

SMR.1766 - 1

Miniworkshop on New States of Stable and Unstable Quantum Matter (14 - 25 August 2006)

Electronic Structure of Strongly Correlated Electron Materials: A Dynamical Mean Field Perspective

> Kristjan HAULE Physics Department and Center for Materials Theory Rutgers University 136 Frelinghuysen Road NJ 08854-8019 Piscataway U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

Electronic Structure of Strongly Correlated Electron Materials: A Dynamical Mean Field Perspective.

Kristjan Haule,

Physics Department and Center for Materials Theory Rutgers University Rutgers University

Collaborators: G.Kotliar, S. Savrasov, V. Oudovenko

ICAM Symposium on Frontiers in Correlated Matter, Snowmass 2006

- Application of DMFT to real materials (Spectral density functional approach). Examples:
 - alpha to gamma transition in Ce, optics near the temperature driven Mott transition.
 - Mott transition in Americium under pressure
 - Antiferromagnetic transition in Curium
- Extensions of DMFT to clusters. Examples:
 - Superconducting state in t-J the model
 - Optical conductivity of the t-J model

Universality of the Mott transition

DMFT + electronic structure method

<u>Basic idea of DMFT:</u> reduce the *quantum many body problem* to a *one site* or a *cluster* of sites problem, *in a medium* of non interacting electrons obeying a self-consistency condition. (A. Georges et al., RMP 68, 13 (1996)).
<u>DMFT in the language of functionals:</u> DMFT sums up *all local diagrams in BK functional*

Basic idea of DMFT+electronic structure method (LDA or GW): For less correlated bands (s,p): use LDA or GW For correlated bands (f or d): *with DMFT add all local diagrams*

Cerium

Ce overview

4

PRESSURE, GPa (IOkb)

2

LDA and LDA+U

Photoemission&experiment

•A. Mc Mahan K Held and R. Scalettar (2002)

•K. Haule V. Udovenko and GK. (2003)

<u>Fenomenological approach</u> <u>describes well the transition</u>

Kondo volume colapse (J.W. Allen, R.M. Martin, 1982)

Americium

Am within LDA+DMFT

from J=0 to J=7/2

"Soft" phase very different from γ Ce
not in local moment regime since J=0 (no entropy)

•"Hard" phase similar to α Ce, Kondo physics due to hybridization, however, nf still far from Kondo regime Comparisson with experiment

Exp: J. R. Naegele, L. Manes, J. C. Spirlet, and W. Müller Phys. Rev. Lett. **52**, 1834-1837 (1984)

Different from Sm!

Theory: S. Y. Savrasov, K. Haule, and G. Kotliar Phys. Rev. Lett. **96**, 036404 (2006)

What is captured by single Rutgers site DMFT?

•Captures volume collapse transition (first order Mott-like transition)

- Predicts well photoemission spectra, optics spectra,
 - total energy at the Mott boundary
- •Antiferromagnetic ordering of magnetic moments, magnetism at finite temperature
- •Qualitative explanation of mysterious phenomena, such as the anomalous raise in resistivity as one applies pressure in Am,..

Beyond single site DMFT

What is missing in DMFT?

•Momentum dependence of the self-energy m*/m=1/Z

•Various orders: d-waveSC,...

•Variation of Z, m^*, τ on the Fermi surface

•Non trivial insulator (frustrated magnets)

•Non-local interactions (spin-spin, long range Columb,correlated hopping..)

Present in DMFT:

•Quantum time fluctuations

Present in cluster DMFT:

•Quantum time fluctuations

•Spatially short range quantum fluctuations

Insights into superconducting state (BCS/non-BCS)?

The State University of New Jersey

Department of Physics and Astronomy

J. E. Hirsch, *Science*, **295**, 5563 (2226)

- LDA+DMFT can describe interplay of lattice and electronic structure near Mott transition. Gives physical connection between spectra, lattice structure, optics,....
 - Allows to study the Mott transition in open and closed shell cases.
 - In both Ce and Am single site LDA+DMFT gives the zeroth order picture
 - Am: Rich physics, mixed valence under pressure.
 - Describes magnetism of Curium
- 2D models of high-Tc require cluster of sites. Some aspects of optimally doped, overdoped and slightly underdoped regime can be described with cluster DMFT on plaquette:
 - Evolution from kinetic energy saving to BCS kinetic energy cost mechanism