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Quantum Ising Model: finite T
correlators

Alexeil Tsvelik, BNL
& collaboration with S. A. Reyes

Ising model is as unexhaustable as
atom, Nature is infinite...



Correlation functions in strongly correlated
systems: 1+1-D

« Why 1+1-D ?— non-perturbative methods exist
(Inverse Quantum Scattering Problem = Bethe ansatz)

* For systems with gapless E = v|g| spectrum the problem
IS solved:

one can use
conformal field theory and bosonization methods.

The problem exists for models with spectral gaps —
models of quantum solitons.



Low T physics

 There is QFT at T=0 accompanied by a breaking of the
discrete symmetry. At finite T this symmetry is restored
and there is a finite density of thermally excited solitons

Scales which determine the physics
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Formfactor approach — standard tool to
calculate correlation functions

Suggested by Karowskii et. al.in the 80-ties, developed by Smirnov in the
90-ties. It allows to calculate matrix elements of various operators

<n|A|m>
with exact eigenfunctions. These one are substituted Iin

the Lehmann expansion:

D' (w, q) = 0(#)(A(z, ) AT(0,0))0r 4

| . 1xe P
S"m.D;R) (w,q) = X

VA
E o e _,-"3 E 1

(-;rz.\‘;l|m.)|2r5(;u + E, - En)o(g+ P, — Pp,)
T

(+ for fermionic and — for bosonic operators).

At T" # 0 one faces difficulties related to

singularities in the operator matrix elements.



Quantum Ising model — the simplest model
of quantum solitons
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where Prs1ja = |1 i<n 0j 18 the disorder
operator and F, F'™ are fermion annihilatior

and creation operators.



Ising model in the continuum limit

Calculations simplify in the continuum limit:
M=|J-h|<<J

The spectrum is relativistic:
e(p) = VM? + (vq)?, v* = Jh

Convenient parametrization:
e = M coshf, (vq) = M sinh6

0 rapidity



Operators o*(alias o) and p* (alias p) have
oo-many matrix elements. T'he formfactors are
(Karowski et al. 1986)

(01, ...0,|0|0,,..0" )y = AAY® x
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1<j P<q i,p

where at /» << 1 (the ordered phase) n + 1m = even
for o and odd for g (for /» > 1 it is the other way

around ).

A 1s a known numerical constant.

1I'he singularities in the Lehmann expansion
appear when some 2n and out rapidities coincide.
Singularities of this kind (kinematical poles)

appear routinely in integrable models.



Previous results (obtained by other methods)

D(z,t) = (o(t,2)a(0,0)) =

CM* exp [_ / d_pe—E(p)ﬁ|$ _ taﬁ(P) ]
T Op

where C is a numerical
constant and

e=M2+p2x M+p?/2M

D(z,t) = Cexp|—n(T)max(|z|, v|t|)]

v =+/7T/2M is the thermal velocity of kinks
and n(T) = \/TM/2re=M/T is the average

number of solitons (fermions).
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T = "coordinate" T
Bougrij (2001)  5pe can calculate

the correlation
L=1/T functions to get a
feeling for the
problem
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. _ the Wick rotation transforms
A(T) = / E In{coth[Be(p)/2]} the problem into O temperature
o finite size one.
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We want to analytically continue for real times. The first step: transform
the sum into a contour integral.

Then each term of the sum becomes a sum of integrals — this looks like
thermal formfactor expansion:
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Now we can replace | tau by t
Singularities are not on the contour.
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(o(1,2)(0,0)) = (1
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where F is the free energy of the theory
Small parameter
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String theory analogy

(o(7,2)0(0,0)) = (1
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Expansion includes surfaces with different
conditions at infinity.
(x,t) are parameters of the action.



Using our method we can correct Sachdev-Young result:

(o(2,t)a(0,0))p = CMY49(t) exp(—dAlz])
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AN\ ~exp(-3M)
The Fermi statistics of solitons is visible.

The imaginary part attests to the quantum nature of

solitons. e <2301
The linear t term is exact; the corrections are P\ =

1



Conclusions

* For the Ising model the spin-spin correlation
function can be represented as a partition
function of some field theory,

where (X,t) serve as parameters in the action.

e Thus one can deal only with connected
diagrams for the “free energy” which simplifies

the virial expansion.

Complication: Fermi distribution function of solitons
does not emerge Iin an in straightforward way.



General case

» Using the theory of quantum integrable systems one can isolate the leading

singularities in the operator matrix elements and sum them up.
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The asymptotics are determined by the behavior g
of the formfactors in the vicinity of kinematic poles
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restict summation by terms with equal number of
rn and out rapidities.
The leading contribution in each order comes

from integration in the vicinity of each singularity.



f(u H_J}

1l

_._'—l—'_._'+‘_‘_|—|—|_‘_
L |
.
_,.--—'_'_._'_1""“_‘_'_‘—-&
hhl—h‘_‘_‘_jE'_._'_.—l-'-.
L |
L
--._._|_|_|_‘_‘_|:_._._'_._,_.-r

=l L L
1+1(v,) explit(E i1 Eout ) lK(P'in PDHT}

Each formfactor pole (the pair of lines wu;, v;)
contributes to the correlation function one power

of

R(t,x) =
: / dudve 36w gltle(w) —e(v)]/2+1z[p(u) —p(v)]

2
—+ : -
(u — v 4 10)? (u —v —1i0)2 B
1 ) )
/ .. ﬁ(p)‘ x — tde/Op|



Consider a generic matrix element of operator O:
FC)({H}" {11}‘ {a}" {b}) — <.u'1 un‘0|7_1 U T?1> ai,..an;b1,..bm

where u;, v; are rapidities and a;, b; are isotopic
indices. According Balog (1994), LeClair

Mussardo (1999), |
FO({ub, {v:{a}, {b})irr =

where a indices are obtained from a by charge

conjugation. FC(0,0) = (0061, ...00) 1. e,

have poles at 0; — 0; = im and the residues satisfy

the following relation Smirnov 1992:



iRes . FO  (01.65.....0,) =

Qq_l‘q:—]_’?r lf_.j_._...(_q
(j} S
FC;_'—'”'-{'-::}—Q (91, ..oy 9(]—2)0!’3@,(3;_1 X

27l ?T—lf \
I_(:. “rfcqu T;ta, 1_91) :

where S is the two-particle scattering matrix and
e 0 1s the semi-locality index between the

particle creation operator AT and O.
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The rectangles are the formfactors. The
circles are S matrices.



At low energies S-matrix is either diagonal
or equal to the permutation operator

S(0) = P. In the former case the equations for the residues become trivial
This is the Ising model universality class.

In latter case they just simplify:
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And can be resolved



Sine-Gordon model as an example
1

The L ' ' 2 ‘
e Lagrangian density L = T N (O fl}) — m~ cos(P)
)r—z-xlr...

The conserved charge

1

_ . At ~2 — 1/9 the calitone are formiong: § —
( ;2 — . dr a;? ) -Xt = 1/2 the sohto-ns ale‘ f(?lllll(_)lls. S 1.
D Otherwise the S matrix exhibits a crossover from

diagonal at large momenta to P at small

momenta.
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where € is the soliton energy and the factor

C(v,m) = (explin®]).




For the diagonal S matrix the transport is ballistic.

. The correlation function ot .J = .J, can be
obtained from the above formula by taking n — 0

limit and differentiating twice with respect to t:

(J(x,8)7(0,0))) = f 202 (p)é (x — to(p)) e P<P)

where v(p) = Je/dp. The conductivity is ballistic

with a finite Drude weight Fujimoto 1999, Affleck
and Sag1l 1996, Konik 2004

Some operators do have ballistic dynamics, some

follow the semiclassical one.



The universal asymptotics corresponding S = -P

It is valid at T < T* and depends solely on the semi-locality index

of the operator in question _ _
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Charge statistics in sine-Gprdon model

T el The charge passed through point x during the

0= Qi/dwmq) time ¢ is Q(z,t) = (1/27)[®(x,t) — ®(z,0)].
T
The distribution function of Q:
PI®) = (0(Q - Q1)) =

/Ch?(ein[fb(t,:c)—{II(D_,I)])e—z?rin@

In the field theory limit M /A << 1, the main 7
dependence comes from (M / A)”Q and the
magnitude of the propagator has a strong

maximum at small 7.



: : 9 1 /e
At the free fermion point v~ = 1/2 we have

PIQ(t)] ~ exp {=Q*(t)/[(t/70) + 7 24* In(A/M)]}

where 1/79 = (21 /aM)e=M/T

At 7 # 1/2 there is a crossover temperature
T* ~ M|y? — 1/2| below which the S-matrix is
effectively equal to —P. Then the distribution is:
- 00 -
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\Tt_ 0 A+ 2m2y/y
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where t = t/79, A=7m"272In(A/M). At large
t >> A we have

exp [
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CONCLUSIONS

At low T<< M order parameter type operators in integrable systems
display universal dynamics which falls in two universality classes.

The physics at these T is controlled by multiple particle processes
whose matrix elements are singular when in and out momenta
coincide.

For the S = P universality class there are discrepancies with the
semiclassical results by [Damle and Sachdev , Rapp and Zarand
(2005)]. Regularization of formfactors?




