



SMR.1771 - 25

#### **Conference and Euromech Colloquium #480**

on

**High Rayleigh Number Convection** 

4 - 8 Sept., 2006, ICTP, Trieste, Italy

Numerical study on non-Oberbeck-Boussinesq effects in Rayleigh-Bernard convection

> K. Sugiyama University of Twente Enschede The Netherlands

These are preliminary lecture notes, intended only for distribution to participants

Conference and Euromech Colloquium #480 On High Rayleigh Number Convection Miramare, Trieste, Italy, September 4-8, 2006

# Numerical Study on Non-Oberbeck-Boussinesq Effects in Rayleigh-Bénard Convection

# Kazuyasu Sugiyama<sup>1</sup> Enrico Calzavarini<sup>1</sup> Francisco Fontenele Araujo<sup>1</sup> Siegfried Grossmann<sup>2</sup> Detlef Lohse<sup>1</sup>

<sup>1</sup>Department of Applied Physics, University of Twente, The Netherlands <sup>2</sup>Fachbereich Physik der Philipps-Universität, Germany

# **Oberbeck-Boussinesq (OB) approximation** $\beta, \kappa, \nu: \text{constant} \quad Ra = \frac{\beta g \Delta L^3}{\nu \kappa}, \qquad Pr = \frac{\nu}{\kappa}$



# Experiments of temperature deviation $T_c - T_m$

Water
•Wu & Libchaber (1991, *Phys. Rev. A*, 43)
•Ahler, Brown, Fontenele Araujo, Funfschilling, Grossmann & Lohse (2006, *J. Fluid Mech.* in press)
Glycerol
•Zhang, Childress & Libechaber (1997, *Phys. Fluids*, 9)



## BL theory well describes NOB T<sub>c</sub> in experiment

BL theory assuming a laminar flow everywhere, ignoring the temperature dependence of  $\beta$ , determining unique  $T_c$  for given  $\Delta$ ,  $T_m$ ,  $\kappa(T)$  and  $\nu(T)$ .

# Questions

How consistent  $T_c$ -agreement for various Ra?

How to scale NOB Nu?

• Performing 2D direct simulations of NOB-RB convections in water and glycerol.

• Making comparisons with the BL theory and the available experimental data for  $T_c - T_m$  and  $Nu_{NOB} / Nu_{OB}$ .

# Simulation conditions

### 2D RB Flow



Periodic boundary

Mean temperature  $T_m (= (T_b + T_t)/2) = 40^{\circ} \text{C}$ •Prandtl number  $Pr = \frac{V_m}{\kappa_m}$ ,  $Pr_m = 4.398$  for water  $Pr_m = 2495$  for glycerol

## Parameter

•"Non-Boussinesquess"  $\Delta = T_b - T_t$ 

 $\Delta \le 60 K$  for water

 $\Delta \leq 50 K \quad \text{for glycerol}$ 

•Rayleigh number  $Ra = \frac{\beta_m g \Delta D^3}{V_m \kappa_m}$   $Ra_m \le 10^8 \quad \text{for water}$   $Ra_m \le 10^7 \quad \text{for glycerol}$ 

# Variations of material properties

|                          | $eta_b$ / $eta_t$ | $v_b / v_t$ | $\kappa_b / \kappa_t$ |
|--------------------------|-------------------|-------------|-----------------------|
| Water ( $\Delta$ =60K)   | 5                 | 0.3         | 1.14                  |
| Glycerol( $\Delta$ =50K) | 1.08              | 0.03        | 1.02                  |

# **Governing equations**

Continuity

 $\nabla \cdot \mathbf{u} = 0,$ 

**Navier-Stokes** 

$$\rho_m \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla \cdot \left\{ \rho_m \mathbf{v}(T) \left( \nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) \right\} + \rho_m g \left( 1 - \frac{\rho(T)}{\rho_m} \right) \mathbf{e}_y,$$
  
Heat transfer  
$$\rho_m c_{pm} \left( \frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla) T \right) = \nabla \cdot \left( \rho_m c_{pm} \kappa(T) \nabla T \right).$$

Simulation method

**4th-order FDM** (Highly energy conservative discretization by Kajishima *et al.*, 2001, *JSME Int. J. B*, 44)

Statistical convergence (sampling time)

(uncertainty of Nu) ~ about 0.1%



# Code validation (numerical convergence) Kinetic energy transport balance Water $Ra=10^8 \Delta=40$ K Production



Movie Water



 $Ra = 10^{7}$  $\Delta = 40 \text{K}$ 



NOB

#### **Temperature profile**



### Comparison with BL theory



### Comparison with BL theory



### Comparison with BL theory





# BL theory well describes NOB $T_c$ for $Ra >> Ra_c$

# How to scale NOB Nu?

#### Nusselt number ratio (Ahlers et al., 2006)



#### Nusselt number ratio (Ahlers et al., 2006)



Effect of non-Boussinesquess on  $Nu_{NOB}/Nu_{OB}$ 



Effect of non-Boussinesquess on  $Nu_{NOB}/Nu_{OB}$ 



#### Effect of non-Boussinesquess on $Nu_{NOB}/Nu_{OB}$



# $Nu_{NOB}/Nu_{OB}$ for water at $T_m = 40^{\circ}C$

consistent result among

- •Experiment ( $10^{8} < Ra < 10^{11}$ )
- •Simulation ( $Ra=10^8$ )
- • $F_2$  predicted by BL theory ( $F_1 = 1$ )

Universal for any fluid?



Effect of non-Boussinesquess on  $T_c - T_m$  Glycerol







Conclusions (2D simulation of NOB-RB convection)

Center temperature  $T_c$ 

•consistent with available experiments and BL theory. ("non-Boussinesquess"  $\Delta$ )

Nusselt number ratio  $Nu_{NOB}/Nu_{OB} = F_1 F_2$ 

•For water: dominated by  $F_2$  (change of  $T_c$ )

•For glycerol: dominated by  $F_1$  (change of thermal BL thickness)

 $F_1$ : dependent on material property. How to explain?