

SMR 1773 - 6

SCHOOL ON PHYSICS AT LHC: "EXPECTING LHC" 11 - 16 September 2006

Heavy ion collisions at LHC Part I

François ARLEO C.E.R.N. - Theory Division, Department of Physics CH-1211 Geneva 23, Switzerland

These are preliminary lecture notes, intended only for distribution to participants.

Heavy ion collisions at the LHC

Part 1

François Arleo

François Arleo, "Expecting LHC", 11 - 16 September 2006

Heavy ion collisions at the LHC - Part 1 - p. 1/30

Material

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy	ion co	llisions
-------	--------	----------

Signatures

Flow

Summary

These slides are available at the school web site and at

http://cern.ch/arleo/expectingLHC

For further reading, go also to this web page to find bibliographical references on heavy ion collisions

You can also contact me at arleo@cern.ch for any question

Outline

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions
- Phase transition
- Heavy ion collisions
- Signatures
- Flow
- Summary

Lattice QCD

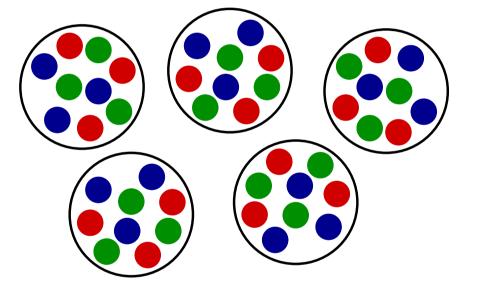
- A possible phase transition at finite temperature
- Heavy ion collisions
 - Facilities
 - Expected space-time evolution
- Need for signatures
 - ◆ A few interesting candidates...

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions


Signatures

Flow

Summary

At zero temperature, quarks and gluons are confined into hadrons (pions, protons, ...)

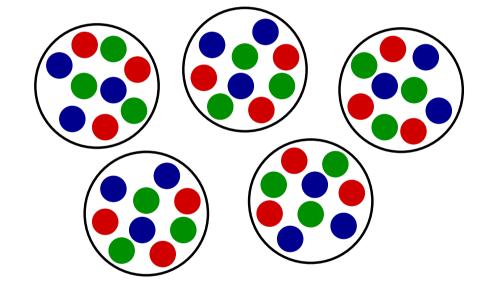
They cannot propagate over distances larger than $\Lambda_{_{\rm QCD}}^{-1}\simeq 1~{\rm fm}$

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions


Signatures

Flow

Summary

At zero temperature, quarks and gluons are confined into hadrons (pions, protons, ...)

They cannot propagate over distances larger than $\Lambda_{_{\rm OCD}}^{-1}\simeq 1~{\rm fm}$

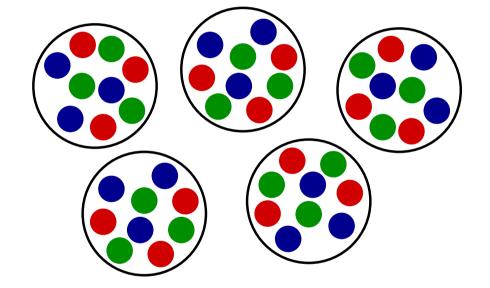
One of the most important properties of QCD Confinement

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions


Signatures

Flow

Summary

At zero temperature, quarks and gluons are confined into hadrons (pions, protons, ...)

They cannot propagate over distances larger than $\Lambda_{_{\rm OCD}}^{-1}\simeq 1~{\rm fm}$

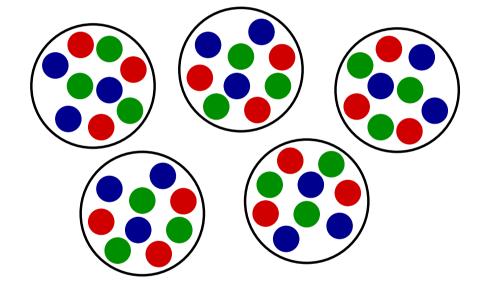
What happens at high temperature ?

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions


Signatures

Flow

Summary

At zero temperature, quarks and gluons are confined into hadrons (pions, protons, ...)

They cannot propagate over distances larger than $\Lambda_{_{\rm QCD}}^{-1}\simeq 1~{\rm fm}$

What happens at high temperature ?

That's what heavy ion physics is all about !

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions

Signatures

Flow

Summary

• What is the equation of state of QCD matter, e.g. P(T), $\epsilon(T)$, under extreme conditions ?

Introd	luction
• Mat	terial

- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions

Signatures

Flow

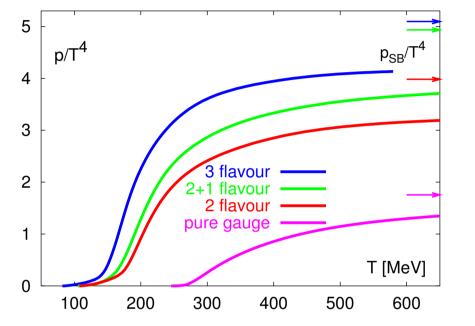
Summary

- What is the equation of state of QCD matter, e.g. P(T), $\epsilon(T)$, under extreme conditions ?
 - Can be accessed through heavy numerical (non-perturbative) calculations

Introduction
Material
• Outline
 Motivations
• QCD at finite temperature
Questions
Phase transition
Heavy ion collisions
Signatures
Flow
Cummoru

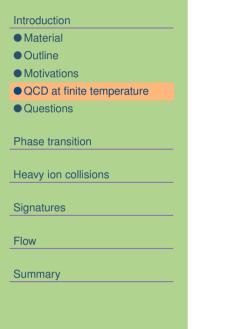
• What is the equation of state of QCD matter, e.g. P(T), $\epsilon(T)$, under extreme conditions ?

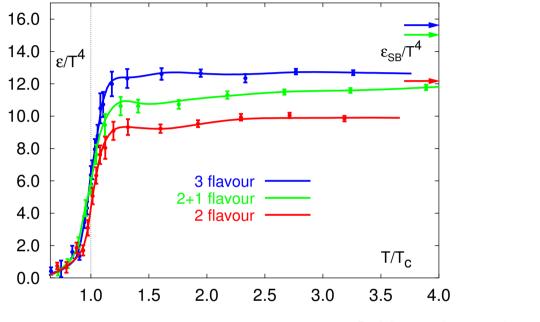
 Can be accessed through heavy numerical (non-perturbative) calculations


Lattice QCD at finite temperature T and (to a lesser extent) at finite chemical potential μ

François Arleo, "Expecting LHC", 11 - 16 September 2006

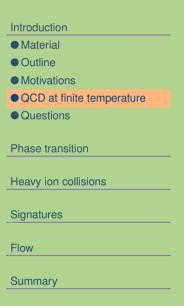
At finite T and $\mu = 0$

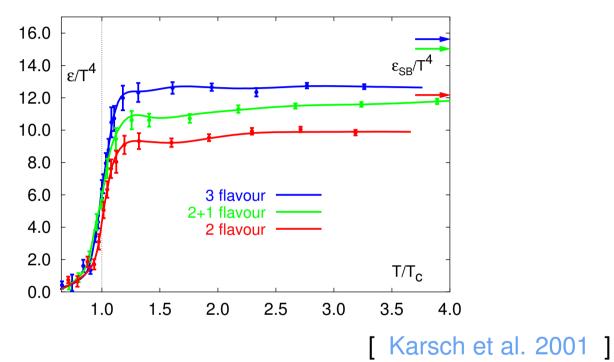




[Karsch et al. 2001]

At finite T and $\mu = 0$





[Karsch et al. 2001]

At finite T and $\mu = 0$

Usual interpretation

Transition from a pion gas (with 3 degrees of freedom) to a gas of weakly interacting quarks and gluons (40 d.o.f.)

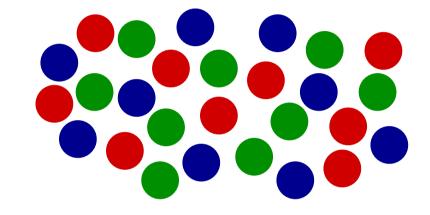
Introduction
Material
Outline
Motivations

Questions

Signatures

Summary

Flow


Phase transition

Heavy ion collisions

QCD at finite temperature

QCD at finite temperature

At finite T and $\mu = 0$

Usual interpretation

Transition from a pion gas (with 3 degrees of freedom) to a gas of weakly interacting quarks and gluons (40 d.o.f.)

Existence of Quark-Gluon Plasma

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions

Signatures

Flow

Summary

Introduction

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions

Signatures

Flow

Summary

Once we know quark-gluon plasma should exist at high temperature, many questions need to be answered ...

1. What is the critical temperature ?

	n	T.	r	\sim	а		0	tı	0	n	
L		ιı	ι.	U	u	u	C.	u	U		

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions

Signatures

Flow

Summary

- 1. What is the critical temperature ?
- 2. What is the nature of the transition ?

÷						
I	r	ntr	0	du	oti	on
I		ιu		uu	ιcι	

- Material
- Outline
- Motivations
- QCD at finite temperature
- Questions

Phase transition

Heavy ion collisions

Signatures

Flow

Summary

- 1. What is the critical temperature ?
- 2. What is the nature of the transition ?
- 3. What happens at finite chemical potential?

Introduction

Questions

Introduction
Material
Outline
 Motivations
• QCD at finite temper
 Questions
Phase transition
Heavy ion collisions

ature

Signatures

Flow

Summary

- 1. What is the critical temperature ?
- 2. What is the nature of the transition ?
- 3. What happens at finite chemical potential?
- 4. Where does the quark-gluon plasma exist?

Introduction
Material
Outline
 Motivations
• QCD at finite temperat
 Questions
Phase transition
Heavy ion collisions
Signatures

ure

Flow

Summary

- 1. What is the critical temperature ?
- 2. What is the nature of the transition ?
- 3. What happens at finite chemical potential ?
- 4. Where does the quark-gluon plasma exist?
- 5. How do we probe its formation ?

Introduction
Material
Outline
 Motivations
• QCD at finite temperat
 Questions
Phase transition
Heavy ion collisions
Signatures

Flow

Summary

Once we know quark-gluon plasma should exist at high temperature, many questions need to be answered ...

- 1. What is the critical temperature ?
- 2. What is the nature of the transition ?
- 3. What happens at finite chemical potential?
- 4. Where does the quark-gluon plasma exist?
- 5. How do we probe its formation ?

I will mainly focus on the last point in these lectures

(one of the hottest topic in heavy ions !)

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

Lattice QCD predicts the critical temperature to be roughly

 $T_c \simeq 200 \text{ MeV}$

Introduction

Phase transition

• Critical temperature

Phase transition

• Which order parameter ?

QCD phase diagram

• Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

Lattice QCD predicts the critical temperature to be roughly

 $T_c\simeq 200~{\rm MeV}$

However ...

The critical temperature depends on the number of light

flavours assumed in the calculation !

Introduction

DI			1.1.1
Ph	200	trar	nsition
	us c	ua	13111011

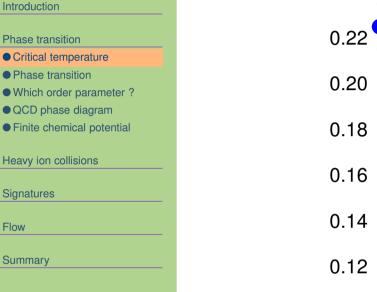
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

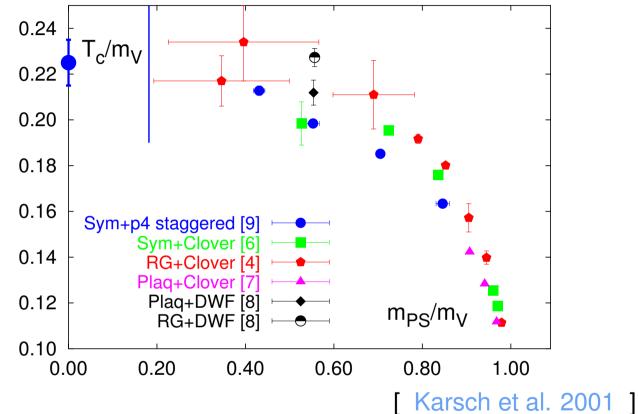
Heavy ion collisions

Signatures

Flow

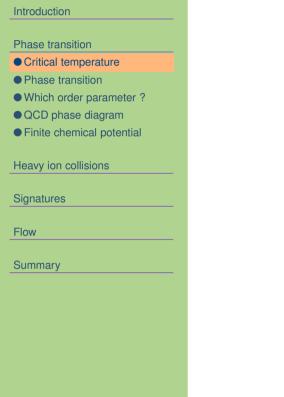
Summary

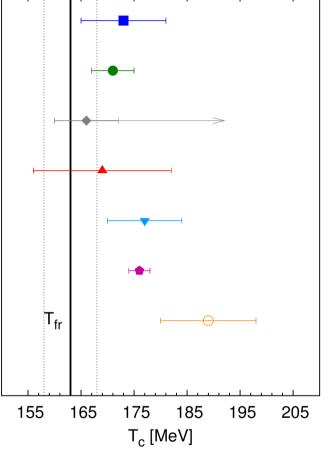

Lattice QCD predicts the critical temperature to be roughly

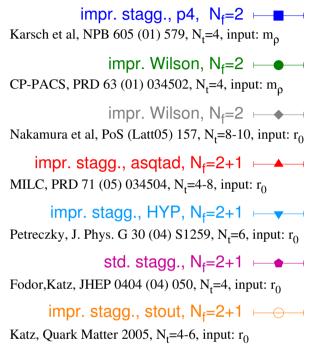

 $T_c \simeq 200 \text{ MeV}$

Theory	T_c (MeV)
pure gauge	270
2 flavours	175
3 flavours	155

[Karsch et al. 2001]






Mind the large error bars !

- Statistical uncertainty (needs huge CPU-time)
- Systematic uncertainty (extrapolation to the chiral limit)

[Petreczky 2006]

In 2+1 flavours, compiling the world "data"

$$T_c = 167 \text{--} 188 \text{ MeV}$$

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

What is the nature of the transition ?

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

$$\Phi(T=0) = 1$$

$$\Phi(T=\infty) = 0$$

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

 $\begin{array}{rcl} \Phi(T=0) &=& 1 \\ \Phi(T=\infty) &=& 0 \end{array}$

How does Φ evolve with temperature T ?

Introduction

Phase transition

• Critical temperature

Phase transition

• Which order parameter ?

QCD phase diagram

• Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

 $\begin{array}{rcl} \Phi(T=0) &=& 1\\ \Phi(T=\infty) &=& 0 \end{array}$

How does Φ evolve with temperature T ?

Three possibilities

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

 $\begin{array}{rcl} \Phi(T=0) &=& 1 \\ \Phi(T=\infty) &=& 0 \end{array}$

How does Φ evolve with temperature T ?

Three possibilities

1. <u>1st order:</u> Φ has a discontinuity

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

 $\begin{aligned} \Phi(T=0) &= 1 \\ \Phi(T=\infty) &= 0 \end{aligned}$

How does Φ evolve with temperature T ?

Three possibilities

- 1. <u>1st order</u>: Φ has a discontinuity
- 2. <u>2nd order</u>: $\partial_{\tau} \Phi$ has a discontinuity

Introduction

Phase transition

Critical temperature

Phase transition

Which order parameter ?

QCD phase diagram

• Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

 $\Phi(T=0) = 1$ $\Phi(T=\infty) = 0$

How does Φ evolve with temperature T ?

Three possibilities

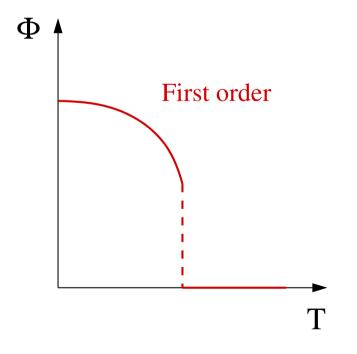
- 1. <u>1st order</u>: Φ has a discontinuity
- 2. <u>2nd order:</u> $\partial_{\tau} \Phi$ has a discontinuity
- 3. cross-over: smooth transition

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures


Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

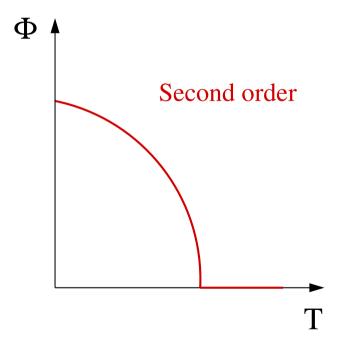
$$\begin{aligned} \Phi(T=0) &= 1 \\ \Phi(T=\infty) &= 0 \end{aligned}$$

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures


Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

$$\begin{aligned} \Phi(T=0) &= 1 \\ \Phi(T=\infty) &= 0 \end{aligned}$$

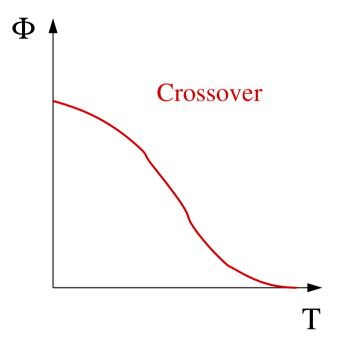
Phase transition

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures


Flow

Summary

What is the nature of the transition ?

Let Φ be the order parameter for the transition, with

$$\begin{array}{rcl} \Phi(T=0) &=& 1 \\ \Phi(T=\infty) &=& 0 \end{array} \end{array}$$

Take the Polyakov loop

```
Introduction
```

```
Phase transition
```

```
• Critical temperature
```

```
Phase transition
```

```
• Which order parameter ?
```

```
QCD phase diagram
```

• Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

 $L(T) \sim \lim_{r \to \infty} \exp\left(-\frac{V(r)}{T}\right)$

where V(r) is the heavy quark potential

Take the Polyakov loop

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

```
Signatures
```

```
Flow
```

Summary

where V(r) is the heavy quark potential

 $\blacksquare T = 0$

- \blacklozenge Confining potential $V(r) \sim \sigma r$
- $\blacklozenge L \simeq 0$

François Arleo, "Expecting LHC", 11 - 16 September 2006

Take the Polyakov loop

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

 $L(T) \sim \lim_{r \to \infty} \exp\left(-\frac{V(r)}{T}\right)$

where V(r) is the heavy quark potential

 $\blacksquare T = 0$

- Confining potential $V(r) \sim \sigma r$
- $\blacklozenge L \simeq 0$

 $\blacksquare T \neq 0$

- Screened potential $V(r) \sim \exp\left(-m_{_D}r\right)/r$
- $\bullet \ L \simeq 1$

Take the Polyakov loop

Introduction

- Phase transition
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions

```
Signatures
```

Flow

Summary

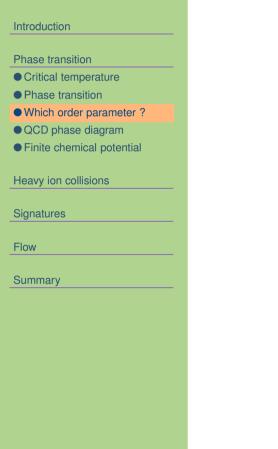
 $L(T) \sim \lim_{r \to \infty} \exp\left(-\frac{V(r)}{T}\right)$

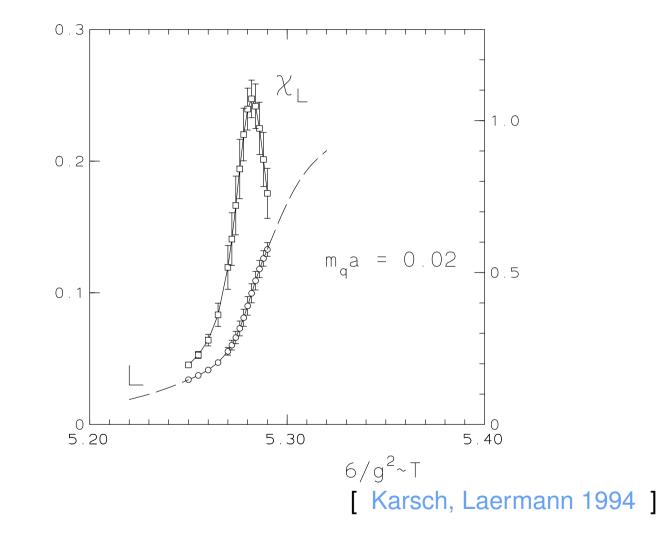
where V(r) is the heavy quark potential

 $\blacksquare T = 0$

- Confining potential $V(r) \sim \sigma r$
- $\blacklozenge L \simeq 0$

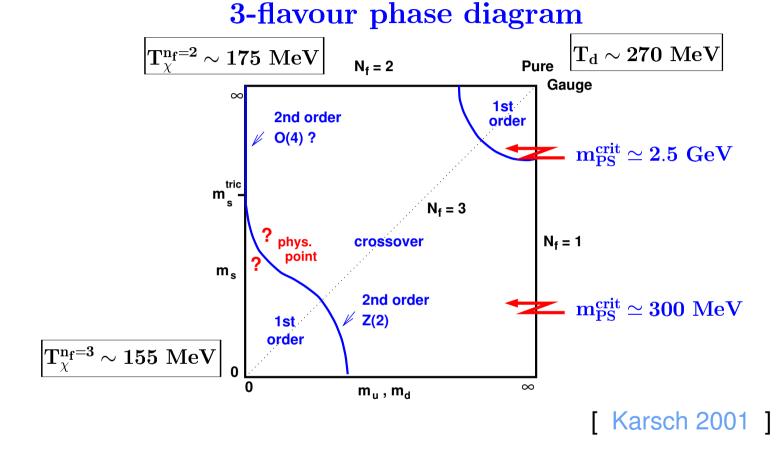
 $\blacksquare T \neq 0$


• Screened potential $V(r) \sim \exp\left(-m_{_D}r\right)/r$


 $\bullet \ L \simeq 1$

The Polyakov loop is an order parameter

for the deconfinement transition

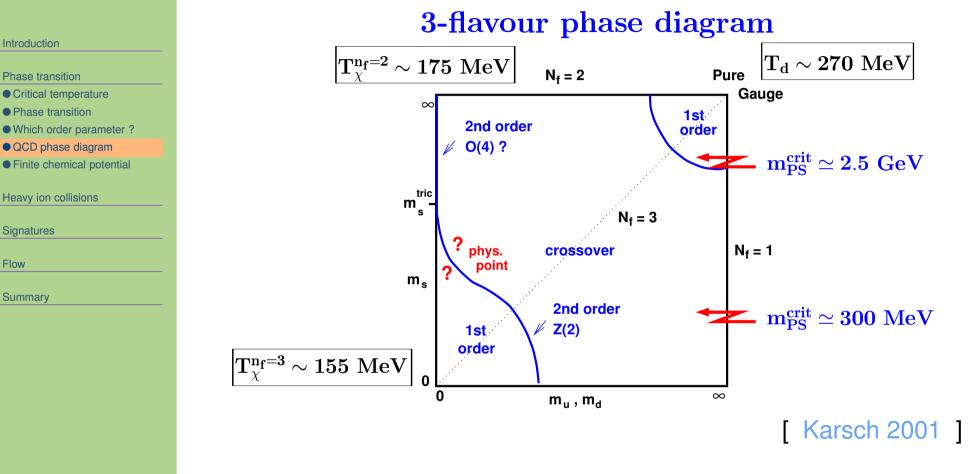


QCD phase diagram

Introduction

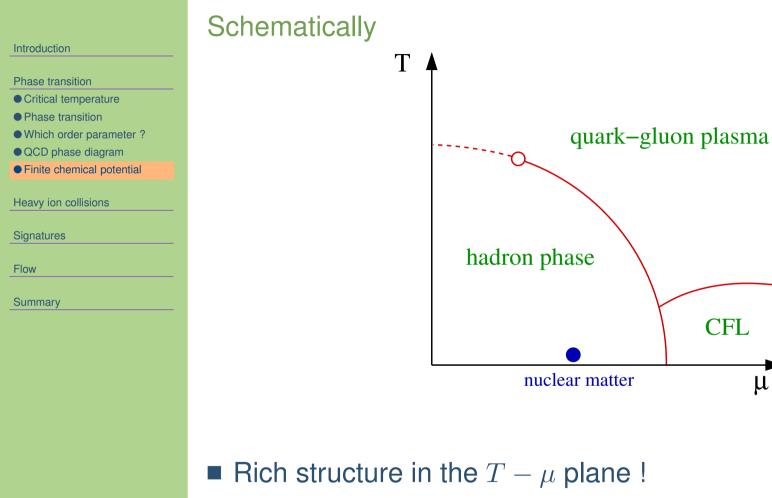
- Critical temperature
- Phase transition
- Which order parameter ?
- QCD phase diagram
- Finite chemical potential

Heavy ion collisions


Signatures

Flow

Flow


QCD phase diagram

- The order of the transition crucially depends on the light quark mass
- The physical point most likely lies in the crossover region

Finite chemical potential

Existence of a critical point

CFL

μ

Finite chemical potential

Schematically

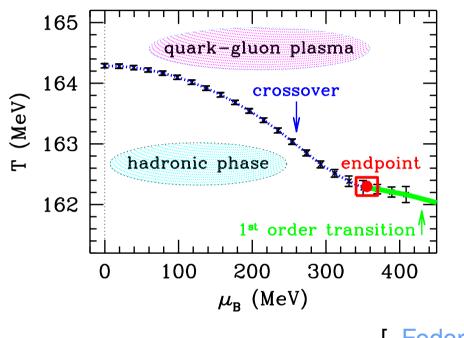
Introduction

Phase transition

- Critical temperature
- Phase transition

• Which order parameter ?

QCD phase diagram


Finite chemical potential

Heavy ion collisions

Signatures

Flow

Summary

Fodor Katz 2004

- **Rich structure in the** $T \mu$ **plane** !
- Existence of a critical point
- ... confirmed by lattice QCD calculations

Introduction

Phase transition

Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

Heavy ion collisions

Introduction

Phase transition

Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

Where does the quark-gluon plasma exist?

Introduction

Phase transition

Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

Where does the quark-gluon plasma exist?

In the Universe

- A long time ago, one micro-second after the Big Bang (it was really hot !)
- In the core of neutron stars (it is really dense)

Introduction

Phase transition

Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

```
Signatures
```

Flow

Summary

Where does the quark-gluon plasma exist?

In the Universe

- A long time ago, one micro-second after the Big Bang (it was really hot !)
- In the core of neutron stars (it is really dense)

How to study the quark-gluon plasma?

Introduction

Phase transition

Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

Where does the quark-gluon plasma exist?

In the Universe

- A long time ago, one micro-second after the Big Bang (it was really hot !)
- In the core of neutron stars (it is really dense)

How to study the quark-gluon plasma?

Colliding heavy ion collisions at high energy !

(and have a look to what happens)

Introduction

Phase transition

Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

SPS (CERN), since 1988

- p-A, S-U, Pb-Pb at $\sqrt{s} \simeq 20 30 \text{ GeV}$
- ◆ NA44, NA49, NA50, WA97, WA98, CERES ...

Introduction

Phase transition

Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

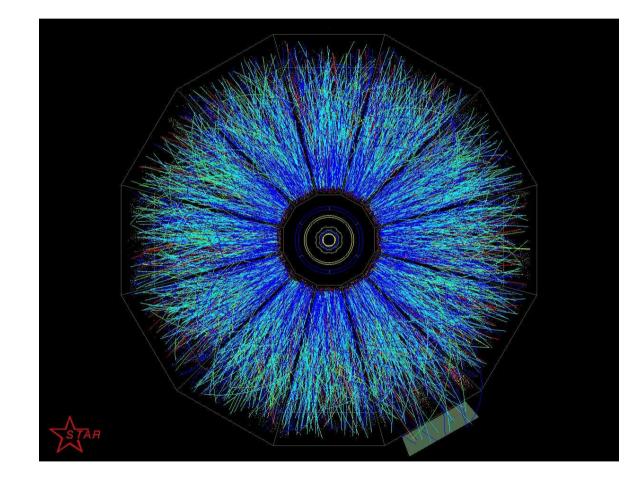
SPS (CERN), since 1988

- p-A, S-U, Pb-Pb at $\sqrt{s} \simeq 20 30 \text{ GeV}$
- ◆ NA44, NA49, NA50, WA97, WA98, CERES ...
- RHIC (Brookhaven, USA), since 2000
 - d-Au, Au-Au at $\sqrt{s} \simeq 200 \text{ GeV}$
 - BRAHMS, PHENIX, PHOBOS, STAR

Introduction

Phase transition

Heavy ion collisions


- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

Snap-shot of a heavy ion collision at RHIC seen by STAR

Introduction

Phase transition

Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

```
Signatures
```

Flow

Summary

SPS (CERN), since 1988

- p-A, S-U, Pb-Pb at $\sqrt{s} \simeq 20 30 \text{ GeV}$
- ◆ NA44, NA49, NA50, WA97, WA98, CERES ...
- RHIC (Brookhaven, USA), since 2000
 - d-Au, Au-Au at $\sqrt{s} \simeq 200 \text{ GeV}$
 - BRAHMS, PHENIX, PHOBOS, STAR
- LHC (CERN), starting 2008
 - Pb-Pb at $\sqrt{s} = 5.5$ TeV
 - p-Pb at $\sqrt{s} = 8.8$ TeV (?)
 - ALICE, CMS (ATLAS)

Introduction

Phase transition

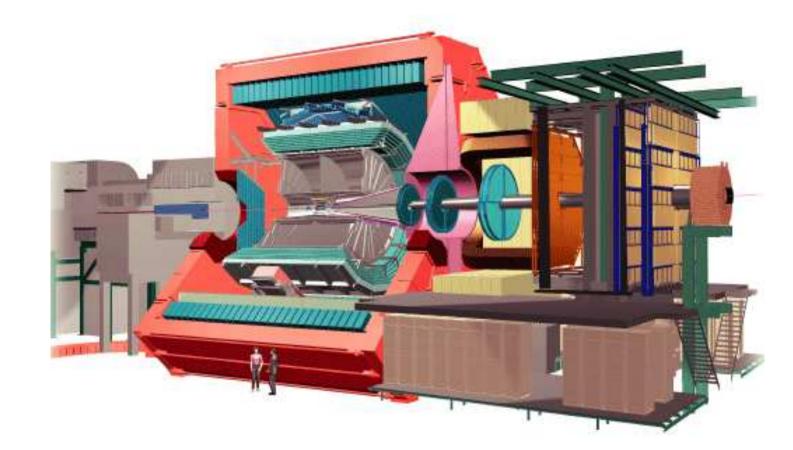
Heavy ion collisions

- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary


Air view of the SPS and the LHC

ALICE experiment

A Large Heavy Ion Collider Experiment

Introduction

Phase transition

- Heavy ion collisions
- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

ALICE experiment

Introduction

Phase transition

Heavy ion collisions

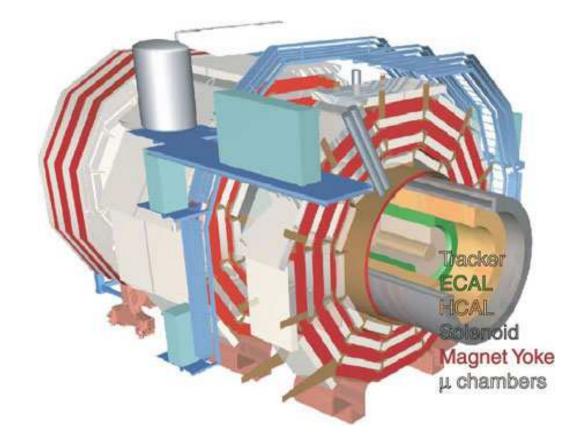
- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

A Large Heavy Ion Collider Experiment



Dedicated experiment for heavy ion physics

CMS experiment

Compact Muon Solenoid

Introduction

Phase transition

- Heavy ion collisions
- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

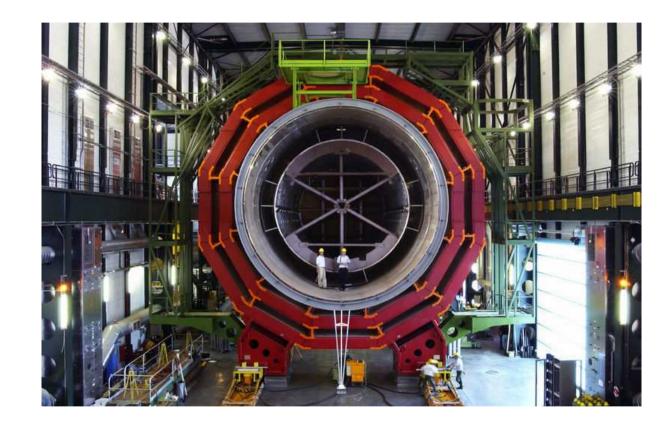
Flow

CMS experiment

Introduction

Phase transition

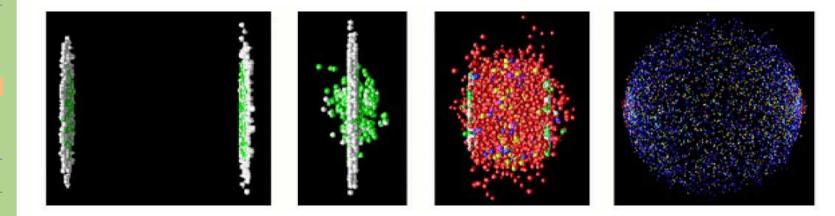
Heavy ion collisions


- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary


Compact Muon Solenoid

- Multipurpose experiment
- Good capabilities at large transverse momentum

The different phases of a heavy ion collision

A miscroscopic simulation by UrQMD

Phase transition

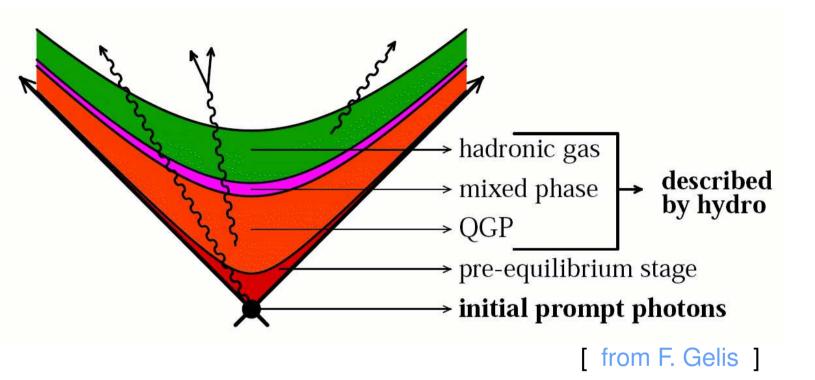
- Heavy ion collisionsTowards heavy ions
- Facilities

Introduction

- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow


Phase transition

- Heavy ion collisions
- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

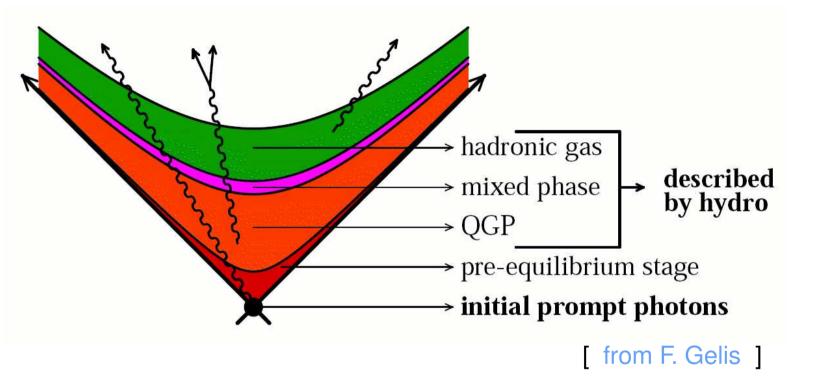
```
Signatures
```

Flow

Summary

• $t \simeq 0$ fm: The two nuclei cross

 Particles with large mass (heavy quarks, Drell-Yan pairs) or transverse momentum (jets) are produced



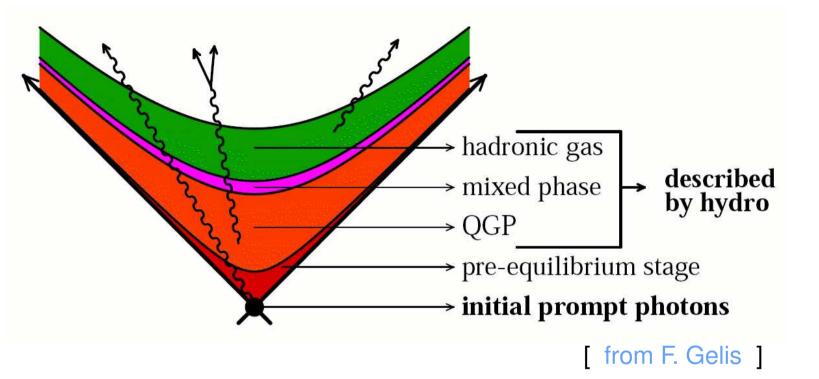
Phase transition

- Heavy ion collisions
- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

- $t \leq 1$ fm: Pre-equilibrium stage
 - Quarks, and mostly gluons, are produced



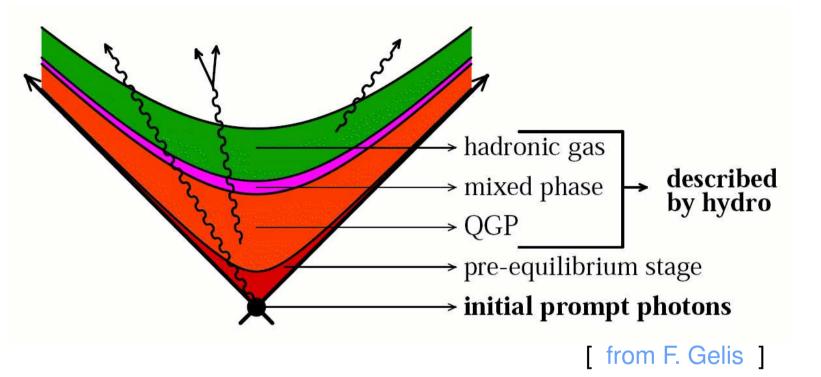
Phase transition

- Heavy ion collisions
- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

- $t \simeq 1 5$ fm: Quark-gluon plasma
 - Quark and gluons in thermal equilibrium



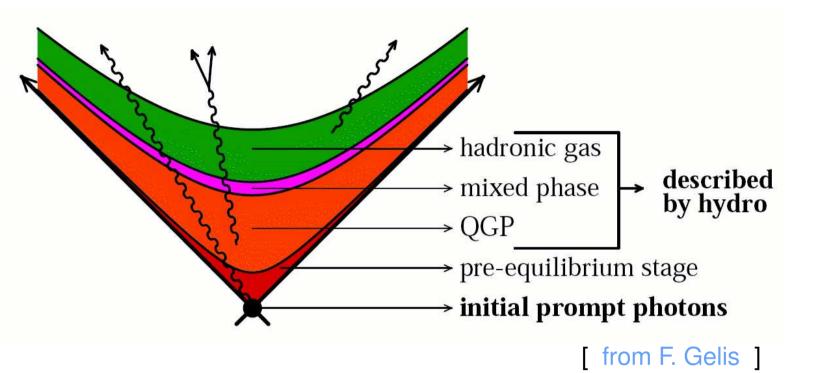
Phase transition

- Heavy ion collisions
- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

- $t \simeq 5 15$ fm: Hadronic phase
 - Hadrons in thermal equilibrium



Phase transition

- Heavy ion collisions
- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

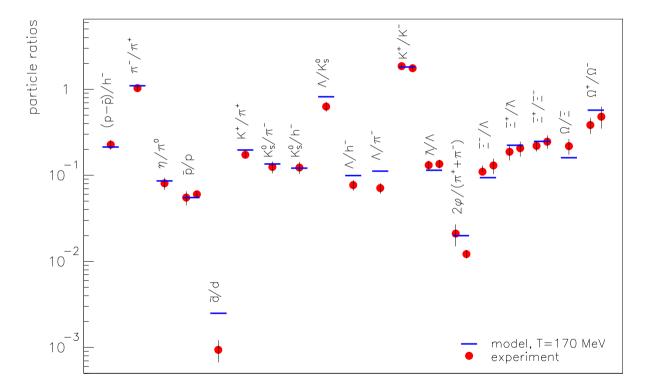
- $t \gtrsim 15$ fm: Freeze-out
 - Particles no longer interact

Heavy ions on the phase diagram

Introduction

Phase transition

Heavy ion collisions


- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

Statistical models allow for an estimate of both T and μ by fitting the relative hadron abundancies

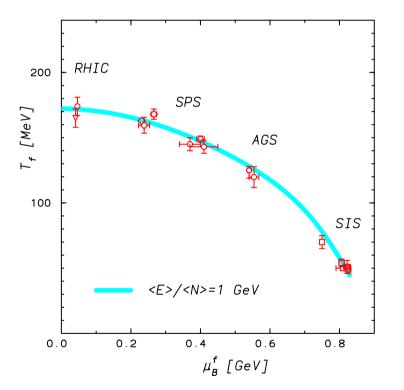
[Braun-Munzinger et al. 2003]

Heavy ions on the phase diagram

Introduction

Phase transition

Heavy ion collisions


- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

Statistical models allow for an estimate of both T and μ by fitting the relative hadron abundancies

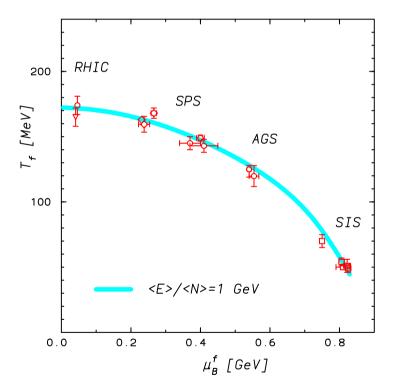
• Low energy collisions (SIS, AGS) occur at small T but large μ

Heavy ions on the phase diagram

Introduction

Phase transition

Heavy ion collisions


- Towards heavy ions
- Facilities
- ALICE experiment
- CMS experiment
- Stages of heavy ion collisions
- Heavy ions on the phase diagram

Signatures

Flow

Summary

Statistical models allow for an estimate of both T and μ by fitting the relative hadron abundancies

RHIC and LHC experiments essentially probe the vanishing chemical potential region

Introduction

Phase transition

Heavy ion collisions

Signatures

- Probing quark-gluon plasma formation
- Signatures
- Classification

Flow

Summary

Signatures

Probing quark-gluon plasma formation

- 1	5	+	-	ᅬ		~	41	~	n	
- 1	п	п	()	(1	U	(;		()	ш	
		•••	~	~	~	~	•••	~		

Phase transition

Heavy ion collisions

Signatures

- Probing quark-gluon plasma formation
- Signatures
- Classification

Flow

Summary

Remember one of the (most important) questions:

5. How do we probe its formation ?

Probing quark-gluon plasma formation

Introduction										
Phase transition										

Heavy ion collisions

Signatures

- Probing quark-gluon plasma formation
- Signatures
- Classification

Flow

Summary

Remember one of the (most important) questions:

5. How do we probe its formation ?

Need for unambiguous observables

to probe quark-gluon plasma formation !

Probing quark-gluon plasma formation

Intro	duction	

Phase transition

Heavy ion collisions

Signatures

- Probing quark-gluon plasma formation
- Signatures
- Classification

		0.47	
г	I	Ovv	

Summary

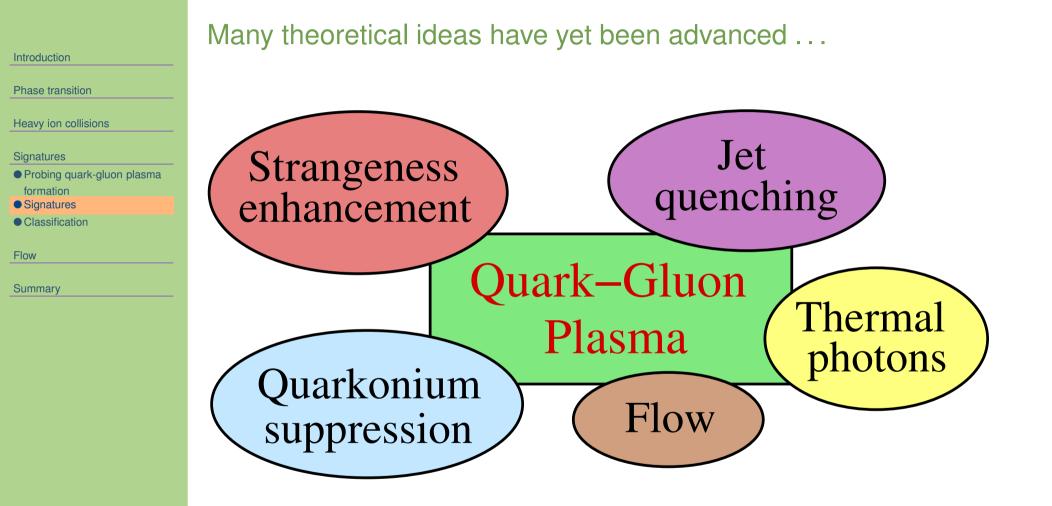
Remember one of the (most important) questions:

5. How do we probe its formation ?

Need for unambiguous observables

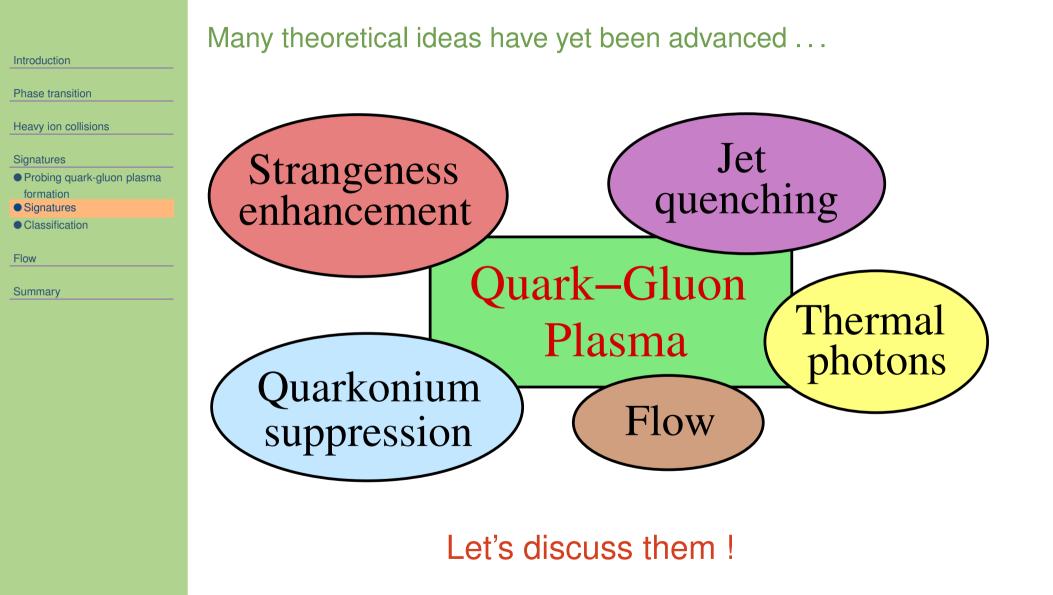
to probe quark-gluon plasma formation !

By unambiguous, we mean signals which should behave significantly differently if QGP formation occurs or not


Signatures

Phase transition Heavy ion collisions Signatures Probing quark-gluon plasma
Signatures Probing quark-gluon plasma
Probing quark-gluon plasma
formation
formation
Signatures
Classification
Flow
Summary

Many theoretical ideas have yet been advanced ...



Signatures

Signatures

Classification

Introduction

Phase transition

Heavy ion collisions

Signatures

- Probing quark-gluon plasma formation
- Signatures
- Classification

Flow

Summary

Usual distinction between soft (bulk) and hard probes (hard scale) of QGP formation

Classification

Introduction

Phase transition

Heavy ion collisions

Signatures

- Probing quark-gluon plasma formation
- Signatures
- Classification

Flow

Summary

Usual distinction between soft (bulk) and hard probes (hard scale) of QGP formation

- Soft probes
 - Strangeness production
 - Flow of particles

Advantage: many particles are produced !

Classification

Introduction

Phase transition

Heavy ion collisions

Signatures

- Probing quark-gluon plasma formation
- Signatures
- Classification

Flow

Summary

Usual distinction between soft (bulk) and hard probes (hard scale) of QGP formation

- Soft probes
 - Strangeness production
 - Flow of particles

Advantage: many particles are produced !

- Hard probes
 - Heavy-quarkonium production
 - Jet quenching

Advantage: computable in perturbative QCD !

Introduction

Phase transition

Heavy ion collisions

Signatures

Flow

- Flow
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

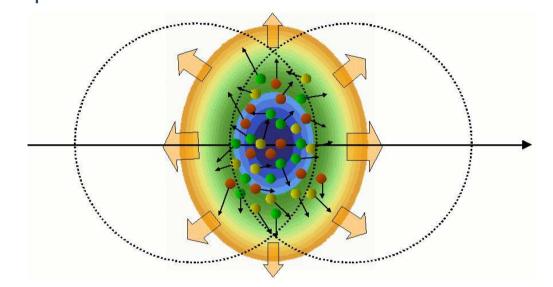
Summary

Flow

Introduction

Phase transition

Heavy ion collisions


Signatures

Flow

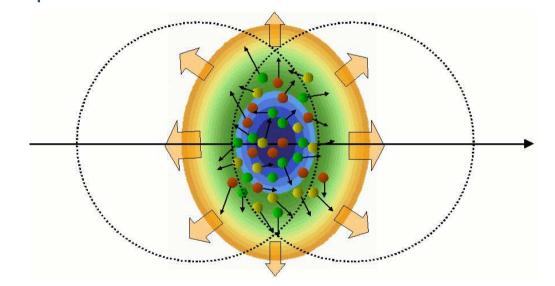
- Flow
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Summary

Consider a semi-peripheral heavy ion collision in the transverse plane

Introduction	
Phase transition	

Heavy ion collisions


Signatures

Flow

- Flow
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

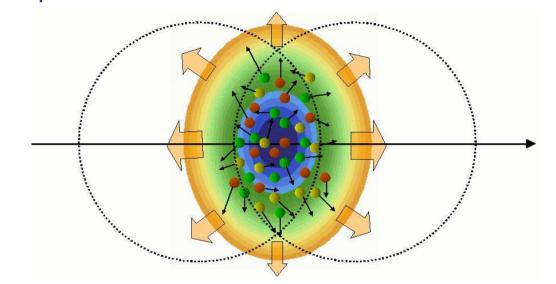
Summary

Consider a semi-peripheral heavy ion collision in the transverse plane

Asymmetry of the overlap region (almond shape) while momentum distribution are spherically symmetric

Introduction Phase transition

Heavy ion collisions


Signatures

Flow

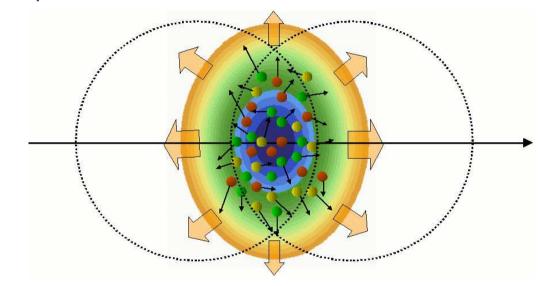
- Flow
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Summary

Consider a semi-peripheral heavy ion collision in the transverse plane

Rescattering process responsible for strong pressure gradient

Introduction
Phase transition
Heavy ion collisions


Signatures

Flow

- Flow
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Summary

Consider a semi-peripheral heavy ion collision in the transverse plane

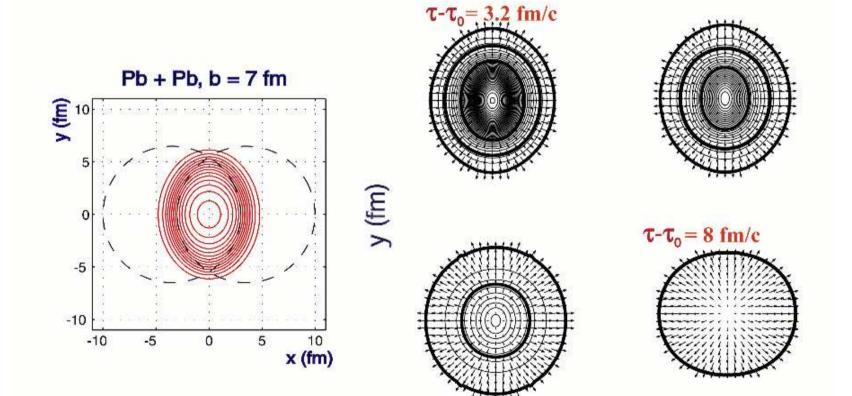
Rescattering process responsible for strong pressure gradient

- Converts space to momentum anisotropy
- Particles emitted preferably along the impact parameter axis
- The medium becomes more and more spherical: "self-quenching"

n	tr	n	d	ш	C	tι	C	n	
		~	~	~	~	•	~		

DI			1.1.1.1	
Ph	200	trar	nsitio	n
	230	ua	131110	

Heavy ion collisions


Signatures

Flow

- Flow
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Summary

A hydrodynamical picture

x (fm)

Quantifying elliptic flow

Introduction	
Phase transition	
Phase transition	

Heavy ion collisions

Signatures

Flow

- Flow
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Summary

How to quantify the asymmetry in momentum space ?

Quantifying elliptic flow

Introduction

Phase transition

Heavy ion collisions

Signatures

Flow

Flow

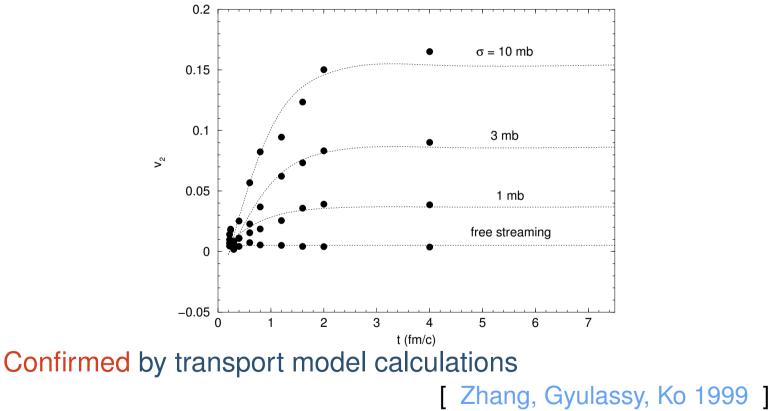
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Summary

How to quantify the asymmetry in momentum space ?

Adopt the Fourier decomposition of the momentum distribution

$$\frac{1}{N} \frac{\mathrm{d}N}{\mathrm{d}\phi} = 1 + \sum_{n=1}^{\infty} 2 v_n \cos(n\phi)$$


Elliptic flow characterized by the second harmonics v_2

Time dependence

Since the asymmetry gets smaller as time goes by, elliptic flow sets in pretty early in the collision

Elliptic flow at RHIC

Introduction

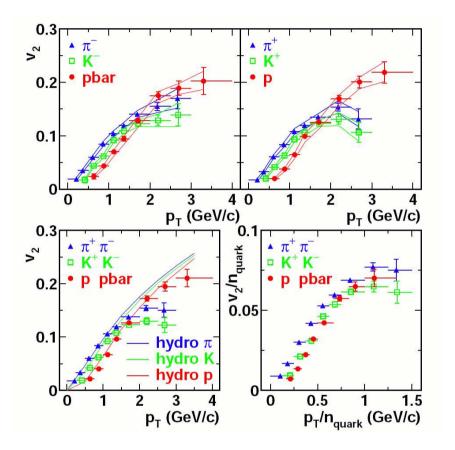
Phase transition

Heavy ion collisions

Signatures

Flow

• Flow


• Quantifying elliptic flow

• Time dependence

• Elliptic flow at RHIC

• Elliptic flow at LHC

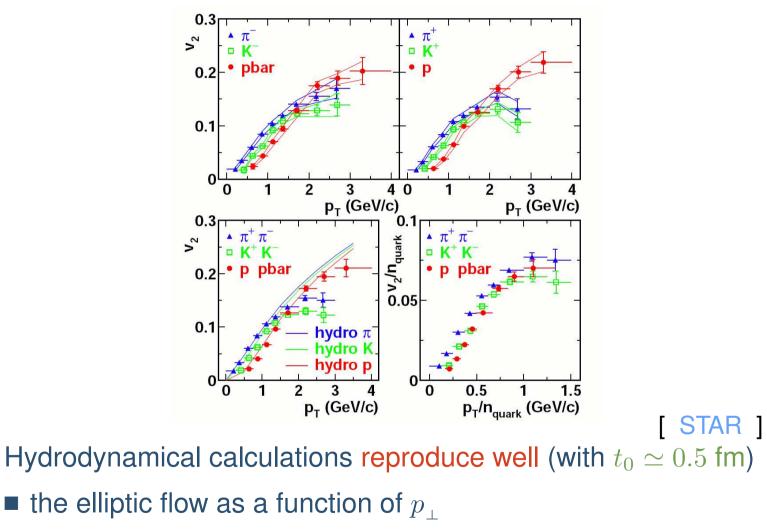
Summary

[STAR]

Elliptic flow at RHIC

Phase transition

Heavy ion collisions


Signatures

Flow

Flow

- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Summary

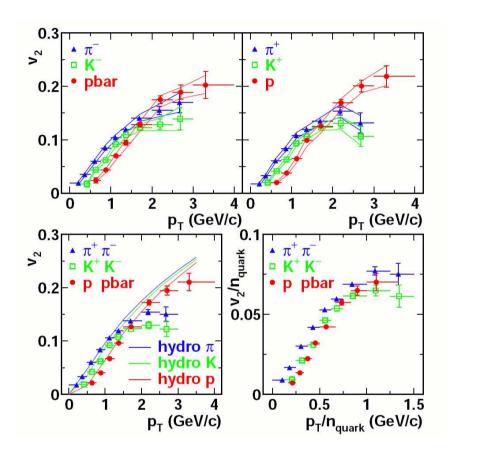
• the mass ordering $v_2 = v_2(p_{\perp}/m)$ seen in data

Elliptic flow at RHIC

Introduction

Phase transition

Heavy ion collisions


Signatures

Flow

• Flow

- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Summary

STAR]

Evidence for strong rescattering process at RHIC !

Elliptic flow at LHC

Introdu	uction			
Phase	trans	ition	1	

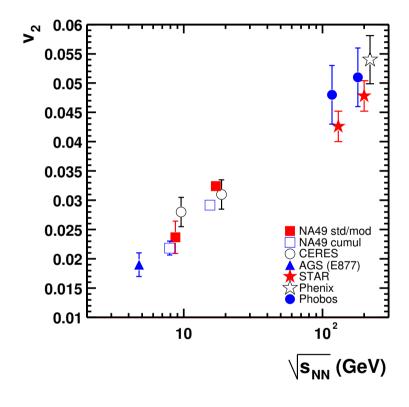
Heavy ion collisions

Signatures

Flow

• Flow

- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC


Summary

What is the expected v_2 at the LHC ?

Elliptic flow at LHC

What is the expected v_2 at the LHC ?

[NA49]

Phase transition

Introduction

Heavy ion collisions

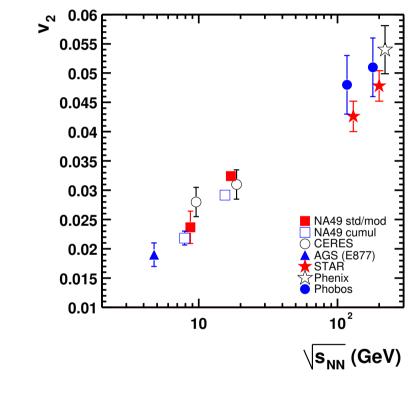
Signatures

Flow

- Flow
- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

Introduction

Signatures


Flow

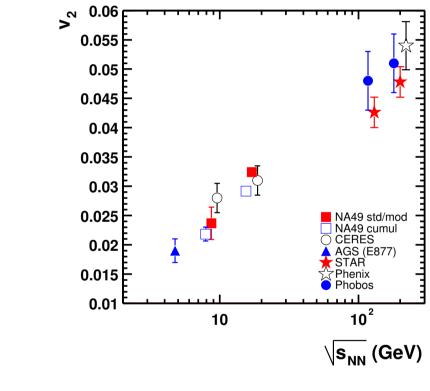
Phase transition

Heavy ion collisions

Elliptic flow at LHC

What is the expected v_2 at the LHC ?

[NA49]


- If thermal equilibration at RHIC
 - v_2 (LHC) $\simeq v_2$ (RHIC)

Introduction

Elliptic flow at LHC

What is the expected v_2 at the LHC ?

[NA49]

- If incomplete thermalization at RHIC
 - $v_2(LHC) \gg v_2(RHIC)$

Flow • Flow

- Quantifying elliptic flow
- Time dependence
- Elliptic flow at RHIC
- Elliptic flow at LHC

n	tr	5	0	 0	ŧ١	0	r

Phase transition

Heavy ion collisions

Signatures

Flow

Summary

Summary

Introduction

Phase transition

Heavy ion collisions

Signatures

Flow

Summary

Summary

Lattice QCD predicts a transition from hadronic matter to quark-gluon plasma at $T_c \simeq 200 \text{ MeV}$

Introduction	
Phase transition	
Heavy ion collisions	
O : I	
Signatures	
Flaur	
Flow	

Summary

Summary

Lattice QCD predicts a transition from hadronic matter to quark-gluon plasma at $T_c \simeq 200 \text{ MeV}$

Deconfinement occurs most probably through a crossover transition

Introduction	
Phase transition	
Heavy ion collisions	
Signatures	
Flow	

Summary

Summary

Lattice QCD predicts a transition from hadronic matter to quark-gluon plasma at $T_c \simeq 200 \text{ MeV}$

Deconfinement occurs most probably through a crossover transition

Heavy ion collisions at high energy allow for quark-gluon plasma formation

Introduction	
Phase transition	
Heavy ion collisions	
Signatures	
Flow	
Cummon	
Summary	

- Lattice QCD predicts a transition from hadronic matter to quark-gluon plasma at $T_c \simeq 200 \text{ MeV}$
- Deconfinement occurs most probably through a crossover transition
- Heavy ion collisions at high energy allow for quark-gluon plasma formation
- Need for experimental signatures
 - Flow, strangeness, thermal photons, quarkonium production, jet quenching ...

Summary

Introduction	
Phase transition	
Linear in a Reissa	
Heavy ion collisions	
Signatures	
-	
Flow	
Summary	

Lattice QCD predicts a transition from hadronic matter to quark-gluon plasma at $T_c \simeq 200 \text{ MeV}$

Deconfinement occurs most probably through a crossover transition

Heavy ion collisions at high energy allow for quark-gluon plasma formation

Need for experimental signatures

Flow, strangeness, thermal photons, quarkonium production, jet quenching

These will be further discussed in the next lecture !