

Energy Agency

SMR 1773 - 3

SCHOOL ON PHYSICS AT LHC: "EXPECTING LHC" 11 - 16 September 2006

> ELECTROWEAK PHYSICS AT LHC Part III

> Ulrich BAUR State University of New York at Buffalo NY-14260-1500 Buffalo, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Electroweak Physics at the LHC

- 1. Introduction to the Standard Model
- 2. Electroweak Measurements at the LHC I
- 3. Electroweak Measurements at the LHC II

Ulrich Baur

State University of New York at Buffalo

Electroweak Measurements at the LHC II

• Plan for today:

Di-boson production and weak boson self-couplings

Probing the weak couplings of the top quark at the LHC

• good references:

J. Ellison and J. Wudka, Ann. Rev. Nucl. Part. Sci. 48, 33 (1998)

☞ H. Aihara et al. hep-ph/9503425

UB et al. PRD71, 054013 (2005); PRD73, 034016 (2006)

Di-boson Production

- Physics interest:
 - \Leftrightarrow background to new physics searches (WW and ZZ production background to SM Higgs search)
 - probing weak boson self-interactions
- concentrate on the latter
- plan of action:
 - theory of weak boson self-couplings
 - probing weak boson self-couplings at the LHC
 - There are three vector boson couplings (eg. WWZ) and quartic couplings (eg. $WWZ\gamma$)
 - only consider three vector boson couplings here

Theory of Weak Boson Self-couplings

- one of the consequences of non-Abelian gauge theories are the selfinteractions of gauge bosons
- in QCD (SU(3) gauge theory) the gluon self-interactions lead to asymptotic freedom ($\alpha_s \rightarrow 0$ for $q^2 \rightarrow \infty$)
- gluon self-couplings:

$$\mathcal{L}_{self-int} = -rac{1}{4}G^a_{\mu
u}G^{a\mu
u}$$

where a = 1, ..., 8 and $(A^a_\mu$ is the gluon field)

 $G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f^{abc} A^b_\mu A^c_\nu$

 g_s : strong coupling constant f^{abc} : SU(3) antisymmetric structure constants

• this leads to three- and four-gluon vertices

- for electroweak interactions (SU(2)×U(1) gauge theory), one gets similar expressions with the SU(2) structure constants ϵ^{ijk}
- can rewrite everything in terms of the mass eigenstates W^{\pm} , Z and γ
- qualitative overview of three gauge boson couplings in the Standard Model:
 - $\Leftrightarrow WW\gamma$ and WWZ couplings are non-zero
 - There are no tree level couplings with neutral gauge bosons, ie. $Z\gamma\gamma$, $ZZ\gamma$ and ZZZ couplings all vanish

General $WW\gamma$ and WWZ Couplings

- If we want to test the SU(2)×U(1) gauge theory, we have to go beyond and generalize the WWV ($V = \gamma, Z$) couplings
- The most general effective Lagrangian consistent with electromagnetic gauge invariance and Lorentz invariance is

$$\begin{split} i\mathcal{L}_{eff}^{WWV} &= g_{WWV} \left[g_{1}^{V} \left(W_{\mu\nu}^{\dagger} W^{\mu} - W^{\dagger \mu} W_{\mu\nu} \right) V^{\nu} + \kappa_{V} W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} \right. \\ &+ \frac{\lambda_{V}}{m_{W}^{2}} W_{\rho\mu}^{\dagger} W^{\mu}{}_{\nu} V^{\nu\rho} - g_{4}^{V} W_{\mu}^{\dagger} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) \\ &+ i g_{5}^{V} \varepsilon_{\mu\nu\rho\sigma} \left((\partial^{\rho} W^{\dagger \mu}) W^{\nu} - W^{\dagger \mu} (\partial^{\rho} W^{\nu}) \right) V^{\sigma} \\ &+ i \tilde{\kappa}_{V} W_{\mu}^{\dagger} W_{\nu} \tilde{V}^{\mu\nu} + i \frac{\tilde{\lambda}_{V}}{m_{W}^{2}} W_{\rho\mu}^{\dagger} W^{\mu}{}_{\nu} \tilde{V}^{\nu\rho} \right] . \\ W_{\mu\nu} &= \partial_{\mu} W_{\nu} - \partial_{\nu} W_{\mu}; \text{ same for } V_{\mu\nu}; \tilde{V}_{\mu\nu} = (1/2) \epsilon_{\mu\nu\rho\sigma} V^{\rho\sigma} \\ g_{WW\gamma} &= e; g_{WWZ} = e \cot \theta_{W} \end{split}$$

• In the SM:

$$g_1^Z = g_1^\gamma = \kappa_Z = \kappa_\gamma = 1,$$

 $\lambda_Z = \lambda_\gamma = g_4^V = g_5^Z = g_5^\gamma = \tilde{\kappa}_V = \tilde{\lambda}_V = 0$

• g_1^V , κ_V and λ_V respect charge conjugation (C) and parity (P)

- g_4^V and g_5^V violate C invariance
- g_4^V , $\tilde{\kappa}_V$ and $\tilde{\lambda}_V$ violate CP invariance
- for on-shell photons: $g_1^{\gamma} = 1$ (electric charge of W), $g_4^{\gamma} = g_5^{\gamma} = 0$ (em gauge invariance)
- higher dimensional operators do not lead to a new Lorentz structure
- they can be taken into account by allowing the couplings g_1^V , κ_V etc. to be energy dependent so-called form factors

 the WWγ couplings are related to the static moments of the W (μ_W (d_W): (magnetic (electric) dipole moment; q_W (q̃_W) electric (magnetic) quadrupole moment)

$$\mu_W = \frac{e}{2m_W} \left(g_1^{\gamma} + \kappa_{\gamma} + \lambda_{\gamma} \right) , \qquad d_W = \frac{e}{2m_W} \left(\tilde{\kappa}_{\gamma} + \tilde{\lambda}_{\gamma} \right) ,$$
$$q_W = -\frac{e}{m_W^2} \left(\kappa_{\gamma} - \lambda_{\gamma} \right) \qquad \tilde{q}_W = -\frac{e}{m_W^2} \left(\tilde{\kappa}_{\gamma} - \tilde{\lambda}_{\gamma} \right) .$$

• Unitarity requires weak boson self-couplings to be of SM form at high energies

Sidebar: Unitarity

• Consider $2 \rightarrow 2$ elastic scattering. Differential cross section (Ω is solid angle; *s* squared center of mass energy)

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{M}|^2$$

 \mathcal{M} : amplitude

• expand in terms of Legendre polynomials (form a complete set): partial wave decomposition

$$\mathcal{M} = 16\pi \sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) a_l$$

 θ : scattering angle; a_l : spin l partial wave

• the P_l are orthonormal, so

$$\sigma = \frac{16\pi}{s} \sum_{l=0}^{\infty} (2l+1)|a_l|^2$$

• now we invoke the optical theorem:

which implies

$$\sigma = \frac{1}{s} Im[\mathcal{M}(\theta = 0)]$$

(proof only requires conservation of probability) and get:

$$Im(a_l) = |a_l|^2$$
 $|Re(a_l)| \leq rac{1}{2}$

- amplitudes which grow with the parton center of mass energy $\sqrt{\hat{s}}$ violate unitarity at some energy scale
- example: terms proportional to κ_{γ} and λ_{γ} in $q\bar{q}' \to W\gamma$ amplitude $\mathcal{M}_{\lambda^{\gamma}\lambda^{W}}(\lambda^{\gamma,W}:\gamma(W))$ polarization; Θ : scattering angle):

$$\Delta \mathcal{M}_{\pm 0} = \frac{e^2}{\sin \theta_W} \frac{\sqrt{\hat{s}}}{2m_W} \left[\kappa_\gamma - 1 + \lambda_\gamma \mp i(\tilde{\kappa}_\gamma + \tilde{\lambda}_\gamma) \right] \frac{1}{2} (1 \mp \cos \Theta)$$

$$\Delta \mathcal{M}_{\pm \pm} = \frac{e^2}{\sin \theta_W} \frac{\hat{s}}{2m_W^2} \left[\lambda_\gamma \mp i\tilde{\lambda}_\gamma \right] \frac{1}{\sqrt{2}} \sin \Theta ,$$

- if κ , λ etc. is a constant, it must have SM value
- or, they are momentum dependent form factors which $\rightarrow 0$ for $\hat{s} \rightarrow \infty$ example:

$$\lambda_{\gamma}(\hat{s}) = \frac{\lambda_{\gamma}(0)}{(1 + \frac{\hat{s}}{\Lambda^2})^2}$$

where the form factor scale Λ is the scale of new physics (which is responsible for the anomalous weak boson self-couplings)

- this picture is similar to the proton form factor where $\Lambda^2 = 0.71 \text{ GeV}^2$ is $\mathcal{O}(\Lambda_{QCD})$.
- special case: imposing $SU(2) \times U(1)$ symmetry:

$$g_1^Z - 1 = \frac{1}{2\cos^2 \theta_W} (\kappa_\gamma - 1),$$

$$\kappa_Z - 1 = \frac{1}{2} (1 - \tan^2 \theta_W) (\kappa_\gamma - 1),$$

$$\lambda_Z = \lambda_\gamma.$$

all other couplings vanish

- what about higher order corrections in the SM? They either have to vanish, or lead to a form factor which $\rightarrow 0$ for $\hat{s} \rightarrow \infty$
- higher order corrections to the gauge boson self-couplings in the SM lead to a form factor. The form factor scale Λ is the mass of the heaviest particle in the loop, usually either the top quark, or the Higgs boson

Neutral Weak Boson Couplings

- appear in $Z\gamma$ and ZZ production
- there are $4 ZZ\gamma$, h_i^Z (i = 1, ..., 4), and $4 Z\gamma\gamma$ couplings, h_i^{γ} , which contribute to $q\bar{q} \rightarrow Z\gamma$
- $h_{1,3}$ ($h_{2,4}$) correspond to dimension 6 (8) terms in the Lagrangian
- $h_{1,2}$ ($h_{3,4}$) violate (conserve) CP
- the $Z\gamma\gamma$ vertex function vanishes if both photons are on-shell (Yang's theorem)
- there are also 2 ZZZ ($f_{4,5}^Z$) and 2 ZZ γ couplings ($f_{4,5}^\gamma$) contributing to $q\bar{q} \rightarrow ZZ$
- all these couplings have to be form factors which $\rightarrow 0$ for $\hat{s} \rightarrow \infty$ to avoid violation of unitarity

Measuring the Weak Boson Self-interactions

- di-boson production at e^+e^- or hadron colliders
- e⁺e⁻ and hadron colliders test complementary aspects of anomalous gauge boson couplings:
 - In e⁺e[−] collisions, one probes the structure of the amplitude (ie. its dependence on the scattering angle) at a fixed energy example $e^+e^- → W^+W^-$:

*a*t a hadron collider, one probes the high energy behavior of the amplitude: the incoming quarks carry only a fraction of the (anti)proton momentum with a probability distribution given by the PDF example (form factor scale $\Lambda = 1$ TeV):

- different processes are sensitive to different couplings $@W^+W^-$ production: $WW\gamma$ and WWZ couplings
 - $\Leftrightarrow W\gamma (WZ)$ production: $WW\gamma (WWZ)$ couplings only
 - $rightarrow Z\gamma$ production: $ZZ\gamma$ (h_1^Z) and $Z\gamma\gamma$ couplings
 - rightarrow ZZ production: ZZZ and $ZZ\gamma$ (f_i^Z) couplings
- backgrounds at the LHC:
 - Vj (V = W, Z) with jet "faking" photon in $V\gamma$ production (manageable)
 - $rac{}{}$ $\bar{t}t$ production in W^+W^- production (impose jet veto)
 - rightarrow Vjj production in $pp \rightarrow WW$, WZ and ZZ if one weak boson decays hadronically (usually very large; require both weak bosons to decay leptonically)

QCD corrections to Di-boson Production

- QCD corrections to di-boson production become very large at high energies, especially for $W\gamma$ and WZ production
- two reasons:
 - $<\!\!\!>$ there is a logarithmic enhancement factor in $qg \rightarrow W\gamma q'$ and $qg \rightarrow WZq'$
 - The SM LO $W\gamma$ (WZ) cross section is suppressed by a (approximate) radiation zero which is due to destructive interference between the contributing Feynman diagrams
- radiation zero in $q_1\bar{q}_2 \to W^{\pm}\gamma$: the amplitude vanishes for

```
\cos\Theta = \pm \frac{1}{3}
```

 Θ : scattering angle of W w/r to q_1 direction in the $W\gamma$ rest frame

• the approximate radiation zero in $W^{\pm}Z$ production is at

$$\cos\Theta = \mp \frac{1}{3} \tan^2 \theta_W \approx \mp 0.1$$

- the amplitude zeros only occur in the SM; anomalous $WW\gamma$ or WWZ couplings destroy it
- it should be possible to see the $W\gamma$ zero at the Tevatron as a dip in the

 $\Delta y = y(\gamma) - y(l)$

distribution. y is the rapidity, which, for massless particles is related to the scattering angle by

 $y = -\frac{1}{2}\log\left(\tan\frac{\theta}{2}\right)$

- there are not enough WZ events to see the approximate zero at the Tevatron
- at the LHC, QCD corrections essentially wash out any sign of the zeros.

• the log enhancement is not present in diagrams with the $WW\gamma/WWZ$ vertex

→ QCD corrections substantially reduce sensitivity to anomalous couplings

however: at high p_T, most events have a hard jet
 → a jet veto helps to get the QCD under control and restore sensitivity to anomalous couplings

example: no jets with $p_T(j) > 50 \text{ GeV}$

Present and Future Limits on Anomalous Couplings

- LEP II results: limits for g_1^Z , κ_{γ} , λ_{γ} (assuming $\lambda_{\gamma} = \lambda_Z$, $\kappa_Z = g_1^Z (\kappa_{\gamma} 1) \tan^2 \theta_W$) from $e^+e^- \to W^+W^$
 - $g_1^Z = 0.984^{+0.022}_{-0.019} \quad \text{SM} : g_1^Z = 1$ $\kappa_{\gamma} = 0.973^{+0.044}_{-0.045} \quad \text{SM} : \kappa_{\gamma} = 1$ $\lambda_{\gamma} = -0.028^{+0.020}_{-0.021} \quad \text{SM} : \lambda_{\gamma} = 0$
- sample Tevatron Run II result: first direct limits on WWZ couplings from WZ → 3 leptons production (DØ, 0.3 fb⁻¹, Λ = 1.5 TeV, 95% CL)

 $-0.48 < \lambda_Z < 0.48$ $\kappa_Z = g_1^Z = 1$ $0.51 < g_1^Z < 1.66$ $\lambda_Z = \kappa_Z - 1 = 0$

• limits scale roughly like $(\int \mathcal{L} dt)^{1/4}$

→ expect bounds on $WW\gamma$, WWZ couplings in the range of 0.15 – 0.45 for 2 fb⁻¹ in Run II

- LHC: rule of thumb: limits for λ (κ, g₁^Z) are in the 10⁻³ (10⁻²) range, with a significant dependence on Λ improvement up to a factor 10 over LEPII results
- neutral gauge boson couplings

 \Leftrightarrow example: $Z\gamma\gamma$ and ZZg couplings from LEP and DØ:

$-0.13 < h_1^Z < 0.13$	$-0.23 < h_{\rm l}^Z < 0.23$
$-0.078 < h_2^Z < 0.071$	$-0.02 < h_2^Z < 0.02$
$-0.20 < h_3^Z < 0.07$	$-0.23 < h_3^Z < 0.23$
$-0.05 < h_4^Z < 0.12$	$-0.019 < h_4^Z < 0.019$

$-0.056 < h_1^{\gamma} < 0.055$	$-0.23 < h_1^{\gamma} < 0.23$
$-0.045 < h_2^{\gamma} < 0.045$	$-0.02 < h_2^{\gamma} < 0.02$
$-0.049 < h_3^{\gamma} < 0.008$	$-0.23 < h_3^{\gamma} < 0.23$
$-0.002 < h_4^{\gamma} < 0.034$	$-0.019 < h_4^{\gamma} < 0.019$

at the end of Run II bounds will be about a factor 2 better

at the LHC one can reach the 10⁻³ (10⁻⁴) range for $h_{1,3}^V$ ($h_{2,4}^V$)
 with strong dependence on Λ

• ZZZ and $ZZ\gamma$ couplings in ZZ production: \sim only results from LEPII so far (95% CL):

 $\begin{array}{ll} -0.17 < f_4^{\gamma} < 0.19 & -0.30 < f_4^Z < 0.28 \\ -0.34 < f_5^{\gamma} < 0.38 & -0.36 < f_5^Z < 0.38 \end{array}$

 Run II expectation for 2 fb⁻²: about a factor 2 improvement over LEPII limits is possible

 \checkmark LHC: one can reach the 10^{-3} level

Measuring the $tt\gamma$ and ttZ couplings at the LHC

- the top quark was discovered 11 years ago, but we know little about its coupling to weak bosons
- focus on $tt\gamma$ and ttZ couplings here
- The most general ttV ($V = \gamma, Z$) vertex function (for on-shell V) can be written in terms of 8 form factors

☞ for on-shell top quarks 4 form factors remain:

$$\Gamma^{ttV}_{\mu}(s, q, \bar{q}) = -ie \left\{ \gamma_{\mu} \left(F^{V}_{1V}(s) + \gamma_{5} F^{V}_{1A}(s) \right) + \frac{\sigma_{\mu\nu}}{2m_{t}} \left(q + \bar{q} \right)^{\nu} \left(iF^{V}_{2V}(s) + \gamma_{5} F^{V}_{2A}(s) \right) \right\}$$

 m_t : top quark mass; $q\ (\bar{q})$: $t\ (\bar{t})$ four momenta $\sigma_{\mu\nu} = (i/2)[\gamma_{\mu}, \gamma_{\nu}]$

- → $F_{1V}^V(F_{1A}^V)$ are the vector (axial vector) form factors
- → F_{2V}^{γ} is related to the anomalous magnetic moment: $F_{2V}^{\gamma}(0) = Q_t (g-2)/2, Q_t = 2/3$
- → F_{2A}^V violates CP and is related to electric (weak) dipole moment: $d_t^V = (e/2m_t)F_{2A}^V(0)$
- concentrate on these 4 form factors here
- present bounds:

 $<\!\!\!> b \rightarrow s\gamma$ data weakly constrain $F_{2V,A}^{\gamma}$: $-0.2 < F_{2V}^{\gamma} < 0.5,$ $|F_{2A}^{\gamma}| < 4.5$

rightarrow LEP data indirectly constrain $F_{1V,A}^Z$ but not $F_{1V,A}^\gamma$

- The ILC promises to determine F^V_{iV,A} with a precision of a few percent in e⁺e⁻ → tt̄ for √s = 500 GeV and 200 fb⁻¹ disadvantage: difficult to disentangle ttγ and ttZ couplings
- LHC:
 - \Leftrightarrow consider $t\bar{t}\gamma$ and $t\bar{t}Z$ production
 - \Leftrightarrow can separate $tt\gamma$ and ttZ couplings

$t\bar{t}\gamma$ Production at the LHC

- concentrate on $\ell^{\pm}\nu jjb\bar{b}\gamma$ final state and require 2 tagged b's
- signal:
 - impose cuts to suppress photon radiation off b-quarks and W decay products
 - \Leftrightarrow impose invariant mass and m_T cuts on bjj, $bjj\gamma$, $\ell\nu b\gamma$ and $\ell\nu b$ requiring them to be consistent with coming from top decay
- backgrounds:
 - $\gg W^{\pm} \gamma b \overline{b} j j$ production (non-resonant diagrams contributing to final state)
 - $\sim t\bar{b}\gamma jj, t\bar{b}\gamma jj, t\bar{b}\gamma \ell^- \bar{\nu}$ and $\bar{t}b\gamma \ell^+ \nu$ production (single resonant diagrams contributing to final state)

- determine sensitivity limits from χ^2 fit to $p_T(\gamma)$ distribution, assuming a 30% normalization uncertainty of the SM cross section
 - rightarrow can constrain $tt\gamma$ vector and axial vector couplings to O(10%) with 30 fb⁻¹, and to a few % with 300 fb⁻¹
 - rightarrow can constrain F_2^{γ} type couplings to O(30%) with 30 fb⁻¹, and to O(15%) with 300 fb⁻¹

$t\bar{t}Z$ Production at the LHC

- $Z \to \ell^+ \ell^-$ and $t\bar{t} \to \ell^\pm \nu b\bar{b}jj$
- $rightarrow Z
 ightarrow \ell^+ \ell^-$ and $t\bar{t}
 ightarrow b\bar{b} + 4$ jets

- $t\bar{t}Z$ cross section smaller than $t\bar{t}\gamma$ cross section: need more integrated luminosity
 - Can constrain ttZ vector (axial vector) couplings to 35 75%(10%) with 300 fb⁻¹, and to 16 - 55% (3%) with 3000 fb⁻¹ (SuperLHC (SLHC): 10× LHC luminosity)
 - ⇐ can constrain F_2^Z type couplings to O(40%) with 300 fb⁻¹, and to O(25%) with 3000 fb⁻¹

- Why is it of interest to measure the ttZ couplings?
- many models of new physics predict anomalous *ttZ* couplings (in addition to new particles etc.)
- Models such as top-seesaw models and Little Higgs models have an up-type quark singlet χ
 - $\ll \chi$ and the top quark mix
 - \sim which in turn changes the coupling of the lefthanded top quark to the Z boson:

$$\Delta F_{1V}^Z = -\Delta F_{1A}^Z = F_{1A}^{Z,SM} \sin^2 \theta_L$$

where θ_L is the $\chi_L - t_L$ mixing angle

• Bounds achievable at the (S)LHC:

 $\sin^2 \theta_L < 0.084 (0.16) \qquad \text{at } 68.3\% (95\%) \text{ CL for } 300 \text{ fb}^{-1} \\ \sin^2 \theta_L < 0.030 (0.06) \qquad \text{at } 68.3\% (95\%) \text{ CL for } 3000 \text{ fb}^{-1}$

• A more concrete example: SU(5)/SO(5) Littlest Higgs model with *T*-parity:

$$\sin^2 heta_L = rac{\lambda_T^2 v^2}{2m_T^2}$$

where $v \approx 246$ GeV, $m_T = \text{mass of heavy top quark partner}$, T, $(\simeq \chi)$ and $\lambda_T = tTh$ coupling (h = Higgs boson)

 $\frac{m_T}{\lambda_T} > 600 (430) \,\text{GeV} \quad \text{at } 68.3\% (95\%) \,\text{CL for } 300 \,\text{fb}^{-1}$ $\frac{m_T}{\lambda_T} > 1000 (710) \,\text{GeV} \quad \text{at } 68.3\% (95\%) \,\text{CL for } 3000 \,\text{fb}^{-1}$

- The LHC will be able to find a T quark if $m_T \leq 2$ TeV (ATLAS study)
- measuring the ttZ couplings gives information on λ_T