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Erosion Processes (erosion of carbon by hydrogen)

• Chemical erosion

• Physical sputtering

• Chemical sputtering

Codeposition 

Implantation, diffusion and release
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Collision cascade
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Range and range distribution
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Schematic energy diagram for H in metals

Processes:

• Implantation, Diffusion, Trapping
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Diffusion coefficients

• For many metals very 
detailed data exist for the 
diffusion of hydrogen

• However, data are very 
scarce for the potential first 
wall materials W and Be

• as well as for non-metallic 
compounds
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Recombination coefficient

Recombination coefficient for 
hydrogen in stainless steel

• acceptable data situation

• strong influence on surface    
conditions
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Mechanism of deuterium behavior in polycrystalline W

Diffusion TrappingRecombination
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He+-implantation
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Retention dominated by
diffusion and trapping
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Enhanced retention due to 
oxide and carbide surface
layers

Influence of surface impurities on retention
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Mechanisms of Hydrogen retention in Carbon

In Carbon materials:

100% retention at low
fluences

Saturation at high 
fluences, independent of 
doping
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Mechanisms of Hydrogen retention: Codeposition

Simultaneous
deposition and 
implantation:

investigated on 
collectors during
sputtering

no saturation for Carbon
materials (and BeO) due
to continous supply of 
new material

no measurable
codeposition for
Tungsten (and Stainless
Steel)
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Nomenclature

• Chemical erosion is a selective removal of surface atoms by 
chemical reactions, forming volatile reactants that can desorb.

• Physical sputtering is the kinetic ejection of surface atoms by 
incident energetic ions or atoms due to collision processes.   
(playing billiards with surface atoms).

• Chemical Sputtering is a process whereby ion bombardment 
causes or allows a chemical reaction to occur which produces 
a particle that is weakly bound to the surface and hence easily 
desorbs in the gas phase.

• Chemical Sputtering is a process whereby ion bombardment 
causes or allows a chemical reaction to occur which produces 
a particle that is weakly bound to the surface and hence easily 
desorbs in the gas phase.
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erosion of graphite by energetic hydrogen

it is not chemical erosion
H0 at T > 400 K with a max. at 
≈ 650 K – 800 K

it is not physical sputtering
energetic ions E > Eth, 
no chemistry

but its chemical sputtering
hydrogen ions, low-T, low-E

Data: M. Balden and J. Roth, J. Nucl. Mater. 280 (2000) 39–44 
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Chemical Sputtering: one attempt

Ysurf

CH3

sp2

Hydration and erosion circle:
A. Horn et al., Chem. Phys. Lett. 231, 193 (1994)
J. Roth, J.Nuclear Mat. 266-269, 51 (1999)

H

σ = 1.1 Å2

H

sp3

H

σ = 1.1 Å2

HCH3

H2

σ = 0.05 Å2

CH3

σ = 1.1 Å2

H

Eact=1.7 eV

CH3

Eact=1.7 eV

• Ion induced release of weakly bound 
hydrocarbon radicals complexes from 
the surface
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Chemical Erosion at elevated temperatures
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• Adequate modeling of erosion
• does not explain shift oft maximum with energy

M.Balden, J.Roth (2000)
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Quantified particle-beam experiments:
separating physics from chemistry
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Measuring erosion yields

quantified rare gas ion beam

substrate

C:H film

quantified 
hydrogen 
beam

erosion yield =
measured erosion rate in eroded carbon atoms per cm-2s-1

impinging ion flux per cm-2s-1
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Quantified particle-beam experiments

UHV chamber

H2

CH 3

N2(CH3)2

ellipsometry, infrared

substratesubstrate

preparation chamber

rf plasma H

Wien
Filter

Ar + 1 keV

Ar + 20 eV

de-
celeration

UHV experiment with 2 radical beam sources and one ion beam source

W. Jacob, Ch. Hopf, A. von Keudell, M. Meier, and T. Schwarz-Selinger:
” Particle-beam Experiment to Study Heterogeneous Surface Reactions
Relevant to Plasma-assisted Thin Film Growth and Etching”, 
Review of Scientific Instruments 74, 5123-5136 (2003).
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physical sputtering
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physical sputtering
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physical sputtering + chemical erosion
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physical sputtering + chemical erosion
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physical sputtering + chemical erosion
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• enhanced erosion above 200 eV for  
simultaneous interaction

• erosion below threshold for physical 
sputtering (threshold energy for 
physical sputtering ≈ 60 eV

• erosion at 20 eV >> pure chemical 
erosion ⇒ ‘chemical sputtering‘
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physical sputtering + chemical erosion
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sputtering of weakly bound
surface radicals seems
not to be physical
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chemical sputtering
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Ar+|H flux dependence
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Ar+|H flux dependence
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Saturation requires
much more H than ions
(R > 1000)
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Chemical sputtering mechanism

x

volatile species

a-C:H film: carbon   hydrogen

ions

H°
1. ions break C–C bonds

2.    H° passivates broken bonds

Repetition of 1 and 2

3. volatile hydrocarbons

diffusion to the surface 

desorption
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Supporting results from literature

1. CH4 main (C1-) erosion product (Vietzke et al. J. Nucl. Mater. 128&129, 545 (1984))

  b)

3. time delay between end of ion bombardment and end of particle release

2. energy distribution of erosions products

from E. Vietzke, J. Nucl. Mater 290, 158 (2001)
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Chemical sputtering model

passivation by atomic H
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a is a fit parameter
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Energy dependence
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: Ne+ + H
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• Excellent agreement 
between model and data 
(same parameters as for 
Ar, i.e., a = 0.4))

• yield > 1 for  Eion >50 eV
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Energy dependence: Modeling results
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Energy dependence: Modeling results
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Nitrogen puffing into the divertor

Idea: (by F.L. Tabarés et al., Plasma Phys. Control. Fusion 44, L37-42 (2002))

Nitrogen acts as scavenger for reactive carbon
radicals thereby reducing redeposition.

Based on:
laboratory experiments that show reduced 
growth rate in hydrocarbon plasmas when
nitrogen is added. 

Any direct proof for a scavenger effect?

what about surface effects?
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Nitrogen puffing into the divertor
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experiments in a well defined 
remote ECR plasma show:

changeover from deposition to erosion for CH4 / N2 plasmas at higher ion energies
can only be explained by surface effects (the gas phase chemistry remains 
unchanged!)

chemical sputtering
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Chemical sputtering: N2
+ + H
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• Good fit of the energy 
dependence, 
but only for a = 0.6 
(instead of 0.4)

• yield ≤ 1 in whole range

• highest chem. Sputt. yield 
of all investigates species
(good mass match to C, two 
atoms per ion, chemical 
activity)
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Ar + H: temperature dependence

R ≈ 400
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• increase with T

• increase with Eion

• at 800 eV rates for 
T>400 K lower

300 to 120 K

• increase with 
decreasing T

• increase with Eion

• minimum around 250 
to 300 K

M. Schlüter et al. 2006
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erosion of graphite by energetic hydrogen
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Chemical sputtering with reactive ions
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C. Hopf and W. Jacob 2005
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Chemical sputtering with reactive ions

)(d)/exp(),(),()( phys
C
dp EYxxExnExyEY +−= ∫ λ

total yield =                    chemical sputtering +  physical sputtering

Yphys(E)

ydp
C(x,E)

n(x,E)

exp(–x/λ)

phys. sputtering yield

ion induced damage

implanted hydrogen

depth dependent probability
for outdiffusion of erosion
products

TRIM.SP

Esb
C = 7.4 eV

Edp
C = 5.0 eV

λ = 0.4 nm
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Erosion (Chemical sputtering) at high ion fluxes

Results from fitting: YTmax(Γ)= 0.79/(1+(Γ/6x1021)0.54)

Fitting formula:
Y= Ylow/(1+(Γ/Γ0)ε)
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film growth / codeposition
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Plasma-surface interactions in general

A large variety of species impinges on the surface

Classes of species:

stable neutrals 
(mostly working gas)

neutral radicals

ions

General assumption

⇒ non reactive

⇒ reactive, sticking at surface
“What is the sticking coefficient?”

⇒ stick, enhance sticking of radicals
modify deposited material

All these species show mutual interactions!

Radical/radical interaction little is known, example: CH3 | H synergism

Ion/radical interaction
ion/CH3 “ion-induced stitching” postulated in literature

ion-induced sticking
ion/H ion-induced etching (reactive ion etching, RIE)

chemical sputtering
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Interaction of H0 with a-C:H

σ* = 0.05 Å2

Abstraktion

Addition

thermisch

aktivierte Erosion

in equilibrium

≈5% active surface sites!

σ* = 1.3 Å2

Eeros = 1,6 eV

Schichtabtrag 

∝ Fluenz an H0!⇒ J. Küppers, Surf. Sci. Rep. 22, 249 (1995)
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Interaction of H0 and CH3 with a-C:H

Y(H0)
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Synergism: 
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Summary

• Physical sputtering: for the most part well understood
• well modeled by TRIM.SP (binary collision approximation)
• energy, projectile mass, angle, roughness

• Chemical erosion: for the most part well understood
• thermally activated process
• can be influenced by doping

• Chemical sputtering: increase of yield and lowering of threshold
• mechanistic model for chemical sputtering
• flux ratio dependence (rate equation model): high H fluxes required
• energy dependence: bond breaking × passivation
• predictions for other ions, e.g. H, D, T, He, N2, ..
• temperature dependence of the erosion maximum not understood
• decrease in erosion rate at high fluxes not under stood
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Exercises

2) Try to describe schematically the depth distribution of D in a 500 µm W foil

• for the case of purely diffusion limited release. What would be the 
ratio of the re-emitted flux to the permeating flux in steady state 
assuming an ion range of 50 nm.

• for the case of strongly recombination limited surface facing the 
plasma.

• What would be the optimum position of a diffusion barrier to limit 
the T inventory inside the first wall

1) Calculate first wall or divertor plate erosion based on chemical sputtering
For example, assume the following conditions:

Comparison can be made with physical sputtering to see which process
dominates under which conditions. What might be the implication of 
having an all-carbon ITER?

Tsurf(K) E0 (eV) flux Γ (m-2s-1)
Divertor 700 30 1023

First wall 500 200 1020
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