

SMR.1771 -31

Conference and Euromech Colloquium #480

on

High Rayleigh Number Convection

4 - 8 Sept., 2006, ICTP, Trieste, Italy

Power-Law scaling of Laminar natural convection with horizontal temperature gradient

H. Yu Los Alamos National Laboratory USA

These are preliminary lecture notes, intended only for distribution to participants

Power-law Scaling of Laminar Natural Convection with Horizontal Temperature Gradient

Huidan Yu, Ning Li, Robert E. Ecke Los Alamos National Laboratory, New Mexico, USA

Conference and Euromech Colloquium #480 on High Rayleigh Number Convection 4-8 September 2006, Miramare, Trieste, Italy

Outline

• Problem description

○ Numerical technique -- lattice Boltzmann method

O Power-law scaling and physical interpretation

○ Summary

Dimensionless Boussinesq Equations

$$\nabla \cdot \vec{u} = 0$$

$$\partial \vec{u} / \partial t + \vec{u} \cdot \nabla \vec{u} = -\nabla p + v_{d} \nabla^{2} \vec{u} + Ra Pr \Theta \hat{z}$$

$$\partial \Theta / \partial t + \vec{u} \cdot \nabla \Theta = \kappa_{d} \nabla^{2} \Theta$$

Control parameters:

Pr (= ν/κ) : Prandtl number

Ra (=GrPr=g β (T_h-T_l)L³/v κ): Rayleigh number

AR (=H/L): Aspect ratio

RBC vs LHC

Rayleigh-Bernard convection (vertical temperature gradient)

• Important in oceanography, geophysics, meteorology, astrophysics, energy process

- Paradigm system to study nonlinear physics, turbulence properties
- Much effort expended and significant insight gained in addressing fundamental aspects of heat transfer and flow characteristics
- Heat-transfer (Nu) /turbulence (Re) scaling with Ra, Pr, AR

Laterally heated convection (horizontal temperature gradient)

- Important in industrial and engineering applications
- Less attention from physics community
- Validation example to compare numerical algorithms
- Flow structure, temperature distribution, AR effect

— stop well short of physical fundamentals

Mesoscopic Computation Technique — Lattice Boltzmann Method $g_{\alpha}(\vec{x} + c\vec{e}_{\alpha}\delta t, t + \delta t) = g_{\alpha}(\vec{x}, t) - [g_{\alpha}(\vec{x}, t) - g_{\alpha}^{(eq)}(\vec{x}, t)]/\tau_{f} + \delta tF_{\alpha}$ $g_{\alpha}^{(eq)} = \lambda_{\alpha} p + s_{\alpha}(\vec{u}) \qquad \tau_{f} = 0.5 + \frac{v_{d}}{3c\delta x} \qquad Discrete \text{ buoyant force} \\ p = (\sum g_{\alpha} + s_{0}(\vec{u}))/\lambda_{0} \qquad \vec{u} = \sum c\vec{e}_{\alpha}g_{\alpha} \qquad \vec{F} = Ra \Pr \Theta \hat{z}$ $\Theta_{\alpha}(\vec{x} + c\vec{e}_{\alpha}\delta t, t + \delta t) = \Theta_{\alpha}(\vec{x}, t) - [\Theta_{\alpha}(\vec{x}, t) - \Theta_{\alpha}^{(eq)}(\vec{x}, t)] / \tau_{T}$ $\Theta_{\alpha}^{(eq)} = \Theta[\omega_{\alpha} + s_{\alpha}(\vec{u})] \qquad \tau_{T} = 0.5 + \frac{\kappa_{d}}{3c\delta x}$ $\Theta = \sum \Theta_{\alpha}$

 λ_a , s_a , ω_a are lattice related

Shi, et al, Prog. Comp. Fluid Dyn., 5, 50 (2005)

Validation: LBM vs. NS-based

	Values	Davis (bench-mark) (1983)	LBM (current)	Ismail (2000)) I (D & J (1983)	
Ra=10 ³	u _{max} (0.5,z)	3.65	3.64	3.65		3.59	
	Z	0.81 0.81		0.81		0.81	
	$w_{max}(x, 0.5)$	3.70	3.70	3.70		3.63	
	х	0.18	0.18	0.18		0.18	
	Nu	1.12	1.12	1.12		1.11	
	Values	Davis (bench-mark)	LBM	Ismail	Ding	D&J	
	Waluas				8		
	Values	(1983)	(current)	(2000)	(2004)	(1983)	
	Values u _{max} (0.5,z)	(1983) 16.18	(current) 16.15	(2000) 16.16	(2004) 16.06	(1983) 16.19	
$\mathbf{D} = 104$	Values u _{max} (0.5,z) Z	(1983) 16.18 0.82	(current) 16.15 0.82	(2000) 16.16 0.82	(2004) 16.06	(1983) 16.19 0.82	
Ra=10 ⁴	Values $u_{max}(0.5,z)$ z $w_{max}(x,0.5)$	(1983) 16.18 0.82 19.62	(current)16.150.8219.70	(2000) 16.16 0.82 19.83	(2004) 16.06 — 19.27	 (1983) 16.19 0.82 19.20 	
Ra=10 ⁴	Values $u_{max}(0.5,z)$ z $w_{max}(x,0.5)$ x	(1983) 16.18 0.82 19.62 0.12	(current)16.150.8219.700.12	(2000) 16.16 0.82 19.83 0.12	(2004) 16.06 — 19.27 —	 (1983) 16.19 0.82 19.20 0.13 	
Ra=10 ⁴	Values $u_{max}(0.5,z)$ Z $w_{max}(x,0.5)$ X Nu	(1983) 16.18 0.82 19.62 0.12 2.24	(current)16.150.8219.700.122.24	(2000) 16.16 0.82 19.83 0.12 2.26	(2004) 16.06 19.27 2.17	 (1983) 16.19 0.82 19.20 0.13 2.21 	

NNS

UNCLASSIFIED

Validation: LBM vs. NS-based(cont'd)

Ra=10 ⁵	Values	Davis (bench-mark)	LBM	Ismail	Ding	D&J
	u _{max} (0.5,z)	34.73	35.24	33.42	34.60	36.46
	z	0.86	0.85	0.85		0.85
	w _{max} (x,0.5)	68.59	69.10	70.44	69.18	62.79
	x	0.066	0.069	0.067		0.075
	Nu	4.52	4.50	4.65	4.58	4.45

	Values	Davis	Quéré (spectral)	LBM	Ismail	D&J
Ra=10 ⁶	u _{max} (0.5,z)	64.63	64.83	73.00	57.22	79.27
	z	0.85	0.85	0.85	0.87	0.86
	$w_{max}(x, 0.5)$	219	220	229	220	195
	х	0.038	0.038	0.042	0.045	0.045
4	Nu	8.8	8.8	9.0	8.9	9.0

UNCLASSIFIED

Steady Flow Structures (magnitude not scaled)

UNCLASSIFIED

Steady Temperature Contours

Thermally stratified, conduction dominates in thin boundary layers

Mean Inverse Boundary Layer Thickness

- TBL precedes VBL, true for Pr<1
- BL meaningless till fluid starts to stratify
- Nu grows faster than $(\lambda_{\theta})^{-1}$, conduction dominates, convection still contributes

Threshold Ra_t

Interpretation of 1/3 Power Law

 \bigcirc Ra < Ra. conduction

amos

 \bigcirc Ra_t = 440, convection takes place, stratification starts

- Mechanism, buoyancy? shear ?
- Relation with thermal boundary layer thickness?

 \bigcirc Higher enough Ra (stratified), boundary layer/core region apparent, significant horizontal temperature gradients are in two boundary layers with thickness λ

$$j_{heat} = (T_h - T_l) k / \lambda, \ j_{cond} = (T_h - T_l) k / L$$

Ra= g β (T_h-T_l)L³/v κ , Ra_t = g β (T_h-T_l) λ ³/v κ
Nu=j_{heat}/j_{cond} =L/ λ = (Ra/Ra_t)^{1/3} = 0.13Ra^{1/3}

•This work: Nu=0.134Ra^{0.305} (Ra 10^{3.5}-10⁷) •Turbulent RBC: Nu=0.134Ra^{0.309} (Ra 10⁶-10¹⁷) Niemela et al. *Nature* (2000)

Mixing length theory, Spiegel, Annu. Rew. Astron. Astrophys. (1971)

Summary: Factors Driven Near 1/3 Power-law

Nu ~ aRa^{β}

O Large scale circulation present

 \bigcirc Interior thermal stratification $\rightarrow \beta$

 \bigcirc Threshold Rayleigh number Ra_t identified \rightarrow a

○ More sophisticated or rigorous analysis

○ Nu dependency on AR

○ Nu dependency on Pr

O Power-law scaling in turbulent convection

• Experiments?

