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3. Experimental results: spatial distribution and fluctuations
4. Summary
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1. Dissipations in Rayleigh-Bénard Convection

For 1sotropic turbulence, energy cascades from the large system scale L,
to the small viscous dissipation scale 1, at which Re, =nu /v ~ 1.

In the inertial range n <r <L, the kinetic energy cascades at a constant
rate €, without dissipation and thus u (r) ~ (g r)'".

Important Kolmogorov scales:
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Van Gogh's painting
Starry Night (1889)



For turbulent Rayleigh-Bénard convection, we have

« two local variables, v(r,t) and T(r,t), and two corresponding
dissipation rates, €, and &.

e two exact relations:

£y = (&, (r.0)y, = Nu(Ra, Pr)
£ (1) =— 00
K(AT/ H)

g,=(Nu—-1)RaPr™

(¢ (r,1)) Flow visualization of turbulent
e —ur > IV thermal convection in water at
Y Wi/ H® Ra =2.6x10°(6.5 cm x 4.0 cm)




Understanding heat transport, Nu(Ra,Pr), in turbulent convection
through spatial decomposition of the dissipation rates ¢, and &

Phenomenology I: boundary versus bulk (GL, JEM, 2000; PRL, 2001)

& =&, 5 TE, ik Er =& g TE ik
EunL ™ W(u/ ﬂ“u)z(ﬂ’u /| H) Erpr K(AT/ 27)2 (4. /H)
vk~ ' | H &r puar ~ UP)AT */H

Phenomenology II: background versus plumes (GL, PoF, 2004)
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2. Measurement of the local thermal dissipation rate

Instantaneous local viscous dissipation rate:

ou, ou,
g, (r, t)—vz ’
P .8xj

Instantaneous local thermal dissipation rate:

em,r):x[(%—i)z e

Time-averaged local thermal dissipation rate:
(&r(r,1)), = (&7),,(X) + (&) ,(r) = KZ(( )> +KZ<(—)>

Total convective heat flux across the cell:

Nu = i j j JA(x, y)dxdy = % j j j (e, (r,0)),dr



Temperature gradient probe:

100pm

First probe: d =0.17 mm Second probe: d =0.11 mm
0x, = 0.8 mm, 0T . ~ 5 mK 0x, = 0.25 mm, 0T ., ~ 5 mK

A; ~ 0.8 mm at Ra=3.6x 10°



Rayleigh-Bénard convection cell

cooling chamber 4 = —-= 1,0.5

heating plate

thermustor
L-:-n:k. -1

(sanree % four ac bridges with lock-in amplifiers
é ”””t - operated at f = 1kHz and Af = 100 Hz
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Simultaneous dissipation and velocity measurements
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Does the invasive probe perturb the local temperature field?
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with Ra=4.0 x 10°



3. Experimental results
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- Ra=2.7x10°
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ey(r)=¢,(r)+e.(r)

(1) In the bulk region, €;1s

dominant and €, 1s negligibly

small.
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(1) Near the sidewall, €, 1s
~10 times larger than that
at the cell center.
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(111) €, increases rapidly in the 1<z/4,. <10 region and 1s ~140

times larger than that at the cell center.
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(iv) € has three terms, €= €, + €, + €,, and the dominant term
1s €,, which 1s twice larger than €, and €,.



At the cell center

Near the sidewall

1.9x103 Ra0-33

10 -

1.05x10*Ra0-3

Ra

(v) €.~ Ra® with the exponent &
cell center and near the sidewall.

Ra

~ (0.33 + 0.03 both at the



Measured e, when the probe 1s placed ~1 mm above the
lower conducting plate
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(v1) €.~ Ra® with the exponent @ ~ 0.33 + 0.03 near the
lower conducting plate.



Inside the thermal boundary layer (almost touching the
lower surface)

10*
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(vii) €, ~ Ra# with the exponent 8 ~ 0.77 + 0.1 inside
the thermal boundary layer.
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(viii) The line of (H/2A+)? intersects the line of €, = 3.8x10#Ra"-77
at Ra = 6.4x1019.



Fluctuations of the local thermal dissipation rate e;(r,t)

Near the sidewall at Ra = 3.6x10°
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H(e )/H,
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PDF of the local thermal dissipation rate €(r,t)

At the cell center

Ra  ;
0 9.6x108
A 2.8x10° 3
N o 8.2x107 1
7 (I) 2I0 4I0

glo.

H(g,) = Hye "'

with @ =3.9 and 3 =0.35

H(e )/H,

Near the sidewall

T
)
)
E
= N [ .OX
E X\
XN
E 0
o\
R
X
5

0 2.5x10° ]

H(e,) = Hoe '

with @ =3.1 and B =0.47



H(e )/H_

Functional form of the measured H(e;)
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Cross-correlation function C(7)=(¢ (t)0T(t+7))/ 0,0,

0.8} Ra=3.6x10°

i

10 0 10
(8)
Correlation amplitude increases from C(0) = 0.2 (cell center) to

C(0) = 0.4 (near the sidewall) and to C(0) = 0.6 (near the lower
conducting plate).




Power spectrum of the local thermal dissipation rate € (r,t)
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4. Summary

Measured thermal dissipation rate can be decomposed into
two terms: ey(r) = €,,(r) + €{r), with the mean dissipation
€. (r) concentrating in the thermal boundary layers and the
fluctuations e{r), which are produced by the detached
thermal plumes, occupying mainly in the plume-dominated
bulk region.

Measured e{r) ~ Ra® with @ ~ 0.33 at the cell center and
near the sidewall and lower conducting plate.

Measured €_(r) ~ Ra® with 8 ~ 0.77 inside the thermal
boundary layer.

AtRa=2.7x10% €~ 0.1Nu and €_, = € - €, ~ 0.9Nu.



4. Summary - continued

Measured histogram of e.(r,t) has a log-normal or log-Poisson
form.

Cross-correlation amplitude C(0) increases from 0.2 (cell
center) to 0.4 (near the sidewall) and to 0.6 (near the lower
conducting plate).

Power spectrum of e{r,t) has a simple exponential form
P(f) = Poexp(-fif,).

The experiment reveals an interesting interplay between the
mean dissipation and the fluctuations. A minimum modeling
of the spatial distribution of e, (r) requires a decomposition of

en(r) Into two terms with €_(r) in the thermal boundary layer
(z/A; =< 1) and €(r) 1n the bulk region (1< z/A <10).



Does the invasive probe perturb the local temperature field?
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