

SMR 1773 - 14

SCHOOL ON PHYSICS AT LHC: "EXPECTING LHC" 11 - 16 September 2006

LHC: Machine and Detectors (LHC Collider and Experiments) Part I

Albert DE ROECK C.E.R.N. European Organization for Nuclear Research CH-1211 Geneva 23, Switzerland

These are preliminary lecture notes, intended only for distribution to participants.

LHC Collider and Experiments

Albert De Roeck/CERN ICTP 11-16/09/06

The Abdus Salam International Centre for Theoretical Physics

The LHC is Coming!

Lecture Plan

- The LHC Collider
 - Introduction to the LHC
 - Experimental challenges
- The ATLAS and CMS experiments
- The specialised experiments
 - The LHCb experiment
 - The ALICE experiment
 - The forward experiments (TOTEM, LHCf) and MOEDAL
- Startup scenarios and first physics at the LHC

High Energy Accelerators

- Accelerators are the tools in HEP to probe the structure of matter and fundamental interactions
- Up to now: acceleration of stable particles (& anti particles)
 Protons and electrons
 - (pion, neutrino etc. beams are secondary beams)
- Mostly circular machines, to use the beams for long time (hours...)
- Proton: limited by bending power of dipole magnets in the ring
 - Stronger magnets (superconducting) \rightarrow higher energies reachable
- Electrons: limited by synchrotron radiation = energy loss on circular path
 - loss per turn ~ 88.5 E⁴/Radius KeV (E in GeV, R in meters)
 - LEP = 27.5 circumference \rightarrow Max 100 GeV beams
- Future for leptons
 - Linear colliders \rightarrow beams up to 1 -2 TeV
 - Muon colliders? Energy loss per turn is $(m_e/m_{\mu})^4$ smaller!

High Energy Accelerators

Highest energies can be reached with proton colliders

Historical note: 1954 APS meeting \rightarrow E. Fermi considered a proton Livingston plot accelerator around the earth 10¹⁸ (SSC) >with 2T field magnets l LHC hadronic accelerators E Fermi (Colliders) e< 10^{15} TeVATRON The fixed target energy would be SPPS E_{max} =5.10¹⁵ eV, and the price equivalent beam ener 170 billion \$, reached in 1994. (DStrong Focus Synchrotrons) ak Focus Synchrotrons) 10^{9} Actually the Tevatron (Fermilab) ⊕Linacs) collider reached E_{max} =2.10¹⁵ eV in Electrostatic Generators) Cyclotrons O(ORectifier Generators 1987 but with a radius of 1 km 106 1920 1940 1960 1980 2000 2020 year LHC will reach E_{max}=1.10¹⁷ eV

in 2007 for about 4 billion CHF

Innovative accelerator R&D needed

Recent Accelerators

Highest energies can be reached with proton colliders

'ear	Beams	Energy (√s)	Luminosity
981	рр	630-900 GeV	6.10 ³⁰ cm ⁻² s ⁻¹
987	рр	1800-2000 GeV	10 ³¹ -10 ³² cm ⁻² s ⁻¹
989	e⁺e⁻	90 GeV	10 ³⁰ cm ⁻² s ⁻¹
989	e⁺e⁻	90-200 GeV	10 ³¹ -10 ³² cm ⁻² s ⁻¹
992	ep	300 GeV	10 ³¹ -10 ³² cm ⁻² s ⁻¹
2000	pp/AA	200-500 GeV	10 ³² cm ⁻² s ⁻¹
2007/8	pp (AA)	14000 GeV	10 ³³ -10 ³⁴ cm ⁻² s ⁻¹
	201 981 987 989 989 992 992 900 000 007/8	Beams 981 pp 987 pp 987 pp 989 e*e ⁻ 989 e*e ⁻ 992 ep 000 pp /AA 007/8 pp (AA)	PairBeamsEnergy (VS) 981 pp $630-900 \text{ GeV}$ 987 pp $1800-2000 \text{ GeV}$ 989 $e^+e^ 90 \text{ GeV}$ 989 $e^+e^ 90-200 \text{ GeV}$ 992 ep 300 GeV 992 ep 300 GeV $907/8$ pp (AA) 14000 GeV

Luminosity = number of events/cross section/sec

- Limits on circular machines
 - Proton colliders: Dipole magnet strength \rightarrow superconducting magnets
 - Electron colliders: Synchrotron radiation/RF power

LHC Physics Program

- Discover or exclude the Higgs in the mass region up to 1 TeV. Measure Higgs properties
- Discover Supersymmetric particles (if exist) up to 2-3 TeV
- Discover Extra Space Dimensions, if these are on the TeV scale, and black holes?
- Search other new phenomena (e.g. strong EWSB, new gauge bosons, Little Higgs model, Split Supersymmetry)
- Study CP violation in the B sector, B physics
- Precision measurements of m_{top} , m_W , anomalous couplings...
- Heavy ion collisions and search for quark gluon plasma
- QCD and diffractive (forward) physics in a new regime

7

Physics at the LHC: pp @ 14 TeV

The LHC will be the new collider energy frontier

Requirements for a new collider

Example: Higgs particle production

Hadron colliders are broad-band exploratory machines May need to study W_1 - W_1 scattering at a cm energy of ~ 1 TeV

9

The Large Hadron Collider LHC

E540 - V10/09/97

The Large Hadron Collider (LHC)

Layout of the LEP tunnel including future LHC infrastructures.

The Accelerator scheme

LHC Parameters

LHC design report

Table 2.1: LHC beam parameters relevant for the peak luminosity

		Injection	Collision		
Beam Data					
Proton energy	[GeV]	450	7000		
Relativistic gamma		479.6	7461		
Number of particles per bunch		$1.15 imes 10^{11}$			
Number of bunches		2808			
Longitudinal emittance (4σ)	[eVs]	1.0	2.5^{a}		
Transverse normalized emittance	[µm rad]	3.5^{b}	3.75		
Circulating beam current	[A]	0.582			
Stored energy per beam	[MJ]	23.3 362			
Peak Luminosity Related Data					
RMS bunch length ^c	cm	11.24	7.55		
RMS beam size at the IP1 and $IP5^d$	μ m	375.2	16.7		
RMS beam size at the IP2 and $IP8^e$	μ m	279.6	70.9		
Geometric luminosity reduction factor F ^f		-	0.836		
Peak luminosity in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	1.0×10^{34}		
Peak luminosity per bunch crossing in IP1 and IP5	$[\mathrm{cm}^{-2}\mathrm{sec}^{-1}]$	-	$3.56 imes10^{30}$		

Magnets for the LHC (part of them)

		No. of Magnets	Aperture
Dipole	MB	1232	twin
Lattice quadrupoles	MQ	392	twin
Lattice sextupoles	MS	688	single
Lattice Octupoles	MO	168	twin
Skew quad	MQS	32	twin
Arc skew sext	MSS	64	single
Tuning trim quad	MQT	160	twin
Octupole spool pieces	MCO	1232	single
Decapole spool pieces	MCD	1232	single
Sextupole corrector (b3) in MBA & MBB (spool piece corrector)	MCS	2464	single
Insertion region long trim quads	MQTLI	36	twin
Arc dipole corrector	МСВН	376	single
Arc dipole corrector	MCBV	376	single
Twin aperture separation dipole in IR (194mm). D4 Twin Aperture Separation	MBRB	About 9000 magnets of which 1232 are the cryodipoles	twin
dipole in IR(188mm). D2	MBRC	8	twin

The Cryodipole Magnets

- •Superconducting (1.9 K) dipoles producing a field of 8.4 T current 11,700A \Rightarrow 2-in-1 magnet design
- Cost: ~ 0.5 million CHF each. Need 1232 of them
- Stored magnetic energy up to 1.29 GJ per sector.
- Total stored energy in magnets = 11GJ
- One dipole weighs around 34 tonnes

The Cryodipoles

LHC DIPOLE : STANDARD CROSS-SECTION

Cryogenics

The QRL Cryoline problems caused a lot of headaches in 2004.

Dipoles: Waiting to be lowered after QRL repair Parking space @ CERN was getting sparse

Cryogenics

LHC uses superfluid helium, which has unusually efficient heat transfer properties, allowing kilowatts of refrigeration to be transported over more than a kilometer with a temperature drop of less than 0.1 K. LHC superconducting magnets will sit in a 1.9 K bath of superfluid helium at atmospheric pressure. In all, LHC cryogenics will need 40,000 leak-tight pipe junctions, 12 million litres of liquid

Conclusions from Lyn Evans' recent presentation at the CERN Scientific Policy Committee, on 12th December 2005

(Available via the official LHC Web: http://lhc.web.cern.ch/lhc/)

All key objectives have been reached for the end of 2005

- End of repair of QRL, reinstallation of sector 7-8 and cold test of sub -sectors A and B
- Cool-down of full sector 8-1
- Pressure test of sector 4-5
- Endurance test of full octant of power converters

Magnet installation rate is now close to 20/week, with more than 200 installed

This, together with interconnect work, will remain the main bottleneck until the end of installation

Cryoline tests

First 600 m of cryoline (QRL) successfully cooled down on 14/9/2005, followed by cool-down of full cryoline sector 8-1 and pressure test of sector 4-5.

Instaling of the Dipoles

- First dipole lowered in March 2005
- The 616th dipole out of a total of 1232 was installed at 3 a.m on Wednesday 12 July 06. Half way!
- Octant 7-8 will be cooled down and tested before the end of the year

Around the clock activity

The LHC Progress & Schedule

Crucial part: 1232 superconducting dipoles Can follow progress on the LHC dashboard http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/

The LHC Schedule^(*)

LHC will be closed and set up for beam on 1 September 2007 LHC commissioning will take time!
First collisions expected in November 2007 Followed by a short pilot run Collisions will be at injection energy ie cms of 0.9 TeV
First physics run in 2008 ~1 fb⁻¹? 14TeV!
Physics run in 2009 +... 10-20 fb⁻¹/year ⇒100 fb⁻¹/year

More details on the schedule in the last lecture

(*) eg. M. Lamont et al, April 2005. Achtung! Lumi estimates are mine, not from the machine Includes updates from Jujne 06 22

Data provided by D. Tommasini AT-MAS, L. Bottura AT-MTM

More details on the schedule in the last lecture

Expected LHC operation Cycle

24

Some Impressions

Dipole interconnection is a tedious and time consuming job

LHC is more than just dipoles...

Straight Sections

The sections that deliver the beam to the experiment are straight and use room temperature magnets

LHCf

Experiments at the LHC

Detectors at Accelerators

Particle Detection: What we "see" as particles:

For "stable particles" of life time $\geq 10^{-10}$ s:

Example: The CMS experiment

Particles in the detector

How to search for new particles?

Kinematic Variables for pp and ep (ee)

- Transverse momentum, p_T and $E_T = E \sin \theta$
 - Particles that escape detection (0) have $p_T=0$
 - Visible transverse momentum =0
 - Very useful variable!
- Longitudinal momentum and energy, p_z and E
 - Particles that escape detection have large p_z
 - Visible p_z is not conserved
 - Not so useful variable
- Angle:
 - Polar angle $\boldsymbol{\theta}$ is not Lorentz invariant
 - Rapidity: y
 - Pseudorapidity: η

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

For M=0

$$y=\eta=-\ln(\tan\frac{\theta}{2})$$

- Missing $E_{\rm T}$ and $P_{\rm T}$

Challenges for Experiments at the LHC

Cross sections at the LHC

Proton-proton collisions

Most interactions due to collisions at <u>large distance</u> between incoming protons where protons interact as " a whole " \rightarrow <u>small momentum transfer</u> ($\Delta p \approx \hbar / \Delta x$)

→transverse momentum (scattering at large angle is small)

 $< p_T > \approx 500 \text{ MeV}$ of charged particles in final state Most energy escapes down the beam pipe.

These are called minimum-bias events (" soft " events)..

pp cross section and min. bias

- # of interactions/crossing:
 - Interactions/s:
 - Lum = 10^{34} cm⁻²s⁻¹= 10^{7} mb⁻¹Hz
 - □ σ(pp) = 70 mb
 - Interaction Rate, $R = 7 \times 10^8 \text{ Hz}$
 - Events/beam crossing:
 - $\Box \Delta t = 25 \text{ ns} = 2.5 \times 10^{-8} \text{ s}$
 - Interactions/crossing=17.5
 - Not all p bunches are full
 - Approximately 4 out of 5 (only) are full
 - Interactions/"active" crossing = 17.5 x 3564/2808 = 23

Operating conditions (summary):

- 1) A "good" event containing a Higgs decay +
- 2) \approx 20 extra "bad" (minimum bias) interactions

σ(pp)≈70 mb^(*)

(*)Non-diffractive cross section

pp collisons : complications

Proton -(anti) Proton colliders Discoveries are possible

Discovery of the Z and W bosons in UA1/UA2 (1983)

Collaboration includes Helsinki Univ.

'Picture' of the first

$$pp \rightarrow Z + X$$
$$\rightarrow e + e - + X_{-}$$

event in the UA1 detector at the SppS, for a centre of mass energy $(\sqrt{s}) = 630 \text{ GeV}$

(30/4/1983) Success story of the SppS machine at CERN rebuilt from a fixed target machine to a collider

Discovery of the Top Quark

Recent Steps The Last Quark

Part100/407 1050B

Top Quark discovered at Fermilab

1994 Top mass 174 +/- 5 GeV

i.e. this quark is as heavy as a gold nucleus

In 2000: also the Tau-neutrino was seen directly (DONUT exp. at FNAL)

All 3 families in the SM are now complete

Pile-up at the LHC

Pile-up \Rightarrow additional -mostly soft- interactions per bunch crossingStartup luminosity $2 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1} \Rightarrow 4$ events per bunch crossingHigh luminosity $10^{34} \text{cm}^{-2} \text{s}^{-1} \Rightarrow 20$ events per bunch crossingLuminosity upgrade $10^{35} \text{cm}^{-2} \text{s}^{-1} \Rightarrow 200$ events per bunch crossing

SUSY event (no pileup)

SUSY event $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$

How to find the interesting signals

This event contains pp \rightarrow H+X, with $H \rightarrow ZZ \rightarrow \mu \mu \mu \mu$ $\searrow X \sim 100$ charged particles

All tracks shown

Only tracks with transverse momentum > 2 GeV shown

Large Event rates

Process	Events/s	Events/year	Other machines
$W \rightarrow e \nu$	15	108	10 ⁴ LEP / 10 ⁷ Tev
$Z \rightarrow ee$	1.5	107	10 ⁷ LEP
$t\bar{t}$	0.8	107	10 ⁴ Tevatron
$b\overline{b}$	10 ⁵	1012	10 ⁸ Belle/BaBar
$\widetilde{g}\widetilde{g}$ (m=1 TeV)	0.001	104	
H (m=0.8 TeV)	0.001	104	
QCD jets $p_T > 200 \text{ GeV}$	10 ²	109	107

```
Huge event rates:
(10<sup>33</sup>cm<sup>-2</sup> s<sup>-1</sup>)
```

```
The LHC will be
a W-factory, a
Z-factory, a top
factory, a Higgs
factory etc..
```

Precision EW physics will be limited by systematics

Event filtering: the trigger system

Collision rate is 40 MHz Event size ~1 Mbyte 2007 technology (and budget) allows only to write 100 Hz of events to tape need a factor ~10⁷ online filtering!!

The event trigger is one of the biggest challenges at the LHC \Rightarrow Based on hard scattering signatures: jets, leptons, photons, missing Et,...

Example: CMS HLT trigger table

Trigger	Threshold	Rate	Cumulative Rate	CHIC DAO
	(GeV or GeV/c)	(Hz)	(Hz)	CMSDAQ
inclusive electron	29	- 33	33	1DR 2002
di-electron	17	1	34	
inclusive photon	80	4	38	
di-photon	40, 25	5	43	
inclusive muon	19	25	68	
di-muon	7	4	72	
τ -jet * E_T	86 * 65	1	73	
di- <i>τ</i> -jets	59	3	76	
1-jet * E_T	180 * 123	5	81	Similar
1-jet OR 3-jets OR 4-jets	657, 247, 113	9	89	numbers for
electron * τ -jet	19 * 45	0.4	89.4	numbers for
muon * τ -jet	15 * 40	0.2	89.6	AILAS
inclusive b-jet	237	5	94.6	
calibration and other events (10%)*		10	105	
TOTAL			105]

More combined triggers as eg. jets + leptons or leptons + MET possible will be included as well

"Typical data at the LHC"

detector	channels	occupancy	event size
pixels	80 000 000	0.01 %	100 kB
microstrips	16 000 000	3 %	700 kB
preshower	512 000	10 %	50 kB
calorimeter	125 000	5 %	50 kB
muon detector	1 000 000	0.1 %	10 kB
Total event size	1 MB		

Trigger/DAQ schemes: a challenge

Comparison of LHC with other experiments

GRID Computing

Interconnecting computing power

A complex problem by itself

Example EGEE Others: Nordic Grid, US grid,...

A few LHC numbers...

- Rate of pp interactions at 10^{34} : 10^9 events per second
- Energy of pp is about 7 times higher than that of the Tevatron at FNAL
- Weight of the CMS experiment: ~ 13000 tons (30% more than the Tour Eiffel)
- Amount of cables used in ATLAS : ~ 3000 km
- Data volume recorded at the front-end in CMS is 1 TB/second which corresponds to 10,000 Encyclopedia Britannica
- Data recorded during the 10-20 years of LHC life will be equivalent to all the words spoken by mankind since its appearance on earth
- A worry for the detectors: the kinetic energy the beam is of 1 small aircraft carrier of 10⁴ tons going 20 miles/ hour
- Machine temperature : 1.9 K (largest cryogenic system in the world)
- Total cost of machine + experiments : ~ 5000 MCHF
- Total number of involved physicists : ~ 5000

....

Summary of Lecture 1

- LHC is getting completed
 - Expect operation starting in 2007
 - November 2007 collisions at 900 GeV CMS
 - Spring/summer 2008 collisions at 14 TeV
 - The LHC will be a challenging machine to operate.
- Experimental challenges
 - The experimental challenges at the LHC are considerable
 - Pile-up, triggers, computing, (radiation)...
 - Experiments are facing these challenges and are nearing completion
 - Tomorrow: How CMS and ATLAS are dealing with these challenges...