
Figure 2. Schematic diagram of the Jacobi coordinates of a three 
particle system.

Quantum dynamics of the collision in an adiabatic representation

For the sake of simplicity, let us consider two ionic cores Aq+ and B+ of 
masses ma and mb and an electron with mass me(=1 in atomic units).  The 
many particle kinetic energy operator takes its simplest form in Jacobi
coordinates (see figure 2.)
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For three particles, there exist three equivalent sets of Jacobi coordinates  
where   are respectively the position vectors of the electron relative to A, B 
and CMN (the centre of mass of nuclear cores A and B) while are respectively 
the position vectors of A relative to the centre of mass of (B+e) and of B 
relative to the centre of mass of (A+e). Since the adiabatic states are defined 
by a clamped nuclei approximation, the most natural choice of Jacobi
coordinates would appear to be (          ).

After separation of the kinetic operator of the centre of mass of the total 
system, the Hamiltonian for the entire system may be written as

,r R

where the operator V(r,R) contains all interactions between the particles and 
is the reduced nuclear mass. 

In the clamped nuclei limit, the motion of the electrons is governed by the 
electronic Hamiltonian
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The  eigenfunctions and eigenvalues of He are defined by

Since the interaction potential is invariant with respect to the orientation of R
in space, the eigenvalues En(R)  depend only on the distance R. On the other 
hand, the eigen functions depend not only on the distance R but also on the 
direction of R. It is therefore convenient to define the adiabatic eigenfunctions
in a reference frame fixed with respect to the internuclear axis AB. In this 
body-fixed frame of reference, the axis is taken, by convention, to lie along the 
line from B to A: that is to say in the direction of the vector R. 

In the body-fixed frame, the position vector of the electron is denoted by  . 
Geometrically, the vectors         and r are identical, but        is expressed in 
terms of body fixed coordinates (           ) whereas r is expressed in terms of 
space-fixed coordinates (           ). In the body-fixed frame, the adiabatic 
eigenfunctions , depend only on          and on the distance R. 
In addition, they can also be chosen as eigenfunctions of the component           
of the electronic angular momentum along the         axis

where  correspond to Σ, Π, ∆,.. states.
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The eigenfunctions of He constitiute a basis set for a description of the collision 
complex. So we expand the wave function in the form. 

But we should observe that while we may use any coordinates in which to 
express  the clamped nuclei eigen functions, the choice of adiabatic corodinate
is not rigourously defined. 

The standard adiabatic expansion, used in the Born-Oppenheimer separation of 
the electornic from the ro-vibrational nuclear motion, takes R as the adiabatic 
coordinate. Unfortunately, this does not allow for a perfect description of the 
asymptotic conditions. 

But to highlight the problem, we shall  first derive the dynamical equations in the 
standard  way. 

We shall then see that it is necessary to introduce a system of reaction 
coordinates which allow for a correct break-up of the collision complex. 

( , ) ( ) ( , )
N

j j
j

F Rψ χ= ∑r R R r



Substituting in the Schrödinger equation 

we obtain a system of coupled partial differential equations, which in matrix 
form can be written as

where E is a diagonal matrix, whose elements are the adiabatic energies

The matrix elements of Q and P involve the non adiabatic coupling terms
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The differential operators in these equations, are defined with respect to the 
space fixed reference frame whereas the adiabatic basis functions are 
expressed in terms of coordinates in the body-fixed system. In calculating the 
matrix elements of P and Q, we may choose to express the adiabatic basis 
function either in terms of r and R or to transform the operators with respect to r
fixed to operators with respect to      fixed. The second alternative is simpler. So 
we first transform the partial differential operators ∂⁄∂R, ∂⁄∂Θ, ∂⁄∂ Φ taken with 
respect to                     fixed  to the partial differential operators ∂′⁄∂R, ∂′⁄∂ Θ, ∂′⁄∂
Φ taken with respect to                   fixed, where (Θ, Φ)  designate the polar 
angles of R in the space-fixed frame.

The transformation from the space fixed axis to the body fixed axis  is specified 
by a series of two rotations of the reference frame: firstly a rotation by Φ about 
Oz, to yield a new set of axes (            ), followed by a second rotation by Θ
about O to yield (               ). The  axis         is now in the direction of R and       
is in the space-fixed Oxy plane. The components of the position vector in the 
body fixed frame are related to those in the space-fixed frame by the matrix 
relation
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More explicitly

Using these transformations one can easily verify that 

from which we may deduce

where                       are the components of the electronic angular momentum in 
the body fixed system. 
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We may write         and               in spherical polar coordinates

where       is the unit vector in the direction of R,       the unit vector 
perpendicular to R in the plane containing R and Oz,                           the unit 
vector perpendicular to R and Oz

Using the fact that the adiabatic basis functions depend neither on Θ nor on 
Φ, we find
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The coupled equations  can now be written in the form

where the matrix V(r) is designated as the radial coupling matrix

and the matrix V(c)  as the rotational (or Coriolis) coupling matrix 

The matrices Λ and J2 are both diagonal. The elements of Λ are  while those of 
J2 are differential operators defined as

It  can be shown (see lecture notes) that J is the total angular momentum, the 
sum of N the nuclear and L the electronic angular momentum. While neither N 
nor L are conserved during a collision, the total angular momentum is a 
constant of the motion. 
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Using the explicit forms of the components of the angular momentum operators 
N and L, it is straightforward to verify that

Using the fact that the adiabatic basis functions               depend neither on Θ
nor on Φ, it can be shown without difficulty that 

Recalling that when operating on a function only of R, there is no distinction 
between the primed and unprimed partial differentials: in other words in , 

This justifies the interpretation of J2 as the 
square of the total angular momentum.
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Section 6. Partial wave expansion

In order to reduce the system of coupled partial differential equations to a 
system of coupled ordinary differential equations which can be solved 
numerically, it is necessary to make a partial wave expansion of the functions 
Fn. The most natural choice is to use as expansion basis the simultaneous 
eigen functions of J2 and  Jz , These are designated by 

The explicit form of the functions  can be expressed as

where  is the reduced rotation matrix

with and          is a normalization constant, chosen such that
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We may observe that in the case M=0, 

Expanding each channel function in the form

and making use of the orthogonality property (6.4) and the following relation (see[16])

it is be easily demonstrated that the radial functions are solutions of the 

or in matrix form
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The radial coupling matrix V(r) (independent of J) is given as previously  and the 
Coriolis coupling  VJ

(c) (which depends on J) can be reduced to the form

We may observe that while the radial matrix V (r) only connects channels i,j if       
while , the Coriolis part VJ

(c) connects channels i,j if              .
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It is important to establish a phase convention for the adiabatic wave functions   
. Introducing explicitly the coordinates of       as              

where φ is the azimuthal coordinate and                   the ensemble of non 
azimuthal coordinates, the axial symmetry of the system makes it possible to 
express the eigenfunction
in the form

The phase of the azimuthal part, being independent of R, is well defined for a 
given Λj and has no effect on the radial coupling matrix element. In contrast, 
the phase of the non-azimuthal part is not well defined for a given R. It is 
therefore customary to adopt the convention that the non azimuthal part be real. 
This still leaves an arbitrary overall factor of ±1. The convention is to assume 
that the sign does not change with respect to small changes in R. 

In practice this can be ensured by calculating numerically the overlap of the 
adiabatic functions at R and                , where              .  If the overlap is close 
to +1 the phases are correct, if the overlap is close to -1, the phases are 
adjusted accordingly. 
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Non adiabatic coupling matrix elements

In order to acquire some intuition of the standard adiabatic model, it is 
desirable to have some quantitative idea of the nature of the radial and 
rotation coupling terms           and         . Let us begin with the term          . 

This term operates on the radial function Fj(R). Except for the case of 
extremely low energies, Fj(R) is quite an oscillatory function since its 
associated wave number kj>>1. For that reason, the second term dominates 
(roughly by a factor proportional to              ).   

The radial coupling is therefore controlled by the matrix element 

A precise determination of Aij involves a numerical differentiation of the 
adiabatic eigen functions with respect to the internuclear distance. But it is 
possible to gain some qualitative indication of its size from elementary 
considerations. 
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With the above phase convention, the diagonal elements of matrix A vanish.  
Since the eigenfunctions are normalized for all R

As for the off-diagonal elements, we note that 

It therefore follows that

if i≠j

We see that the radial coupling can become large if the energy separation of 
the adiabatic states concerned becomes small. Of course, the energy 
separation between adiabatic states of the same symmetry (Wigner-von 
Neumann no crossing rule) can never vanish, but it become quite small. Typical 
examples are shown in the figures.
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Figure 3. Adiabatic potential energies of 
the ArH6+ molecular ion: 
-solid curve 1  [Ar6+(3s2)+H(1s)] ,
-long dashed curve 2 [Ar5+(3s25p)+H+] ,
-dot dashed curve 3  [Ar5+(3s25s)+H+], 
-short dashed curve 4 [Ar5+(3s24f)+H+],
-dotted curve 5 [Ar5+(3s24d)+H+] 

Figure 4. Adiabatic potential energies of 
the ArHe6+ molecular ion: 
-top dotted curve 1 [Ar6+(3s2)+He(1s2)], 

-solid curve 2 [Ar5+(3s24p)+He+], 
-dashed curve 3  [Ar5+(3s24s)+He+], 
-bottom dotted curve 4 [Ar5+(3s24f)+He+]



Figure 5. ArH6+ radial coupling matrix 
elements: dot-dashed curve A12,  dotted 
curve A23,  dashed curve A34, solid curve A45

Figure 6. ArHe6+ radial coupling matrix 
elements: solid curve A12,  dashed curve A23,  
dotted curve A34



It is also of interest to examine the radial coupling matrix elements in the 
asymptotic region as             .    The derivative            is calculated with 
respect to          fixed.  Let us assume that as              , the adiabatic 
eigenfunction tends to state j of (A+e).   In that case .  

where

It is easy to show that

and that, in the asymptotic limit, the radial coupling matrix is given by

If states i and j correlate to different centres in the asymptotic limit, the matrix 
element will vanish. But it does not vanish when states i and j  are correlated to 
the same centre  and when they are connected by an allowed dipole transition. 
The existence of such non-vanishing off-diagonal couplings makes it formally 
impossible to extract the S matrix from the radial equations. 
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We have already remarked that the second term of  Vij
(r) is dominant because 

of the fact that it involves both            and the derivative of the radial function. 
To within an order of magnitude                 

and

where       is the minimum value of     at the avoided crossing and a 
is a length characteristic of the crossing region. Let us now examine the first 
term of Vij

(r) The matrix B designates the radial coupling matrix involving second 
derivative terms, defined as follows 

The matrix elements of B are related to those of A by the relation 

If the adiabatic basis set were complete, the second term on the right hand side 
may be written as 
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Diabatic Representation
Radial matrix elements undergo a rapid variation at  avoided crossings.  This is why a 
diabatic representation is introduced. The diabatic basis functions               are defined 
by means of a transformation matrix C(R)

Introducing the column vector gJ(R), related to fJ(R) by the transformation

We obtain

Where

The matrix U may be considered as the electronic Hamiltonian on a diabatic basis. It is 
non-diagonal except in the asymptotic limit, where it is made diagonal by the condition
C(R)=I
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The principal contribution to V(r) comes from  the matrix A.  In the diabatic
representation, this contribution becomes Ad

The usual diabatic transformation is to require that the matrix Ad vanishes. This 
condition is achieved by requiring the transformation matrix to be a solution of the 
equation

It is also of interest to note that the matrix B transforms according to

If the basis set is complete the diabatic matrix Bd will also vanish.  In the case of a 
finite basis, the diabatic matrix Bd will not vanish. 
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In the case of a two-state approximation, it is easily verified that the 
transformation matrix is none other than a rotation matrix of the form

Such a transformation matrix constitutes the basis of the Landau-
Zener model of a non-adiabatic transition at an avoided crossing.



Figure 7. A comparison of the radial coupling matrix elements of D and A for the two 2S 
states of SiHe3+ responsible for electron capture by Si3+ from He.  The radial derivatives 
have been calculated with the origin of electron coordinates on the Si nucleus. We may 
note that in this case D11 does not vanish in the asymptotic limit. Had the origin of 
electronic coordinates been taken on the He nucleus, D11 would vanish at the asymptotic 
limit but then D22 would be non zero.



Figure 8. Diagram to illustrate how w(R) 
varies as a function of R for the radial 
coupling between the two 2Σ states of
SiHe3+ in the vicinity of their avoided 
crossing. The upper and lower curves refer 
to calculations where the radial derivative is 
taken with  respect to the He nucleus and to 
the Si nucleus. The intermediate curve is a 
modified coupling to take account of 
translation effects (see section 6). 
Considerable deviation from π/2 is observed 
at short distances.


