

SMR.1771 -12

Conference and Euromech Colloquium #480 on

High Rayleigh Number Convection

4 - 8 Sept., 2006, ICTP, Trieste, Italy

Effect of the Earth's Corolis force on the large-scale circulation of turbulent Rayleigh-Benard convection

E. M. Brown University of California at Santa Barbara USA

These are preliminary lecture notes, intended only for distribution to participants

Effect of the Earth's Coriolis force on the large-scale circulation of turbulent Rayleigh-Bénard convection

Eric Brown and Guenter Ahlers University of California, Santa Barbara Department of Physics and iQCD

Physics of Fluids., submitted.

Work supported by NSF Grant DMR-0243336

Turbulent Rayleigh-Bénard convection in cylindrical samples of aspect ratio 1

aspect ratio $\Gamma = D/L = 1$ Prandtl number $Pr = v/\kappa = 4.4$ (water) Rayleigh number $R = g\alpha\Delta TL^3/\kappa v = 3 \times 10^8$ to 10^{11}

Finding the orientation θ_0 of the large-scale circulation (LSC)

$$T(t) = T_0 + \delta \cos(\theta - \theta_0)$$

$$T_0 = \text{average temperature}$$

$$\delta = \text{amplitude of LSC}$$

$$\theta_0 = \text{orientation of LSC}$$

Revolutions

Net Rotation

 $R = 9x10^{10}$

revolutions: 439 running time: 258 days

net rotation: -77 rev. net rate: 0.30 +/- 0.08 rev./day

Preferred Orientation

 $R = 9x10^9$, large sample

Preferred Orientation vs. R

rotation angle = 0 0.12 rev. 0.25 rev. 0.38 rev. 0.48 rev.

Laboratory frame: data collapse at small R due to Coriolis force.

Sample frame: data collapse at large R due to sample asymetry.

Coriolis force model: Langevin equation

Coriolis force:

$$\frac{d\vec{u}}{dt} = -2\left(\vec{\Omega} + \frac{d\vec{\theta}_0}{dt}\right) \times \vec{u} - \frac{d^2\vec{\theta}_0}{dt^2} \times \vec{r} .$$

Coriolis force on vertical legs causes θ_0 to align towards west

Coriolis force on horizontal legs causes net rotation

$$\dot{\theta}_0 \approx 2\Omega \cos \phi \sin \theta_0 - \Omega \sin \phi + f(t)$$

φ= 34° in Santa Barbara

diffusive noise term

assumed steady state $(d^2\theta_0/dt^2 = 0)$

Fitting the preferred orientation term

$$\begin{split} \langle \dot{\theta}_0(\theta_0) \rangle_t &= 2a\Omega\cos\phi\sin\theta_0 - \Omega\sin\phi \\ \uparrow \end{split}$$
 fit parameter

 $R = 5x10^9$, large sample

Diffusive noise

$$\dot{\theta}_n \equiv rac{\delta \theta_0}{n \delta t}$$

 $R = 5x10^9$, large sample

Diffusion in a potential well

$$V = -\int \dot{\theta}_0 d\theta_0 = 2\Omega \cos \phi \cos \theta_0 + \Omega \theta_0 \sin \phi$$

Arrhenius-Kramers problem

Using the Coriolis-force potential and the measured diffusivities, we can write the

Fokker-Planck equation

$$\frac{dp(\theta_0)}{dt} = \nabla[-p(\theta_0)\dot{\theta}_0(\theta_0) + D_{\theta}\nabla p(\theta_0)]$$

Assuming a steady-state and integrating yields

$$-p(\theta_0)\dot{\theta}_0(\theta_0) + D_{\theta}\nabla p(\theta_0) = -\frac{\omega_{\mathcal{R}}}{2\pi}$$

which can be numerically integrated to obtain $p(\theta_0)$ and ω_R with the requirement that $p(\theta_0)$ is normalized .

Probability distribution of θ_0

No adjustable parameters!

Net rotation and revolutions

- medium sample data
- large sample data
- med: model prediction large: model prediction
- med: model prediction w/ sample asymmetry large: model prediction w/ sample asymmetry

Summary

- We found the meandering of the LSC to be diffusive
- We observed a slow net rotation of the LSC.
- We observed a preferred orientation of the LSC fixed in the laboratory frame in the west.
- We modeled the effect of the Coriolis force on the LSC and were able to accurately calculate the size of the above effects, as well as $p(\theta_0)$ and the rate of revolutions.

Asymmetry of the top plate cooling system

