LAEA *Iraining Workshop* 2000 Tilmann Märk Universität Innsbruck

Fundamental elementary processes in plasmas

Institut für Ionenphysik und Angewandte Physik

ÖAW

http://info.uibk.ac.at/ionenphysik

Ion Physics / Plasma Physics

Clusterphysics

Mass Spectrometry

Environmental Physics and Analysis

Institut für Ionenphysik

Elementary processes considered:

- Inelastic electron interactions with atoms/molecules/nanoparticles (ionization and attachment)
- 2. Ion/surface interaction
 - 1. Intrinsic fundamental interest
- 2. Provide data needed for plasma modelling and diagnosis
- 3. Radiation damage

Data acquisition Data analysis and assessment Data compilation (ADAS, IAEA)

Motivation

max

20 25 PHOTON ENERGY (eV) al~13 eV

4.Photons

- Origin of life (photosynthesis)
- Life in space
- Radiation damage at a molecular level
- Improved radiation therapy

DNA-strand breaks

The genotoxic effects of ionizing radiation (α,β,γ,X) in living cells (therapeutic, diagnostic) are not only due to the primary impact.

Single and double strand breaks may be induced by secondary species: =secondary electrons with kinetic energies below about 20 eV thermalized and solvated by inelastic collisons within <<10⁻¹² s =4x10⁴ electrons per 1 MeV primary

Part I: FundamentalsA. Ionization processes and Ions producedB. Ionization mechanisms

Part II: Kinetics and energetics for the production of cations and anions

Part III: Electron attachment

Part IV: Ion/surface interactions

Part I: Fundamentals

A. Ionization processes and Ions produced

Direct Ionization – Indirect ionization

Stable ions – unstable (metastable) ions Singly-charged ions Multiply-charged ions Parent ions – fragment ions Cations - anions

Electron-Particle Interaction

e + atom :	electronic excitation
e + molecule :	 electronic excitation vibrational excitation rotational excitation dissociation
e + cluster :	 multiple collisions intra-cluster reactions

Electron-Particle Interaction

$ABC + e \rightarrow [ABC^+]^* \rightarrow A^+ + BC + KER$

Primary ionization eventEnergy storage and disposalFinal reaction products

Electron impact ionization processes

$$\begin{array}{rcl} A + e & \rightarrow & A + e & elastic scattering \\ A^{*} + e & excitation \\ A^{**} + e & double excitation & (A^{**} \rightarrow A^{+} + e) \\ A^{+} + 2e & ionization \\ A^{+*} + 2e & excited ion & (A^{+*} \rightarrow A^{++} + e) \\ A^{++} + 3e & double ionization \\ A^{-} + hv & attachment \end{array}$$

Electron impact ionization processes

$AB + e \rightarrow$	AB + e	elastic scattering	
	AB* + e	excitation	
	$AB^{**} + e$	double excitation	$(AB^{**} \rightarrow AB^+ + e)$
	$AB^+ + 2e$	ionization	
	$AB^{+*} + 2e$	excited ion	$(AB^{+*} \rightarrow AB^{++} + e)$
	$AB^{++} + 3e$	double ionization	
	$AB^{-} + hv$	attachment	$(AB^{-} \rightarrow A^{-} + B)$

$$\begin{array}{rcl} AB \ + \ e \ \rightarrow \ AB(v,k) \ + \ e \ \ vibrational, rotational excitation \\ A \ + \ B \ & dissociation \\ A^+ \ + \ B \ + \ 2e \ \ dissociative \ ionization \\ A^+ \ + \ B^+ \ + \ 3e \ \ dissociative \ double \ ionization \\ AB^{++} \ + \ 3e \ \ \ double \ ionization \end{array}$$

Direct and indirect ionization processes

Part I: FundamentalsB. Ionization mechanisms

Franck Condon principle Unimolecular dissociation

E=100 eV: v=6x10⁸ cm/s; t=s/v=10⁻⁸/6x10⁸ ~ $2x10^{-17}$ s « t_v~10⁻¹⁴s

The Franck Condon Range and Cases

E=100 eV: v=6x10⁸ cm/s; t=s/v=10⁻⁸/6x10⁸ ~ $2x10^{-17}$ s « t_v~10⁻¹⁴s

The Franck Condon principle

Several cases are possible:

- (1) The final level accessible lies within the region of discrete vibrational states of the upper potential energy curve (e.g. transition $H_2(X^1\Sigma_g^+) + H_2(B^1\Sigma_u^+)$ in Fig. 1). The probability that the vibrational quantum number will change depends on the relative position of the potential energy curves.
- (2) The final level accessible lies not only within the region of discrete vibrational states but includes some part of the continuum (e.g. transition $H_2(X^1\Sigma_g^+) + H_2^+(^2\Sigma_g^+)$). Hence, some of the transitions will lead to dissociation.
- (3) The final level accessible lies within the continuum of a repulsive state and all transitions lead to dissociation (e.g. transition $H_2(X^1z_g^+) + H_2^+(^2z_u^+)$.

AE and BE of molecules

HEM data analysis:

$$O_3 + e \rightarrow O_3^+$$

 $(O_3)_2 + e \rightarrow (O_3)_2^+$

Binding energy of ozone dimer ion:

Photoelectron spectroscopy: Adiabatic & vertical IE

Fig. 2.1. Schematic of the experimental arrangement for photoelectron spectroscopy (PES). MCA: multichannel analyzer.

Photoelectron spectroscopy: Adiabatic & vertical IE

Fig. 2.3. PE spectrum of CO obtained by HeI radiation and potential energy curves for the neutral molecule and the three ionized states (adapted from [48]).

Ionization mechanism II: Vibrational predissociation

ABC + $e \rightarrow \rightarrow$ parent & fragment ions

Decay paths for parent ion formed: $ABC^{+*} \rightarrow \rightarrow \rightarrow$

 $\begin{array}{l} \rightarrow A^{+} + BC \rightarrow & A^{+} + B + C \\ \rightarrow AB^{+} + C \rightarrow & A^{+} + B + C \\ & A^{+} + B + C \\ \rightarrow A + BC^{+} \rightarrow & A + B^{+} + C \\ & A^{+} + BC^{+} \\ \rightarrow AB^{+} + C^{+} \rightarrow & A^{+} + B^{+} + C^{+} \end{array}$

Ionization mechanism II: Vibrational predissociation

Ionization mechanism II: Vibrational predissociation

Unimolecular (metastable) dissociation

3 major mechanisms:

- 1. Vibrational (statistical) predissociation
- 2. Electronic predissociation
- 3. (Rotational) tunneling through a barrier

Vibrational (statistical) predissociation

METASTABLE (UNIMOLECULAR) DISSOCIATION OF IONS:

MECHANISMS:

1. VIBRATIONAL (STATISTICAL) PREDISSOCIATION

(IF THE MOLECULAR ION IS COMPLEX ENOUGH SO THAT THE LISSAJOUS MOTIAN ON THE POTENTIAL ENERGY HYPERSURFACE IS SUFFICIENTLY COMPLICATED, THE EXISTENCE OF METASTABLE IONS CAN BE RATION-ALIZED IN THE FRAMEWORK OF THE QUASI-EQUILIBRIUM THEORY.)

- 2. <u>ELECTRONIC PREDISSOCIATION</u>, FORBIDDEN BY SOME SELECTION RULES OR HINDERED BY A SMALL OVERLAP INTEGRAL.
- 3. (ROTATIONAL) TUNNELING THROUGH A BARRIER

FIGURE 6-22 The potential energy of the N atom in the NH₃ molecule, as a function of its distance from the plane containing the three H atoms, which lies at Electronic predissociation: Transition forbidden by (i) some selection rule or (ii) hindered by small overlap integral

METASTABLE (UNIMOLECULAR) DISSOCIATION OF IONS:

MECHANISMS:

1. VIBRATIONAL (STATISTICAL) PREDISSOCIATION

(IF THE MOLECULAR ION IS COMPLEX ENOUGH SO THAT THE LISSAJOUS MOTIAN ON THE POTENTIAL ENERGY HYPERSURFACE IS SUFFICIENTLY COMPLICATED, THE EXISTENCE OF METASTABLE IONS CAN BE RATION-ALIZED IN THE FRAMEWORK OF THE QUASI-EQUILIBRIUM THEORY.)

- 2. <u>ELECTRONIC PREDISSOCIATION</u>, FORBIDDEN BY SOME SELECTION RULES OR HINDERED BY A SMALL OVERLAP INTEGRAL.
- 3. (ROTATIONAL) TUNNELING THROUGH A BARRIER

FIGURE 4-22

The potential energy of the N atom in the NH₃ molecule, as a function of its distance from the plane containing the three H atoms, which lies at

Tunneling through barrier

Tunneling through barrier

V_{eff} effective potential energy combination of V plus rotational energy of diatomic

V potential for L=0

J =K rotational quantum numbe

Time evolution of the ionization process

Time evolution of the ionization process

Example: Forms of carbon

Strictly speaking only fullerenes are made exclusively from carbon.

Buckminster Fuller

Truncated icosahedron

High appearance energy

universität

Situation in 1997:

- about 30 published results on the C_{60} binding energy
- no agreement within experiment and no agreement between theory and experiment

Binding energy (eV)

Final result for the C_{60}^{+} binding energy

Experiment:17 Measurements - which have been analysed
by using the complete today's knowledge- yield a binding energy
(mean value) of

$$10.0 \pm 0.2 \text{ eV}$$

Theory:

A.D.Boese and G.E.Scuseria have carried out very accurate D(ensity)F(unctional)T(heory) calculations and obtain for the ionic C_{60}^{+} binding energy

Infrared multiphoton excitation, dissociation and ionization of C₆₀, M.Hippler, M.Quack, R.Schwarz, G.Seyfang, S.Matt, T.D.Märk, Chem.Phys.Lett. 278(1997)111

Metastable decay of cluster ions:

Results: <u>Absolute</u> binding energies for fullerenes C_n^+ , $42 \le n \le 70$

S.Tomita, J.A. Andersen, C Gottrup, P.Hvelplund and U.V.Pedersen : Dissociacion Energy for C₂ los from Fullerene Cations in a Storage Ring' Physical RevieW Letters, 13 Aug. 2001, Vol 87, nr. 7

O P.E.Barran, S.Firth, A.J.Stace, H.W.Kroto, K.HAnsen, and E.E.B. Campbell, Int. J. Mass Spectrom. Ion Process. 167/168,127 (1997)

C_{60} + e \rightarrow parent & fragment ions

Mass per charge (Thomson)