

SMR.1766 - 18

Miniworkshop on New States of Stable and Unstable Quantum Matter (14 - 25 August 2006)

Fermi surface sensitive experiments on quantum criticality

Silke PASCHEN Institute of Solid State Physics Vienna University of Technology Wiedner Hauptstrasse 8-10 1040 Vienna AUSTRIA

These are preliminary lecture notes, intended only for distribution to participants

Fermi surface sensitive experiments on quantum criticality

S. Paschen

Insitute of Solid State Physics, TU Vienna

- Fermi surface reconstructions across QCPs
- Experimental evidence: A brief review
- \bullet Some news on YbRh₂Si₂
- New field-induced QCP: $Ce_3Pd_{20}Si_6$

Acknowledgements

$YbRh_2Si_2$

S. Friedemann, T. Lühmann,	Hall effect
N. Oeschler, S. Wirth: MPI CPIS	
O. Trovarelli, C. Geibel: MPI CPfS	Samples
P. Gegenwart, K. Tenya, Y. Tokiwa,	Discussions
F. Steglich: MPI CPfS	
P. Coleman, Q. Si: Rutgers/Rice	Theoretical support
$Ce_3Pd_{20}Si_6$	
J. Custers, M. Kriegisch, H.	Susceptibility, resistivity
Müller, M. Müller: TU Vienna	
A. Pikul: MPI CPfS	Specific heat
A. M. Strydom: Johannesburg	Samples

The "large Fermi surface" picture

If the Kondo lattice is a Fermi liquid, the localized spins contribute to the Fermi sea volume as electrons.

(e.g., Martin, PRL 48 (1982) 362 Oshikawa, PRL 84 (2000) 3370) De Haas - Van Alphen vs LDA bandstructure: CeRu₂Si₂

dHvA experiment:

Lonzarich, JMMM 76&77 (1988) 1

Ōnuki et al., JPSJ 61 (1992) 960

Aoki et al., JPSJ 61 (1992) 3457

LDA calculation, it inerant 4f

Yamagami & Hasegawa, Physica B 186-188 (1993) 136

Fractionalized FL: Senthil et al., ...

A brief review

Hall effect in $Bi_2Sr_{1.51}La_{0.49}CuO_{6+\delta}$:

Hall resistivity vs field

Hall number vs doping

Hall effect at doping/pressure induced QCP of $Cr_{1-x}V_x$:

Phase diagram

Inverse Hall coefficient

(Lee et al., PRL 92 (2004) 187201)

Hall effect at field-induced induced QCP of YbRh₂Si₂:

Hall coefficient vs field

Phase diagram

Hall effect in YbAgGe:

Hall resistivity vs field

Phase diagram

Hall effect in YbAgGe:

Hall resistivity vs field

Phase diagram

... Hall effect in YbAgGe:

Hall resistivity vs field

(Bud'ko et al., PRB 72 (2005) 172413)

dM/dH vs field

YbAgGe H||ab 1.5K 10 2 6 8 4 H (T) (Tokiwa et al., PRB 73 (2006) 094435)

 ρ_{xx} and ρ_{xy} vs field

 ρ_{xx} and ρ_{xy} for model system

(Daou et al., PRL 96 (2006) 026401)

De Haas - van Alphen studies: CeRh₂Si₂

Hall effect measurements on CeRh₂Si₂

Hall coefficient vs temperature

(Boursier et al., Physica B 378-380 (2006) 76)

Some news on $YbRh_2Si_2$

Initial Hall coefficient vs $T (R_H = d\rho_H/dB|_{B=0T})$

Single- and crossed-field experiments

Single-field: "transverse" tuning

 B_1 : tunes the state B_1 δB_1 : probes the Hall response

Differential Hall coefficient:

$$\tilde{R}_{H}(B_{1}) = R_{H}(B_{1}) + \left[\frac{\partial \rho_{H}(B_{1})}{\partial B_{1}}\right]_{\text{tuning}}$$

"orbital" "Zeeman"

Crossed-field: "longitudinal" tuning

Hall coefficient (linear response):

$$R_H(B_2) \equiv \lim_{B_1 \to 0} \frac{\rho_H(B_2, B_1)}{B_1}$$

Conclusion

Review:

• Large number of Hall effect and dHvA experiments YbRh₂Si₂:

- \bullet New crossed-field data confirm old ones
- Deviations of old single-field curves from new crossed-field curves above 150 mK do not change the main conclusions
- Crossover of $R_H(B_2)$ sharpens with lowering T and extrapolates to step at T = 0, in conflict with SDW QCP

 $Ce_3Pd_{20}Si_6$:

- New field-induced quantum critical compound
- Large single crystals available!