

I: Basic physics of edge plasmas in magnetic confinement fusion

D. Reiter

Institut für Plasmaphysik, FZ-Jülich, Trilateral Euregio Cluster

Atomic and Molecular Data for Fusion Energy research, Aug.-Sept. 2006, ICTP, Trieste

The D-T-Reaction

The ITER Challenge

ITER: Furnace chamber: Ø 15 m 6.8 m high 5.3 T 15 MA 500 MW 8 min

Convection

Candle, microgravity

(only small, dim burn)

There is no natural ash removal mechanism from a magnetically confined fusion flame. Without active flushing the flame is choked by its own ash within about 100 s, well short of the ITER design values. Helium ash removal is a critical issue Two basic concepts for boundary plasma engineering

Questions addressed by Divertor Design for ITER

 Can sufficient particle throughput be maintained?
 Can, simultaneously, a reactive plasma protect the chamber from a thermonuclear plasma?

Electrons, H⁺ lons

H, H_2 , ... Neutrals

 ITER-FEAT (B2-EIRENE simulation)

 Generation

 Image: second sec

- Time scales
- The ITER Divertor Code
- Hydrogen chemisty in low temperature Divertor Plasmas
- One critical issue: tritium retention, hydrocarbon chemistry

Magnetic Fusion: how to produce convection ? DIVERTOR

ITER, B2-EIRENE simulation, detached, T_e field

ITER, B2-EIRENE simulation, detached, n_a field

ITER, B2-EIRENE simulation, detached, n_A field

ITER, B2-EIRENE simulation, detached, n_M field

core plasma

Typical Time Scales in a next step experiment with B = 10 T, R = 2 m, $n_e = 10^{14}$ cm⁻³, T = 10 keV

Fusion Simulation Project Vol.2, FESAC ISOFS Subcommittee Final Report, Dec. 2002

edge plasma

Typical Time Scales in a next step experiment with B = 10 T, R = 2 m, $n_e = 10^{14}$ cm⁻³, T = 10 keV

PSI time and spatial scales

Thanks to: R.Schneider, IPP Greifswald

Provide sufficient convection without accumulating Tritium and with sufficiently long divertor lifetime (availability).

Engineering parameter in modelling: $S_{puff} \sim (1...13) \cdot 10^{22} \text{ s}^{-1}$

- ITER Divertor design is based upon "detachment"
- Detachment is a chemically complex plasma state:

"unknown territory" in fusion,

but well known in low temperature plasma physics

- gas-plasma friction,

- recombining plasmas,
- plasma cooling (radiation)

Large Helical Device (LHD), Toki, Japan

3D LHD Plasma Edge Simulation: EMC3-EIRENE

Joint European Torus (tokamak)

Break-Even reached in JET

16 MW fusion power 400 Mill deg C

reliable data base for extrapolation to ITER

Active role of atomic and molecular processes

cooling the edge plasma, protecting target surfaces from overexposure

Furnace chamber: Ø 8.5 m 2.5 m high 3.4 T 7 MA 1 min

Extrapolation: present experiments \Rightarrow **ITER**

Edge: influenced by recycling (of neutral particles), grids Core: not influenced by recycling

Extrapolation of core plasma confinement to ITER

Extrapolation: present experiments \Rightarrow **ITER**

Major Radius

Edge plasma: a) provide conduction b) protect exposed target areas

World-wide effort to understand (and predict?) Edge Plasma dynamics on the basis of best known Atomic and Molecular Data

Estimate "Collisionality": n_eR -n_e-Divertor Plasma density (10²⁰ m⁻³⁾ -R- Major Radius (m)

Alcator C-Mod (MIT) 10 times smaller than ITER similar shape higher density

Alcator C-Mod (MIT)

J. TERRY

Shot: 990429019, at 950ms, $<n_e>=1.5 \ 10^{20}$, $I_P=0.8 \ MA$, $B_{tor}=5.4 \ T$ OSM reconstruction (Lisgo et al., 2004)

Ionization by electron impact on neutral gas

However: Additional Ionization due to Lyman photon trapping

CONCLUSIONS - I

- Magnetic confinement is now effective enough to contain the main fusion flame, but it is too good for the plasma edge (SOL): very narrow heat-footprints on targets.
- Magnetic Confinement Fusion Reactors must operate at reduced target fluxes and temperatures ("detached regime").
- n, T upstream (core) fixed by burn criteria, density limit, etc.
- For ITER: Detached regime: decrease particle flux to target for given upstream conditions: self sustained neutral cushion (reactive plasma) controlled by PMI and A&M
- Divertor detachment physics involves a rich complexity of plasma chemistry not otherwise encountered in fusion devices .

- Experimental finding: Sheath limited flow ⇒ high recycling ⇒ detachment
- Theoretical hypothesis:

This is brought about by power- and flux dissipation due to a chemically rich self sustained plasma formed near exposed target surfaces, by the recycling process.

• Experimental tests:

numerical experiments with integrated computational plasma edge models **Experimental findings**

JET, 1994, MARK-I Divertor

JET, 1998, MARK-II Divertor

B2-EIRENE-computational grids for JET simulations

- Trilateral Euregio Cluster

2 Pulse No. 34866 PIN JET, MARK-I, (MM) 1 PRAD density ramp-up (a)0 D₂ Gas input (Acm^{-2}) (10¹⁹m⁻³) (10²¹els⁻¹) 1.5 1.0 (b) 5.0 <n_> -ohmic 2.5 -no imp. injection (c) 20 Inner j_{sat} -simply: D2-puff 10 (d) 10 (10¹⁵phsr⁻¹ cm⁻²s⁻¹) Inner D_a (e) 1 W 20 (Acm⁻²) (f) Outer j_{sat} 10 0 Outer D_a (a) (10¹⁵phsr⁻¹ cm⁻²s⁻¹) 6.0 3.5 1.0 Inner strike zone radius Ē 2.5 2.45 (10²²s⁻¹m⁻²) (i) Divertor neutral flux 2.5 0 1.50 (j) Zeff MALMUMMANAMAN 1.25 1.0 10 11 12 13 Time (s) 15 16 14 Institut für Plasmaphysik Assoziation EURATOM-Forschungszentrum Jülich

Linear, sheath limited regime (convection)

• low density: high temperature, plasma profiles along fieldlines nearly constant, low radiation losses

• energy balance: sheath dominates

$$q_{\parallel,M} pprox q_{\parallel,D} pprox \delta_e^* T_D \Gamma_D$$

small particle flux to the plate:
 neutral mean free path >> divertor dimension

• divertor density linearly follows midplane density

Plasma Data: $n_e(r)$, $T_e(r)$, $T_i(r)$: directly from experiment

see lecture: Ongena

Tore Supra

Linear, sheath limited regime: Tore-Supra, TEXTOR

R

Conduction limited (high recycling): dilution by multiple recycling

• Non-linear regime: $T_D \sim n_M^{-2}$, $n_D \sim n_M^3$ and flux $\Gamma_D \sim n_M^2$

Trapping of neutral particles in the Divertor: high recycling and detachment regime

+ COUPLING EIRENE TO BRAAMS CODE: ASDEX UPGRADE SINGLE-NULL

•Below 1.5 eV additional reduction of plasma flux by volume recombination (virtual target, neutral cushion). Escape of neutrals to the sides followed by ionisation in hotter plasma (6-7 eV) further upstream

 $\Gamma_{\rm D} \sim n_{\rm M}^{-2}$ dependence is broken

JET, (ohmic), DETACHMENT

Measured and extrapolated ion fluxes to inner and outer divertors, density ramp Degree of detachment (DOD)

Princeton QED device (gaseous Divertor concept simulator)

 Hsu et al., PRL 49, 1001 (1982):
 QED

 Schmitz et al., J.Nucl.Mat. 196-198, (1992):
 PISCES

 Ohno et al., PRL 81, 818 (1998):
 NAGDIS

Key difference: here: P_{gas} given. In a fusion device the neutral cushion must be self sustained by recycling process. This issue will be addressed in linear MAGNUM device (FOM)

- Trilateral Euregio Cluster

Assoziation EURATOM-Forschungszentrum Jülich

Design of the ITER divertor is guided by large scale code simulations (numerical book-keeping for all terms already known)

• Steady state divertor performance for D-He-C plasma.

B2. 2D, time-dependent set of Braginskii equations. Finite-volume scheme on quasi-orthogonal grid, multi-fluid,

Grad 21-Moments closure.

EIRENE. Monte-Carlo neutral transport (see <u>www.eirene.de</u>). Calculates sources for B2 (S_N , $S_{mu//}$, $S^{i,e}_E$), based on 3D kinetic gas transport, plasma surface interaction and atomic and molecular plasma chemistry

"B2-EIRENE", special issue in: Contrib. Plasma Physics, 46, No 1-2, 2006

Radiation transfer module: verification and validation using HID lamps

High Intensity Discharge Lamps

D2-36 W Automotive Material:Quartz

CDM-75 W Shop-Lighting Material:PCA

FIDAP-EIRENE

Consequences for ITER design (B2-EIRENE): shift towards higher divertor gas pressure to maintain a given peak heat flux (Kotov et al., CPP, July 2006)

- ITER divertor engineering parameter:
- target heat flux vs. divertor gas pressure

- 1996

(ITER physics basis1999)

- 2003, neutral neutral collisions
-+ molecular kinetics $(D_2(v)+D^+, MAR)$
- **—** 2005, + photon opacity

"Dome" removal now seriously considered

P_{PFR}: average neutral pressure in Private Flux Region

The effect of photon opacity (Ly_{α}: 95%, Ly_{β}: 70%)

 Principal effect: higher density (and somewhat lower temperature) in front of the targets

Temperature and density along Inner Target

V. Kotov, D. Reiter

Code verification:

- the code is around 15 years,
- used by a large number of people,
- applied to a large number of different experiments
- and it is completely open source and transparent (publicly exposed) from the very beginning

Code validation:

- matching experiments is a (trivial) minium requirement given the sufficiently many free model parameters
- separate unknowns from knowns, by confronting sub-models with dedicated experimental data (Next lecture)