

Energy Agenc

SMR.1766 - 4

Miniworkshop on New States of Stable and Unstable Quantum Matter (14 - 25 August 2006)

> Much Ado about Zeros: Mottness and High T_c

Philip PHILLIPS University of Illinois at Urbana-Champaign Department of Physics 1110 West Green Street Urbana, IL 61801-3080 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

Much Ado about Zeros: Mottness and High T_c

Thanks to:

Former student: Tudor Stanescu, Virginia Present students: D. Galanakis, T.-P. Choy, Collaborator: C. Chamon, BU

Y Ba₂Cu₃O₇ Cuprate Superconductors

Phase diagram

Organising principle for the Normal State

- Resistivity~T
- Pseudogap
- Absence of quasiparticles
- Spectral-weight transfer

be.

Fig. 1 Temperature dependence of the in-plane resistivity ρ_{ab} measured on crystals of various cuprate superconductors.

T-linear Resistivity

 $\frac{\hbar}{-} \equiv \# k_B T$ τ

Planckian limit of dissipation (Zaanen) Why T-linear Resistivity?

Leading explanation

Quantum criticality

Varma, Anderson, Abrahams, others

Quantum criticality

Zero-temperature (quantum fluctuations)

Phase diagram of High-T_c materials

Is this correct?

General Result

- One critical length scale
- Charges are critical
- Charges are neither created nor annihilated (charge conservation)

Scaling hypothesis

scaling

General result

PP, CC, PRL, vol. 95, 107002 (2005)

 $\sigma \neq T^{-z} f(\omega/T)$

Van der Marel, et. al. Nature 2004

What does Homes' Law Mean?

Is this true?

$$\rho_{s} = A\sigma(T_{c})T_{c}$$

 $T^{(d-2)/z}f(0) (QC)$
 ρ_{s}/T^{α}_{c}

Uemura Relationship *≠* Homes Law

Scaling hypothesis

One-parameter Scaling breaks down

New direction

(UV-IR mixing)

all energy scales are mixed

Asymptotic slavery

What is lost when high energy scale is removed?

 $e^{2}/|r_{i}-r_{j}|$

Poles: Quasiparticles Fermi surface Zeros: Gaps Luttinger surface (Dzyaloshinskii)

(Mott Insulator): $G(\varepsilon,p)\sim(\varepsilon-\varepsilon(p))$

Is the surface of Zeros the Mott analogue Of the Fermi surface?

> Does its volume= particle density?

Zero condition: Re G(0,p)=0

Symmetry of half-filling

n=1-n=1/2

Particle-hole symmetry

 $C_{i\sigma}! e^{iQ \notin R\{i\}} C_{i\sigma}^{y}$ $A(\omega,p)=A(-\omega,-p-Q+2n\pi)$ Interchange x,y $P=Q/2+n\pi$ $p_x = -p_y - q + 2n\pi$ $p_x = p_y - q + 2n\pi$

$$p_x = -p_y - q + 2n\pi$$

$$p_x = p_y - q + 2n\pi$$

$$Q = (\pi, \pi)$$

$$p_x \pm p_y = -\pi + 2n\pi$$

Fermi surface Of non-interacting Electrons on a Square lattice

Generalisation

$$M_n^{\sigma}(k) \equiv \int \frac{d\omega}{2\pi} \omega^n d\omega G_{\sigma}^{\mathsf{ret}}(k,\omega)$$

Only even moments Survive when ε(k)=0

Particle-hole symmetry

Mott insulator

G(0,p=p_F)=0

Surface of zeros *(0,π)* $G(0,p=p_{F})=0$ (π,0) Mott insulator $\Sigma = 1$

Zeros along a momentum surface for some range of energies within the gap

Mottness

In what low-energy reductions, do zeros survive

Zeros are an Indication that The UV and IR physics Cannot be disentangled.

low-energy reductions Fail (t-J model at n=1)

Volume of zero surface?

Luttinger-Ward Functional, $\Phi[G]$

$$\delta \Phi[G] = \sum_{k} s d\omega \Sigma(k, \omega) \delta G(k, \omega)$$

 \Rightarrow Luttinger Theorem

Hubbard Model (t=0) $\Sigma_{loc}(k,\omega) = \frac{(U/2)^2}{\omega + \mu} \Sigma_{pert} = U$

$$G(\Sigma - U/2)^{2} + (\Sigma - U/2) - (U/2)^{2}G = 0$$

$$\Sigma[G] = \frac{U}{2} + \frac{-1 \pm \sqrt{1 + U^{2}G^{2}}}{2G}$$

Functional Integration

Frequency expansion: $\Phi[G] = \int \frac{d\omega}{2\pi} Y(i\omega)$ $Y(i\omega) = \frac{1}{2} \left(UG(i\omega) \pm \sqrt{1 + U^2 G^2(i\omega)} \mp \log\left[1 + \sqrt{1 + U^2 G^2(i\omega)}\right] \right)$ $= \frac{1}{2} \left[-\log G(i\omega) \pm \sqrt{1 + U^2 G^2(i\omega)} \pm \frac{1}{2} \log\left(\frac{\sqrt{1 + U^2 G^2(i\omega)} - 1}{\sqrt{1 + U^2 G^2(i\omega)} + 1}\right) \right]$ $= Y_{reg}(i\omega) + Y_{sing}(i\omega)$ Singular part

$$Y_{\text{sing}}(i\omega) = \frac{1}{2} \log \frac{G_0(i\omega)}{G(i\omega)}$$
$$\implies \frac{\partial \Phi(i\omega)}{\partial \omega} = \int \frac{d\omega}{2\pi} \frac{\partial Y_{\text{sing}}(i\omega)}{\partial \omega} \neq 0$$

Singularity in self-energy
Perturbation breaks down
Self-energy can not be obtained pertubatively!!

$$I_{2} = -Tr \sum_{k} \int \frac{d\omega}{2\pi} G(k,\omega) \frac{\partial}{\partial i\omega} \Sigma(k,i\omega)$$

$$= \Theta(\mu - U/2) + \Theta(\mu + U/2) - 2\Theta(\mu) \neq 0$$

$$Agrees with$$

$$Rosch$$

 $\Sigma_{loc}(k,\omega) = \frac{(U/2)^2}{\omega + \mu}$

Luttinger Theorem is not applicable in Mott insulator!!

Small finite hopping, t

•Hubbard II approximation

$$I_{2} = \sum_{k} \left[\Theta(-\mu + \frac{\sqrt{U^{2} + \varepsilon^{2}(k)}}{2}) + \Theta(-\mu - \frac{\sqrt{U^{2} + \varepsilon^{2}(k)}}{2}) - 2\Theta(\mu) \right] \neq 0$$

Finite temperature, T

$$\begin{split} I_{2}(T > 0) &= f(-\mu + \frac{\sqrt{U^{2} + \varepsilon^{2}(k)}}{2}) + f(-\mu - \frac{\sqrt{U^{2} + \varepsilon^{2}(k)}}{2}) - 2f(-\mu) \\ &\xrightarrow{T \to 0} I_{2}(T = 0) \end{split}$$

Smoothly connected to T>O
No T=O Transition: See ACM, EPL 41, 401 (1998).

Dzyaloshinskii (and Rosch) are wrong

Modified Luttinger Theorem

$$n = \int_{G(k,0)>0} \frac{d^2k}{(2\pi)^2} + \int_{G_0(k,0)>0} \frac{d^2k}{(2\pi)^2}$$

If Σ does Not have a perturbative Expansion from the non-interacting limit

Mott insulator

No sum-rule on surface of zeros (just get over it!)

Away from half-filling

Mott insulator

Yazdani, et. al.

Evolution of surface of zeros

Fermi Arcs

Campuzano, Et. Al. NP, 2006.
Fermi Arcs

Fermi arcs and zeros are related

Doped Mott insulators are insulators

TPC, PP, PRL, 95, 196405 (2005)

FIG. 4: $\log(T)$ plots of $\rho_{ab}(T)$ for Zn-doped LSCO with $x \leq 0.12$.

insulator FIG. 19: *T*-dependence of the resistivity multiplied by doping δ . The linear *T* behavior for high *T* flattens for $\delta > 0.1$ at a temperature of the order of *J*. For $\delta < 0.1$ the resistivity drops in the regime where a pseudogap opens.

Kotliar, prelovsek

Phase diagram

Thanks to:

T. Stanescu, TP Choy, D. Galanakis, C. Chamon

NSF-DMR 0305864