

λ2
D−

Z−e−z2
−

}
= 0 (4.4)

The real part of this equation yields,

ω2 = ω2
s

(
1 +

3υ2
T+k2

ω2

L±0
N±

0

)

where N±
0 =

(
n0

+

n0e
+

n0
−

n0e

T−
T+

m+

m−

)
, L±0 =

(
n0

+

n0e
+

n0
−

n0e

TeT−
T 2
+

(
m+

m−

)2
)

and

ω2
s = N±

0

c2
s+k2

1 + λ2
Dek

2
(4.5)

Here cs+ =
(

Te

m+

) 1
2 is the ion acoustic speed corresponding to positive ions.

Using Eq. (4.4) the real frequency can be approximated as,

ωr ' ωs

(
1 +

3

2

υ2
T+k2

ω2
s

L±0
N±

0

)
(4.6)

for
3υ2

T+k2

ω2
s

L±0
N±

0

< 1.

8



Assuming ω = ωr − iγ along with γ << ωr the damping rate turns out
to be,

γ '
√

π

8

N±
0 cs+k

(1 + λ2
Dek

2)

(
Te

T+

)1/2

(

me

m+

) 1
2 (T+

Te

) 1
2

+

(
Te

T+

n0
+

T+n0e

)
e
−

ω2
r

2k2υ2
T+ +

(
Te

T−

n0
−

n0e

)
e
−

ω2
r

2k2υ2
T−

 (4.7)

It is obvious from this equation that the damping of IAW depends upon
concentration ratios and temperatures ratios of different species. The mag-
nitude of γ will be different in the limits T− < T+ and T+ < T−. But this
difference in magnitude will not be qualitative as long as T± << Te remains
valid.

If the temperatures of the ions are not much smaller than the electron
temperature, i.e if the limit T± ≤ Te holds then we can not use the assumption
1 << |Z±|and |Ze| << 1. The investigation of this situation is out of scope
of the present work. Apart from the particular experiment [12], our aim is
to point out how the damping rate and real frequency of IAW is affected
because of n0e 6= 0 in (PIE) plasmas.

In deriving above relations, we have assumed q+ = q− = 1. Otherwise
ωr and γ will become functions of these parameters as well. Such effects are
similar to the case of other multi component plasmas like the dusty plasmas
and (EPI) plasmas and can be found in the existing literature.

In the present work, we are mainly interested in discusing the role of
Debye shielding in the damping rate γ of IAW due to the fact that we have
n0e << n+

0 and n0e 6= 0 in (PIE) plasmas. It is also to be pointed out that
IAW can be easily excited in PIE plasmas in the limit 1 << λ2

Dek
2. Now to

focus our attention on this particular point, we assume T+ = T− = Ti and
m+ = m− = m similar to the approximations used in theoretical calculations
of Ref.[12]. But we also assume Te 6= 0, n0e 6= 0 and T± << Te for an analysis
of IAW dynamics in (PIE) plasmas. Then Eq. (4.3) can be written as,

(1 + λ2
Dek

2) +
Te

Ti

N0

{
−(

1

2Z2
i

+
3

4Z4
i

)

}
+ i
√

π

(Ze +
Te

Ti

N0Zie
−z2

i ) = 0 (4.8)
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The real part of this equation yields the real frequency as,

ωr(k) ' ωs

(
1 +

3

2

υ2
Tik

2

ω2
s

)
(4.9)

here ω2
s = N0

c2sk2

1+λ2
Dek2 . In the limit λ2

Dek
2 << 1, Eq. (4.9) reduces to ω2 =

N0c
2
sk + 3υ2

Tik
2. In the limit 1 << λ2

Dek
2 for ne0 << n+

0 and assuming
ω = ωr − ιγ, one obtains

ωr(k) ' (1 + ε)ω+
pi

[
(1− 1

2λ2
Dek

2
)×

(1 +
3

2

n0
+

n0e

λ2
D+k2

N0

)

]
(4.10)

where ω+
pi =

(
4πn+

0ie
2

mi

) 1
2

.

Since ε 6= 0 if n0e 6= 0, therefore ωr becomes larger than the case of (EI)
plasmas corresponding to the same density of n+

0 . Note that λ2
D+ = λ2

De in
(EI) plasmas because n0e = n+

0 and Eq.(4.10) in this case becomes the same
as Eq. (4.2.4.4)of Ref.[16]. However, in (PIE) plasmas the result is different

from the case of (EI) plasmas due to ε 6= 0 and 1 <
n0

+

n0e
. Therefore in (PIE)

plasmas we may have ωpi < ωr. This seems to be the case in Fig. 1.
To write imaginary part of the frequency as γ = γ±e + γ±i where super-

scripts (±)denote the case of (PIE) plasmas, we obtain,

γ±e = N0γe (4.11)

γ±i = N2
0 γi (4.12)

where

γe(k) = (
π

8
)1/2(

me

mi

)1/2 csk

(1 + λ2
Dek

2)2
(4.13)

γi(k) = (
π

8
)1/2(

Te

Ti

)3/2 csk

(1 + λ2
Dek

2)2
exp(− ω2

r

2k2υ2
Ti

) (4.14)

Equations (4.12) and (4.13) are the same as Eq. (4.2.4.6) of Ref [16]
which represent the damping rate of IAW in (EI) plasmas where N0 = 1.
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Note that λ2
De = ε1λ

2
D+ in (PIE) plasmas where ε1 =

n0
+

n0e
. Corresponding

to a wavelength 1
k

for which λ2
Dek

2 = λ2
D+k2 < 1 in EI plasmas, we may have

1 << λ2
Dek

2 in (PIE) plasma because the inequality 1 << ε1 may hold due
to n0e << n0

+.
Therefore quasi-neutrality approximation must not be used in (PIE) plas-

mas in general. Furthermore,the use of Poisson equation has also shown that
in (PIE) plasmas we may have ωpi < ωr because of the factor 1 + ε. For the
case of longer wavelengths i.e. λ2

Dek
2 < 1, the damping rate of IAW can be

very large in (PIE) plasmas compared to (EI) plasmas because we may have
1 << N0 and hence γi << γ±i and γe << γ±e . In this case, one can not excite
IWA easily.

On the other hand, if 1 << λ2
Dek

2 holds which can be the case when
1 << ε1 (even if λ2

D+k2 ≤ 1), then the damping rate of (IAW) can reduce
significantly in (PIE) plasmas because 1 << N0 << λ2

Dek
2 can be generally

valid. In this situation one may find γ±i << γe and γ±e << γe. Therefore the
IAW can be excited easily in PIE plasmas if the condition 1 << N0 << λ2

Dek
2

is satisfied
In the limit 1 << λ2

Dek
2, one may express the above relations as,

γ±e(k) '
[√

π

8

√
me

mi

1− ε2

(λ2
D+k2)2

]
csk (4.15)

and

γ±i(k) '

√π

8

(
Te

Ti

) 3
2 1− ε2

(λ2
D+k2)2

e
ω2

r
2k2υ2

Ti

 csk (4.16)

Since e
− ω2

r
2k2υ2

Ti << 1, ε ≤ 1 or ε � 1, therefore γ±i ≤ γi can be the case.
That is corresponding to the same value of λ2

D+k2 we have γ±i ≤ γi because
in (PIE) plasmas ωei

r < ω±r . But γ±e < γe always holds due to (1 − ε2) < 1.
Therefore we conclude that in the limit 1 << λ2

Dek
2, the damping rate of

IAW decreases if the electron concentration decreases as ε becomes nearer to
1. Since ωr depends upon Te which is unknown in the observations of Ref
[12], therefore we can not estimate the value N0 from the Fig.1 by using the
value ωs and k. Furthermore to find the value of λ2

D+k2, we again need the
value of Te. Therefore in the present work we can not predict any estimate
of ε or N0 in this experiment which can give the value of the ratio n0e

n0
+.

For example if n0
− = 0.9n0

+, N0 = 19, then λ2
De = 10λ2

D+. If λ2
D+k2 = 10
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is assumed (which is equivalent to λ2
Dek

2 = 10 in case of (EI) plasmas), then
in (PIE) plasmas we find ε1 = 10 and hence λ2

Dek
2 = 102.

Important points of this section are the following. First it has been
pointed out that the quasi-neutrality is not a good approximation in the
case of (PIE) plasmas where the condition 1 ≤ λ2

Dek
2 can hold in general due

to n0e << n0
+ even if λ2

D+k2 < 1. Second the real frequency of the wave can
be larger than ion plasma oscillation frequency i.e. ωpi << ωr because 1 < ε
in Eq. (4.10) provided that 1 << λ2

Dek
2 is satisfied. Third, the IAW has

lesser value of the damping factor in (PIE) plasmas compared to (EI) plasmas
corresponding to the same value of λ2

D+k2 if 1 << λ2
Dek

2 holds. Therefore
this wave can be easily excited in (PIE) plasmas in the limit 1 << λ2

Dek
2.

Fourth, for λ2
Dek

2 << 1, the damping of (IAW) is larger in (PIE) plasmas
compared to (EI) plasmas corresponding to the same values of λ2

D+k2 and
hence this wave can not be easily excited.

V. Nonlinear Dynamics of PI Plasmas.
For the nonlinear study of PPCC mode, we ignore the ion pressure term

assuming Ti to be small.
Then under drift approximation |∂t| << Ωi ,Eq. (2.1) gives

vα⊥ =
c

B0

(E⊥ × z)− 1

Ωα

(∂t + vα.∇)vα × z = vE + vαp (5.1)

and
(∂t + vα.∇)υαz =

qα

mα

Ez, (5.2)

where vE is the electric drift and vαp is the polarization drift for α = ± ions.
Note that

∇.(v+p − v−p)

= − 2c

B0Ωi

[
∂t +

c

B0

z ×∇⊥ϕ.∇⊥

]
∇2
⊥ϕ

Therefore, the parallel Eq. (5.2) yields,[
∂

∂t
+

c

B0

z×∇⊥(ϕ).∇⊥

]
(υ+z − υ−z) = −b

∂ϕ

∂z
, (5.3)

and the continuity equation can be written as,[
∂

∂t
+

c

B0

z×∇⊥ϕ.∇⊥

]
a∇2

⊥ϕ = − ∂

∂z
(υ+z − υ−z) (5.4)
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where a = −2c/(B0Ωi) and b = 2q/mi.
The factor 2 in constants a and b is the effect of pair-ion plasma.
Equations (5.3) and (5.4) can be written, respectively , as,

(∂t + Diz×∇⊥Φ.∇)V = 2v2
Ti∂zΦ (5.5)

and

(∂t + Diz×∇⊥Φ.∇)D2
T Φ = − 1

2ρ2
i

∂zV (5.6)

where Φ = eϕ
Ti

, Di = cTi

eB0
, ρi = vTi

Ωi
and V = (vz− − v+z).

We try to find a stationary solution of the above coupled nonlinear partial
differential equations. Let us define η = y + µz − ut coordinate moving with
speed u in yz− plane, where µ = uy

υz
and u = (u2

y + u2
z)

1/2. In the moving
frame (η, x), the coupled equations (5.5) and (5.6) can be expresed as ,

C1∂η∇2
⊥φ + v0∂ηφ + {∇2

⊥φ, φ} = 0 (5.7)

where

C1 = − u

Di

, v0 = µ
L0

2ρ2
i Di

, L0 = (C0 − 2µ
v2

Ti

u
)

and C0 is an arbitrary constant. The equation (5.7) can have dipolar vortex
solutions which can be obtained by dividing the (η, x) plane into two regions,
inner region r < R0 and the outer region R0 < r where R0 is radius of a circle,
with r =

√
η2 + x2 and θ = tan−1 x

η
.

VI Summary

Theoretical analysis of pair-ion (PI) and pair-ion-electron plasmas has
been presented in the light of a recent experiment [12]. Several linear modes
of PI plasmas have been discussed assuming the plasma behavior as a fluid.
Here the quasineutrality has been used. It is found that the frequency of
ion acoustic wave is larger in the PIE plasmas compared to electron-ion (EI)
plasmas corresponding to the same electron temperature Te and wave vector
k because of the inequality 1 < N0.

Then it has been shown that the quasi-neutrality is not a good approx-
imation for investigating (PIE) plasmas because the condition 1 � λ2

Dek
2

holds in such systems in general. In this case the damping of ion acous-
tic wave (IAW) is reduced. This seems to be the reason for large density
fluctuations n1

n0
∼ 0.1 associated with IAW in the experiment [12]. On the

13



other hand, it has been found that the (IAW) damping increases in the limit
λ2

Dek
2 � 1.

The nonlinear dynamics of pure (PI) plasmas has also been discussed. A
new linear wave is found to be a normal mode of pair plasmas. It has the fre-
quency ω = kz

k
Ωi in pair-ion (PI) plasmas and ω = kz

k
Ωe in electron-positron

(EP) plasmas. In the nonlinear limit this electrostatic wave is described by
two coupled equations. These equations can reduce to a single equation in
the moving frame (η, x) which has the form similar to Hasegawa-Mima (HM)
equation. It admits dipolar and tripolar solutions. It may be interesting to
note that this equation looks similar to HM-equation in (η, x) frame but it
contains a different physics. The drift waves can not exist in (PI) plasmas.
This equation describes the nonlinear dynamics of pair ion convective cell
(PPCC) mode.
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