

Thomas Schwarz-Selinger

Erosion Processes (erosion of carbon by hydrogen)

- Chemical erosion
- Physical sputtering
- Chemical sputtering

Codeposition

Implantation, diffusion and release

Collision cascade

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Range and range distribution

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Schematic energy diagram for H in metals

Diffusion coefficients

- For many metals very detailed data exist for the diffusion of hydrogen
- However, data are very scarce for the potential first wall materials W and Be
- as well as for non-metallic compounds

ptember 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Recombination coefficient

Recombination coefficient for hydrogen in stainless steel

- acceptable data situation
- strong influence on surface conditions

Mechanism of deuterium behavior in polycrystalline W

In Tungsten:

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Mechanisms of Hydrogen retention: *Codeposition*

Simultaneous deposition and implantation:

investigated on collectors during sputtering

no saturation for Carbon materials (and BeO) due to continous supply of new material

no measurable codeposition for Tungsten (and Stainless Steel)

Nomenclature

- <u>Chemical erosion</u> is a selective removal of surface atoms by *chemical reactions*, forming volatile reactants that can desorb.
- <u>Physical sputtering</u> is the *kinetic ejection of surface atoms* by incident energetic ions or atoms *due to collision processes*. (playing billiards with surface atoms).
- <u>Chemical Sputtering</u> is a process whereby *ion bombardment causes or allows a chemical reaction to occur* which produces a particle that is weakly bound to the surface and hence easily desorbs in the gas phase.

erosion of graphite by energetic hydrogen

it is not chemical erosion H⁰ at T > 400 K with a max. at ≈ 650 K - 800 K

it is not physical sputtering energetic ions $E > E_{th}$, no chemistry

but its chemical sputtering hydrogen ions, low-T, low-E

Data: M. Balden and J. Roth, J. Nucl. Mater. 280 (2000) 39-44

Chemical Sputtering: one attempt

Hydration and erosion circle:

A. Horn et al., Chem. Phys. Lett. 231, 193 (1994) J. Roth, J.Nuclear Mat. 266-269, 51 (1999)

 Ion induced release of weakly bound hydrocarbon radicals complexes from the surface

Chemical Erosion at elevated temperatures

- Adequate modeling of erosion
- does not explain shift oft maximum with energy

Quantified particle-beam experiments: separating physics from chemistry

erosion yield =

impinging ion flux per cm⁻²s⁻¹

Quantified particle-beam experiments

physical sputtering

physical sputtering

physical sputtering + chemical erosion

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

physical sputtering + chemical erosion

chemical sputtering

model for chemical sputtering

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Ar⁺|H flux dependence

$$Y_{\text{Modell}} = Y_{\text{phys}}(1 - \Theta_{\text{CH}}) + Y_{\text{chem}}\Theta_{\text{CH}}$$

$$n_0 \frac{d\Theta_{\text{CH}}}{dt} = j_{\text{H}}(1 - \Theta_{\text{CH}})p_{\text{Einbau}}^{\text{H}} - j_{\text{Ion}}\Theta_{\text{CH}}p_{\text{Freisetzung}}^{\text{H}}$$

$$\text{Mit } R = j_{\text{H}}/j_{\text{Ion}} \text{ und } S = p_{\text{Freisetzung}}^{\text{H}}/p_{\text{Einbau}}^{\text{H}}$$

$$Y_{\text{Modell}} = Y_{\text{phys}} + \frac{R}{R+S}(Y_{\text{chem}} - Y_{\text{phys}})$$

$$\text{Fit parameters:}$$

$$S = 176$$

$$Y_{\text{chem}} = 2.86$$

 $Y_{phys} = 0.12$

Ar⁺|H flux dependence

Saturation requires much more H than ions (R > 1000)

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Chemical sputtering mechanism

Supporting results from literature

- 1. CH_4 main (C_1 -) erosion product (Vietzke et al. J. Nucl. Mater. 128&129, 545 (1984))
- 2. energy distribution of erosions products
- 3. time delay between end of ion bombardment and end of particle release

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Chemical sputtering model

1.0

0.8

0.6

0.4

0.2

0.0

5

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Energy dependence

: Ne⁺ + H

• Excellent agreement between model and data (same parameters as for Ar, i.e., a = 0.4))

• yield > 1 for
$$E_{ion} > 50 \text{ eV}$$

Energy dependence: Modeling results

Energy dependence: Modeling results

Idea: (by F.L. Tabarés et al., Plasma Phys. Control. Fusion 44, L37-42 (2002))

Nitrogen acts as scavenger for reactive carbon radicals thereby reducing redeposition.

Based on:

laboratory experiments that show reduced growth rate in hydrocarbon plasmas when nitrogen is added.

- Any direct proof for a scavenger effect?
- what about surface effects?

Nitrogen puffing into the divertor

experiments in a well defined remote ECR plasma show:

- Changeover from deposition to erosion for CH₄ / N₂ plasmas at higher ion energies can only be explained by surface effects (the gas phase chemistry remains unchanged!)
- chemical sputtering

Chemical sputtering: $N_2^+ + H$

- Good fit of the energy dependence, but only for a = 0.6 (instead of 0.4)
- yield \leq 1 in whole range
- highest chem. Sputt. yield of all investigates species (good mass match to C, two atoms per ion, chemical activity)

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Ar + H: temperature dependence

300 to 800 K

- increase with T
- increase with E_{ion}
- at 800 eV rates for T>400 K lower

300 to 120 K

- increase with decreasing T
- increase with E_{ion}
- minimum around 250 to 300 K

 $R \approx 400$

erosion of graphite by energetic hydrogen

Chemical sputtering with reactive ions

C. Hopf and W. Jacob 2005

Chemical sputtering with reactive ions

$Y_{\rm phys}(E)$	phys. sputtering yield	TRIM.SP
$y_{dp}^{C}(x,E)$	ion induced damage	$E_{\rm sb}^{\rm C} = 7.4 {\rm eV}$
n(x,E)	implanted hydrogen	$E_{dp}^{SD}C = 5.0 \text{ eV}$

exp(- <i>x</i> /λ)	depth dependent probability for outdiffusion of erosion	$\lambda = 0.4 \text{ nm}$
	products	

Erosion (Chemical sputtering) at high ion fluxes

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

film growth / codeposition

Plasma-surface interactions in general

A large variety of species impinges on the surface

Classes of species:

stable neutrals (mostly working gas) neutral radicals

ions

General assumption

- \Rightarrow non reactive
- ⇒ reactive, sticking at surface "What is the sticking coefficient?"
- ⇒ stick, enhance sticking of radicals modify deposited material

All these species show mutual interactions!

Radical/radical interaction little is known, example: CH₃ | H synergism

Ion/radical interaction"ion-induced stitching" postulated in literatureion/CH3"ion-induced stickingion/Hion-induced stickingion/Hion-induced etching (reactive ion etching, RIE)chemical sputtering

Thomas Schwarz-Selinger, IAEA Workshop on Atomic and Molecular Data for Fusion Energy Research, August 28 - September 8, 2006, Abdus Salam International Centre for Theoretical Physics, Trieste

Interaction of H⁰ and CH₃ with a-C:H

Summary

- Physical sputtering: for the most part well understood
 - well modeled by TRIM.SP (binary collision approximation)
 - energy, projectile mass, angle, roughness
- Chemical erosion: for the most part well understood
 - thermally activated process
 - can be influenced by doping
- Chemical sputtering: increase of yield and lowering of threshold
- mechanistic model for chemical sputtering
- flux ratio dependence (rate equation model): high H fluxes required
- energy dependence: bond breaking × passivation
- predictions for other ions, e.g. H, D, T, He, N₂, ..
- temperature dependence of the erosion maximum not understood
- decrease in erosion rate at high fluxes not under stood

Exercises

1) Calculate first wall or divertor plate erosion based on chemical sputtering For example, assume the following conditions:

	T _{surf} (K)	E ₀ (eV)	flux Γ (m ⁻² s ⁻¹)
Divertor	700	30	10 ²³
First wall	500	200	10 ²⁰

Comparison can be made with physical sputtering to see which process dominates under which conditions. What might be the implication of having an all-carbon ITER?

- 2) Try to describe schematically the depth distribution of D in a 500 μ m W foil
 - for the case of purely diffusion limited release. What would be the ratio of the re-emitted flux to the permeating flux in steady state assuming an ion range of 50 nm.
 - for the case of strongly recombination limited surface facing the plasma.
 - What would be the optimum position of a diffusion barrier to limit the T inventory inside the first wall