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EXERCISES

Exercise I: Basic calcultaional rules

1. Vertices and propagators
2. Dirac algebra
3. Cross sections and decay widths
4. Calculation of loop integrals.

Exercise II: Higgs boson production and decay mechanisms.
1. Higgs decays into fermions and gauge bosons
2. Higgs production in e+e~ collisions
3. Higgs production in hadronic collisions
4. Higgs contributions to radiative corrections.

Exercise III: Divergences and symmetries.
1. Lagrangians and interactions
2. Electron and photon self-energies
3. Higgs boson self-energy: fermion loops
4. Higgs boson self—energy: scalar contributions.

Exercise IV: Higgs masses and couplings in the MSSM.
1. Derivation of the Higgs boson masses in the MSSM
2. Radiative corrections to the Higgs boson masses
3. The MSSM Higgs boson couplings

For details on phneomenology, see AD: The anatomy of EWSB
hep-ph/0503172 (SM) and hep-ph/0503173 (MSSM),
to appear in Physics Reports.



El: Basic Calculational Rules

1. Vertices and propagators

Rules for fermions:

Us(Pi)

i
p/-m

P

— i
— I

p/fra

Vs{~Pf)

Y,sus(p)u

Rules for gauge bosons:

vs(p)vs(p) =jj-

For the photon, discard everything which is longitudinal
above. Note that the trasversality of the photon implies: e^-

f - a/75)

= 0.

a/ =

^ : vf = af = l/(2y/2sw)

7 : Vf = ef , a/ = 0

Rules for Higgs bosons:

irrif/v

f

v,

V,,



2. Diracology: contractions and traces of 7 matrices

Basic relations:

{in ,ly} = ivTiv + Ivln = ^Q^v and $ = prf

75 = ^ W r T ' W Y = ilWlW a n d {7/.,75} = 0
Tr(l) = 4 , Tr(7M) = 0 , Tr(75) = 0
Tr(AiA2) = T r ^ i ) , Tr(^A2 • • • AN) = Tr(A2 - • •

Contractions of 7 matrices

- 27^7^ - 27^7^ + 47^7^ =

Traces of 7 matrices:

Trace of an odd number n of 7 matrices (using 7! = 1):

Tr(7
w • Yn) = Tr(7

M • • • 7 ^ 7
5

7
5 ) = (-1) Tr(7

w • • • 7
5

7 ^ 7

= 0

) ( M ^ 5 ) = 0

= -(1/4) Tr(7a7V7
t t75) = -Tr(7^7^75) = 0

Using the same tricks as above, proof the trace of 4 7 matrices:



3. Cross sections and decay widths

The differential cross section for a 2 x n process i\i2 —>• /i • • • fn is

W S
4[(pi • P2)2 - m\m

• In the amplitude squared |M|2, one has to average (sum) on
degrees of freedom (polarisation, color) of initial (final) particles

• There is a symmetry factor S = 1/n! for n identical particles.

• The flux factor is 2(j?i+p2)
2 = 2s for 2—>n process with mi = ra2 = 0

It is 2M for the decay of a particle with a mass M (1 —>n process)

Calculation of phase—space for a two—body process a + b —>• /i +

dPS2 =
167T2

d3P2 -4

(Pa +Pb~Pl- VV

with : \p2\ = \pa+Pb-P2
and d?pi = dJ

In the c m . frame: w = ea +

= P I — + —

and e2 =

with 62 =

e2

e b - e i - e2)

/ = ei + e2 = (ra2

+ m
> 9

-1- till

2 +

dp

1 X\1 =

IPI -w') =
16TT 2

-w1)

(for the last equality, the integral over dw' has been performed),
The differential cross section for a two body process is then:

xS

Note that \p\ = \y/s\ = hy/s[l - m\/s - m\jsf -



4. Calculation of loop integrals

p + k

k
• Measure of loop integral over internal momentum: f d4k/(27v)4.
(For fermion loops: take trace and factor (—1) for Fermi stats).

_ T _ / . x2 f d4A: i i
~% ~ [W) J (2TT)4 (p + k)2 - m2 k2-m2

/

i A. 7 -i -i

/ i K" I I

(2TT)4 (p + fc)2 - m2 A;2 - m2

• Symmetrize the integrand using: 1/ab = Jo da;/[a + (6 —

d4A;
- I r\ nf

nm £\£

(2TT)4 ,/O (&2 + 2pA;x + p2x - m )
• Shift variable k ^ kf = k + px (integrand becomes k2 symmetric)

(27r)4io {k2 + p2x{\ - x) - m2)2

• Wick ro t a t ion k0 —>• z/c0 t o go t o Eucl idean space (k2 —>• —

d4A: r1 , 1

(27r)4 JQ (k2 — p2x{\ — x) + m2)2

• Polar coordinates for d4&: f*™ d4k F(k2) = TT2 /O°° dk2 k2 F(k2)
2 /-I

H /
(2/ - P

• Perform the integrals over the variables y and x:
— If integral divergent: cut-off at the energy A (JQ dk2).
— Eventually, use the on—shell mass relation p2 = m2.



E2: Higgs production and decay mechanisms
1. Higgs bosons decays

1.1 Decays into fermions: H —> / /

/ fipi) -%M = usl(pi)(imf/v)vS2(-p2)

\ f(-p2) +iM] = vS2(-p2)(-imf/v)usl(pi)

z—' V v

with Â c = 3(1) for quarks (leptons). Only one polarisation for H.

(v/mf)
2/Nc x 2

- m2Tr(l)

= —^p\.p2 — 4m

Using g2 = (pi — P2)2 = 2771̂  — 2pi • 2?2 = M^ and defining the velocity
of the final fermions f5f = 2\pf\/MH = (1 - 4ra2,/M2

r)
1/2

=> S|M|2 = Nc (mf/v)2 2(M2
H - Am)) = 2NC {m)/v2) M2

H(32
f

The differential decay width is then simply given by:

2MH ' ' 32TT2 MH

Integrating over dQ = d^d cos 6 (and since there is no angular
dependence, f dQ = 4TT), one obtains the partial decay width:

2
m

H decays dominantly into heaviest fermion and width ex

6



1.2 Decays into massive gauge bosons

q ^ • r- v- -. -%M = e* (pi) (-2iMv/v
>-

pol pol pol

7£ / ' ^{g
m, -

= 4 -

The differential decay width, ^ = ^ x \M\2 x ^ i ^ g 1 x 5, with
5 = 5v = | for two identical final Z bosons. This finally gives

Ml
The dependence on My is hidden, since v = 2M\y/§2 =
For large enough MH [recall that H —> / / o c Afe], one has:

r ( # -^ FF) ~ SvMfI/(87Tv2) => T(H -^ WW) ~ 2r(i7 ->- ZZ)

The decay widths grows like M^ i.e. is very large for MH ^> My.
For small M#, one (two) V bosons can be off-shell, the width is

o (q\ ~ MY + MlY\ Jo

q\



1.3 Decays into photons and gluons: H —> 77,

H does not couple to massless particles at tree-level: loop induced.
We have vertex diagrams with fermion (top) and W exchange
for H —> 77(^7); only top for H —y gg: calculation complicated.
However it is simple if H momentum is small (i.e. MH <C Mloop):

7 k
Let's calculate the derivative of the fermionic photon self-energy:

Using the rules for Diracology and loop integral calculations:

D= •

N =
(k2 + 2pkx + p2x — m2)2 Jo [(k + px)2 +p2x{l — x) — m2]2

(m2 - k2 - p.

Shift k —>• k + px, Wick rotation /c0 —> ik0 for Euclidean space
/c2 —y —k2 and sym. integrand with f*™ d4k F(k2) = TT2 JO°° dyyF(y)



[also use of symmetry relation f d^k^k^kp) = ^g^p J d4k(k2)]:

nJ2(p) = -Wce
2
fe

2 x 4 x 7T2 x - — x / dx / ydy

[\k2 + m2 - x(l - x)p2]gliv + 2x(\ -

[y + m2 — p2x(l — x)]2

Because of gauge invariance, photon is transverse (oc g^p2 —
the first term (oc g^ should vanish and we are left with:

Nre
2
fe

2
 n f1 r°°

ydyo 7o [y + m2 -p2x(l -x)]2

We can now calculate the ^77 vertex [photons to symmetrize
—)> 2; they are on-shell and p\i2 ̂  p but p2 = pi • P2 = \

2m2Nce)e2

{{I TH Tin — Tli Tlo I I (IT

7T2 M J o J o [2/ + m 2 -

Inside the integral, we can suppose m2 >̂ p2(MJj) and integrate
over sc and y [J x(l — x)dx = 1/6 and J 2//(2/ + fn2)3dy = l/2ra2]

7T

Now we use the same machinery as for decays into gauge bosons:

Integrating over phase space (with factor \ for identical photons):

*This statement is not trivial to prove and we will come back to this discussion later on.



Several remarks to be made:
• The amplitude was of course finite (no tree level contribution)!
• The approximation ra/^>M# is in practice good up to M#~2ra/!
• Only tops contribute, other / have negligible Yukawa coupling.
• Infinitely heavy fermions do not decouple from the amplitude:
a way to count the number of heavy particles coupling to the HI
• There are also contributions from W bosons. Also in the
limit MH < Mw (valid for MH < 140 GeV), one has:

Mi a2 ^ ,T 9 21 2

• The W contribution is larger (~ 4) than the t quark contribution
and the interference of the two is destructive.
• With the same calculation, one can get the amplitude for H —>•
Z7. Only difference, Zff, ZWW couplings and Mz in phase space.
Here again, the W contr. is much ( ^ 10) larger than that of top.

• The calculation holds also for gluons if we make the changes:
Qee ->- gsTa which means a -^ as and N2 -> |Tr(TaTa)|

2 = \lSab\
2 = 2:

T(H -> gg) =
2

H as

9v2 8TT3

Decay width and branching ratios:
The total decay width of the Higgs is the sum of partial widths:

rtot(# -> ail) = xfr(H -+ ff) + zvr{H -+ vv)

and the branching ratio for Higgs decay into a given final state is:

BR(H -+X) = T(H ->- X)/Ttot(H ->- all)

10



2. Higgs bosons production in e+e Collisions
2.1 The Higgs—strahlung process:

u(h)

V(~h)

_ ^ (

First thing to use for simplification is Dirac equation l/u(l) = me ~ 0:

= 2me - 0 ̂  ^ ^ -> 0

where me is supposed to be much smaller than A/S = y ^ - Then:
4_ 2/W-4 - 2

Average over polarizations of e and sum on those of photon:
_ k

4 '—' " 4

-Tr = ae
2)Tr - 2aeveTr

eve

{h-Pi)(h-Pi)

where we have used the fact that (ai^pu) g
In the cm. frame, one has (with E\2 = M2

Z

is (anti)symmetric.
\p\2) and \p\ = y/5/2A):

n



5

2 + '

The differential cross section is given by:

da 1 4e2M|(i>2 + a2
e)s

dcosOdcj) = 25 [v2(s - M2)2M2

Ml

+ -A2 sin2 6
s 8

A2sin20"

8

A

327T2

with J dcj) = 27r and J sin2 9d cos 9 = 4/3 one gets the cross section

HZ) = + a A(A2 + 12M2/5)

A few remarks:
• The cross section drops like \/s at high—energies (typical of an

5-channel process). The maximum is reached at yfs = Mz + y/2MH.

• At the maximum LEP2 energy, y/s = 209 GeV, the cross sec-
tion for MH = (100) 115 GeV is given by (using the fact tha t <70 =
4yra2(0)/3 = 86.8 nb with a(0) = 1/137, a(s) ~ 1/128 and sin2 9W = 0.232):

a = 0.42 (0.16) pb for MH = 100 (115) GeV

If we have an integrated luminosity of J C ~ 100 p b 1 , this means
that we have N = a x J C ~ 42(16) Higgs boson events.

• Since for MH - 100 GeV, BR(tf -> 66) - 90%, the signal is
e+e~ —)> Zi7 —> Z66 and the main background is e+e~ —>• ZZ —> Zbb.

• At high energies 5 ̂ > M|, one has a differential cross section

da
~ — sin2 6* with cr ~ a

dcos^ 4cr 12^2 5(1 - M2
zjs)2

the behaviour in sin2 0 of the angular distribution and in A3 of the
total cross section is typical for the production of two spin-zero
particles (here, the Z boson is almost a Goldstone boson).

12



2.2 The vector boson fusion mechanism:

(l M>M - M2) , , ( ,
Mv

Using the relations (^7^ = </=({— rf\ ocm e ~0 and g

2 = 4e4M^/^2

Tr {{7l/(i; - a75) ^7^(1; - a75)
Tr %Y(v ~ ^75) ^27M(^ - 075)

=

D\D\ (v2 + a2)Tr ^7^ tf2^ - 2vaTr

Performing the trace and product using

1 | M | 2 =
with ^5 = (v2 + a2)2 + 4aV and gA = (v2 + a2)2 -

Let's write the momenta of the particles in a convenient way:

h = (E,0,0,E) ,pi = (yxlE2 + p%,vprism9upTicos9uxiE)

l2 =
13



and assume high energies 5 ̂ > Mv so that pn,T2/E are rather small:

h-Pi ~ PTi/^Xi , h-P2 ~ 2E2x2 , h-Pi ~ 2E2xi , px.p2 ~ 2E2x1x2

hold, together with 2li.l2 = s and the Higgs momentum squared:

Mn = (q-pi- p2)
2 = s - 2q.p1 - 2q.p2 + 2p1.p2 = s(l - ^i)(l - x2)

Using these products, one has then for the amplitude squared:

1 2 _ 32e^4 iE\gs + gA)xlx2
A \ M \ — ..•>. X

* (gs
 2\l

X

2

(p2
T1 + T ^ / 2 , ) ^ ^ + x2M,|.)2

Let us now deal with the three body phase space:

Defining rjy = M^/s and using the known relation for 6 functions:

^- = Jd4pS(p2 - Ml) = Jd*pS[8(l - xO(l - x2) - srH]

and decomposing the momenta along the 3 directions, one obtains:

d P S 3 ^

Noting that /dP
2
T,/(p2

Tl + XiM
2 f = n fo°°d//(p2 + x,-M2 f = n2/(x{M

2)
and using Mw = ev/{2sw), the differential cross section is given by:

SeQMv \ 2 3 3 1 dzi dx2 7T2

sS[s(l -

14



Now perform the integrals using JS[f(x)] = \f{%)\x=XQ with f(x0) = 0

• l -Tf f

1 —
Tff

Tff

5(1 —

= (1 + r^log— - 2(1 - TH)
T

where the boundary conditions are obtained by requiring that
Piz = Viz = xij2E = 0 => xi = 0 and x2 = l-rH/(l-xi) = 0 -» xx = l-rH.
Collecting all results, one obtains then the total cross section :

2M&
9A) - 2(1 - TH)

Let us now make a few remarks:

• The cross section rises as log(s/Mjy): small at low y/s and large
at high y/s. Dominant Higgs production process for s^MH.

• This approximation is good only within a factor of 2 and works
better at higher energies. It can be obtained in an easier way
using the effective longitudinal vector boson approximation.

• In the case of WW fusion, gs = 8/(2A/2)4 = 1/8 and QA = 0, one has:

a(e e —> Hvv) = TH)l0
2

1V1H

• At LEP2 energies, y/s ~ 200 GeV, the cross section is a ~ 5(2)-10 3

pb for MH = 100(115) GeV, i.e. less than one event for / £ = 100
p b 1 . This process is not very useful for Higgs searches at LEP2.

For ZZ fusion with 1/4, gs a>
x 9): the cross

section a(e+e —>• e+e H) is ~ 9 times smaller than for WW fusion.

*This calculation, including details is done in: G. Altarelli, B. Mele and F. Pitolli, Nucl. Phys. B287 (1987) 205.

15



3. Higgs bosons production in hadronic Collisions

3.1 The gluon—gluon fusion process
X

P

9
9

P

H

X
The cross section of the subprocess, gg —> H, is given by:

1
d " = 2 l X 2 : . 8 - 2 . 8x \MHgg

d3pH

Using the fact that jd3pH/{2EH) = j dApHS(p2
H - M2

H) and that
\MHgg\

2 = 327rM#T(i7 —> gg) calculated before, one obtains for a:

7T2 M

Convolute with gluon densities to obtain the total cross section

a = gg)g{xl)g{x2)5{s - M2
H

r0 JO

with 5 = sx\x2, implying s — M\ = 5(^1^2 — TH) with TH =

a = 1 dx^ I dx<?^~ T(H -^ gg) g{x1)g(x2)S[s(x1x2 - rH)]
r0 JO

We perform the integral on x2 [f S[f(x)] = \f{x)\x=XQ with f(x0) = 0]

rrTT Y{H —> aa) rff / —g(x)g(x/rH) =rH

X 7T dr?

where the integration bounds are x™ax = l,xfm = £i(for x2 = 1) = r.
At LHC, ̂  luminosity is large and gg ̂  H dominant process!

Calculation to be checked!!!

16



3.2 The Higgs strahlung and vector boson fusion process

The cross sections for these processes are the same as in e+e
collisions, provided that the following changes are performed:
— The total energy yfs is replaced by the subprocess energy s.
— The average over the quark colors is made: factor | • | .
— In the bremsstrahlung process, possibility of qq' —>• W* —>• WH.
— The couplings of the electrons are replaced by those of quarks:

in qq —> VH: a2
e + v2 —>• a2 + v2.

in g<7 —> iiT^: 35,A —> [(^2 + a2){v'2 + a'2) ± 4(av)(aV).
The cross sections for a given initial state, are given by:

A(Aa(q? ^ HV) = f"'v5(1 -

- 2(1 - rH)

Summing over all possibilities for quark/antiquark initial states
and folding with the proper densities, the total cross sections are:

H + X] = V [dXl [dx a[qq' H + X]

Remarks:
• At LHC, qq —> Hqq is the dominant process but not as gg —> H.
• The cross section for qq^HV is OK for low MF; cr(^iy)-27(iJZ).
• At Tevatron, Higgs—strahlung (esp. qq' —>• ifW) more important.

17



E3: Divergences and Symmetries

1. Lagrangians and interactions

• Take QED Lagrangian for a fermion of charge e and mass m:

with A/j, and F^ = d^Ay — dyA^ the electromagnetic field and tensor.
U(l) gauge invariance: no A^A11 term so that photon is massless.

• Let's add a scalar field </>:

£* = \d»<j>\2 - m2
s\4>\2 + \{4>+4>f

which leads to a spontaneously broken symmetry (SSB), (0) = -T=,

and we write <j) = {HJrv)/y2 with H being the physical Higgs boson.

• And couple this field to a fermion / (a la Yukawa):

After SSB, the fermion acquires a mass rrif = Xfv/y/2.

• Let us introduce two scalar fields fa and

Am = \d^fa\2 + \d^fa\2 - m\\fa\2 - m\\fa\2

they will have a coupling to the scalar field </> after SSB:

Plus, eventually, terms in fafa that we take zero for simplicity.

18



2. Self-energy of the electron and photon

Electron self—energy 7

d4k

- Perform the Dirac Algebra: 7 ^ + 7 ^ = 2 ^ , etc...
- Symmetrisation: l/a& = JQ dx/[a + (6 — a)^]2+change of variable.
— Switch to Euclidean space with Wick rotation ho —>iko, k2—)> — A;2.
— Integrate over momentum (symmetric integrand and regul.):

J^ d4k F(k2) = 7T2 /0
A2 dk2 k2 F(k2)

Definition of the correction to the mass: 5me = Y>e('$)\p=m:

I dx{l + x) I dyy[y + m2
ex

2\m e f f
^ / d{l ) I d[ 2x2]~2

live

8TT

3n A2

mi
H =

3a , A2

4TT m

UV divergence (at large A;2) logarithmic.
In principle A = 00 =^ renormalization: mfys = m™ + Sme.
But QED valid up to GUT (MP) scale, i.e. A = MGUT(MP).
Correction logarithmic AND proportional to rae, therefore small:

Sme ~ 0.2me for A ~ MP - 1019 GeV.

More fundamental: correction small due to chiral symmetry:
if me = 0, £QED is invariant under the chiral transformation:

ipi —>• et^L'\\)iJ and ^ —>• &®RI\)R with ^L,/? = 1/2(1 =F 75)'0.
But me breaks the chiral symmetry —>• correction oc to the mass.

Symmetry = protection for the mass.

19



Photon self-energy

We already made the calculation and we reached the level where:

dx / ydy
ro Jo

[\y2 + m2 - x(l - x)p2]gllu + 2^(1 - .

[y + m2 — p2x{\ — x)]2

using usual tricks and a cut—off A for integral on k2, one gets

u a
A2

16TT2

But we must have ra7 = 0 at all orders because of gauge invariance.

Problem: the cut—off A2 violates the QED gauge invariance.

Solution: dimensional regularization, preserves gauge invariance!
We work in a space-time of n = 4 — e dimensions:
— Internal momentum in n dim: f dnk/(27r)n etc...
— Dirac algebra in n dim: Tr(7) = n.7,,7^ = nl. off = n. etc..
— UV divergence: poles in l/(n — 4) = 1/e with e —>• 0.

In this case, one would have for the integral:
A(m2) = J[k2 — ra2]"1 ^ am2/e + • • • = > • m2dA/d2m2 ~ am2/e.

With this regularization, Sm^ = 0 at all orders: =>> massless photon.

Another example of a protection for a mass by a symmetry...

20



3. Higgs boson self-energy

Fermionic contributions:

H f \ H

(2TT)

Usual calculation. Simpler: p2 = M\ = 0 (fermion heavy compared
to MH)' Using a cut—off A for the integral on k2, one obtains:

dx [A2 dy P

After the trivial integral on x and the one on y, one gets:

A 2 A
AM2

H = = Nf-t- [ - A2 + 6m2log 2m2] + O(l/A2)
STT2 L mf

We have thus a quadratic divergence, SMjj ~ A2.

Divergence is independent of M#, and does not disappear if M#=0:
The choice M#=0 does not increase the symmetry of £SM«

Here, the cut-off does not break any symmetry and the problem is
not solved with dimensional regularization (though we have only
poles in 1/e and the quadratic divergence is not apparent).

If we fix the cut-off A to MGUT or MP: => MH ~ 1014 to 1017 GeV!
The Higgs boson mass prefers to be close to the very high scale:

This is the hierarchy problem.

21



But we want a light Higgs ( ;$ 1 TeV) for unitarity etc... reasons
We need thus to make: M^|physical = MH\° + AMH + countreterm
And adjust this counterterm with a precision of 1030 (30 digits)!

This is the naturalness problem.

In a complete theory, no problem formally: we adjust the bare
MH and the counterterm which are infinite, to have the physical
finite mass. This is the case of the log divergence of me in QED.
However, we want to give a physical meaning to the cut—off A and
the logarithmic and quadratic divergences are of different nature.

In the Standard Model:
besides the fermions, there are also contributions to MH from the
massive gauge bosons and from the Higgs boson itself:

W,Z,H[
W,Z,H

H H V H

W,Z,H

Total contributions of fermions and bosons in the SM at one-loop:

AAff oc [3(714, + M2
Z + M|)/4 -

We can adjust the unknown MH SO that the quadratic divergence
disappears (would be a prediction for Higgs mass, MH ~ 200 GeV).

However: does not work at two—loop level or at higher orders....

Summary: the problem of the quadratic divergences to MH is there.
There is no symmetry which protects MH in the SM.
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The contributions of (2) scalars

AM2
H = Ej

+Ns{iXsv)2

= (i)Ns

dAk

(2TT)4

4>

d4k

|

k2 — m l k2 — m'2_\

— m

And here, really simple calculation... We get after integration:

16TT 2

16?r2

Again, quadratic divergences. But let us now assume:

• Scalar couplings related to fermion couplings: Â  = — Xs (!).
• Multiplicative factors are the same: N$ = Nf (nb: 2 scalars!).
• To simplify, the scalars have the same mass: mi = m2 =

Let us now add the fermionic and scalar contributions:

AMH
tot - m|)Iog(

The quadratic divergences have disappeared in the sum!!
Logarithmic divergence still there, but even with A = Mp, contri-
bution small. It disappears also if in addition we have = rrif\rrif

Symmetry fermions-scalars —>• no divergence in A2

"Supersymmetry" no divergences at all: MH is protected!

23



E4: Higgs masses and couplings in the MSSM

1. The MSSM Higgs boson masses

To obtain the physical Higgs fields and their masses from

VH = \H+\2)
2) + ml he)

Q V I I II I Z I Z / Q

develop î i = (i/J, iiT-j") and H2 = (#2", ^2) into real (corresponding
to CP-even and charged Higgses) and imaginary (CP-odd Higgs
and Goldstones) parts and diagonalize the mass matrices:

- 1&V-

To obtain the masses and mixing angles, two useful relations are:

Tr(M2) = M2 +

sin 29 = —, , cos

Det(.M2) = M\M\
Mn - M22

where Mi and M2 are the physical masses and 6 the mixing angle.

The procedure in the case of the CP-even Higgs bosons:

The neutral part of the scalar potential is (drop subscripts ...):

VH = m?|#i|2 + rnl\H2\
2 + m2(H1H2 + he) | 2 2 2 2

First perform the first derivative of the scalar potential:

% = 2m\Ex + 2m\E2 + M2
z/v

2 EX(U\ - E\)

dVff/dH^ = 2m2
2H2 + 2m\Ex + Mz/v

2 H2{H2 - H{)
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At the minimum,

ra\ = -mgtan/3 Mf cos(2/3) , m\ = -

2 = 0, leading to the two relations:

+ hA\ COS(2/3)

Then make the second derivative with respect to Hi and H2:
d2V}H

d2V
H

= 2m\

= 2ml +

d2V H

M]

v2

Ml

-Hi = 2m[ + M|(34 - s$)

- H2 + 2H2H2) = 2m2
2 + M2

z{3sl - c

(-2HM) = - M | sin

Using the previous relations for 777,! and 777,2 in terms of 777,3 and
z, we then obtain the mass matr ix for the C P even Higgs bosons:

—777,3 tan (3 + M\ COS2 j3 m\ — M\ sin (3 cos
777,gM|- Sill p COS p — 777,gCOtp + M | Sill

In the case of the CP—odd Higgs boson: use the same expressions
for d2V/dH®dH® as above but set the fields to zero at the minimum:

—777,3 t a n j3 m

Since DetA42 = 0, one eigenvalue is zero (the Goldstone) while the
other one corresponds to the mass of the pseudoscalar Higgs:

M\ = -TT^Ktan/? + cot/?) = -2ml/sin 2/3

The mixing angle 6 is, in fact, just the angle f3\

sin26> = 2

1
"2

COS

= 2

-V2

-2/3 + 4

1
"2

J M
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In the case of the charged Higgs boson, same excercice:

G± H-±cos j3 sin j3
— sin (3 cos /3

with a massless charged Goldstone and a charged Higgs with mass:

M2
H± =

into M2:Back to the CP-even Higgsses: inject expression of MA into MR:

M\ sin2 p + M\ cos2 (3 - [M\ + Mz) sin (3 cos (3
- (M2

A + Ml) sin (3 cos # M2, cos2 6 + Ml sin2 6

Calculating determinant and trace, one obtains for the masses:

TrA4 = M\s2 + Mzc
2 + M\c2 + M|5

2 = M2
A + M | = M;

To obtain the CP—even Higgs masses, solve the equation:

Ml(M2
A+M2

7-Ml) = M2
AM2

7clo => Mt-Ml(M2
A+M2

7)+M2
AM2

7clR = O
11 \ J~x ZJ 10/ T\ ZJ A^J IL I V \ J~\. ZJ / Jr\ ZJ LJ[J

with discriminant A = (M\ + M2
z)

2-AM\Mzcos22(3, the two solutions
are: M\H = \(M\ + Mz =p \/A) giving (h is the lightest Higgs):

2
h

Mf)2 - 4M2M|cos2

The mixing angle a which rotates the fields is ( — | < a < 0)

- (M 2 + M2) sin 2^ = t a n 2 / ? M2 + M2

M i - A ^ 2 2 ( M f - M 2 ) cos2^
We see that we have an important constraint on the lightest h
boson mass in the MSSM:

Mh < mm(MAl Mz)
26
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besides some other (alos important) relations:

MH > max(Mj4, Mz) and MH± > Mw

If we send MA to infinity, we will have for the Higgs masses and a:

Mh ~ Mz\ cos 2(3\ , MH ~ MH± ~ MA , a ~ /?

This is the decoupling regime: all Higgses are heavy except for h.

The h boson is lighter than Mz and should have been seen at LEP2
(we have V

/^LEP2 ~ 2 0 0 G e V > Mh + Mz ~ 180 GeV).
So what happened in this case? Maybe the MSSM is ruled out?

No! This relation holds only at first order (tree-level): there are
strong couplings involved, in particular the hit and hit couplings.

=>> Calculation of radiative corrections to Mh necessary.
We have to include the important corrections due to top (s)quarks.

2. Calculation of radiative corrections to Mh

Let us do the calculation, but with some simplifications:
- take the (decoupling) limit MA ->> 0 and use tan/? > 1 (M^ax)
- assume no stop mixing and same masses, m^ = mt~2 = m^
- simple couplings: hit ~ hit ~ \u hhi*i ~ X^ with A* = V2mt/v
- work in the limit Mh <C mt, m^.

In addition to two—point functions including fermion/scalar loops,
we have also tadpole contributions (counterterm corrections):
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h h h / % h h h

h

The calculation is almost already done: for two—point function:

AM,h

For the tadpole contributions, the calculation is very simple:

= iNf
v -Ml j

V

V^U167T2 Jo

Using \s=-\2
c=-2m2

c/v and /

3A?

m 16TT2
dy-

= A2 — m2log(A2/m2), one ob ta ins

) -m2log(—AMi = -

The total correction to the h boson mass is then given by:

AM? = t m+ m,
M2 °ml

Its depends on m^ and log(ra~/ra2), and is large: M™ax —>• M̂ - + 40
GeV! This explains why the h boson has not been seen at LEP2.
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3. The Higgs boson couplings

Can be derived by looking at the relevant parts of the Lagrangian.
Here will discuss briefly couplings to Higgs bosons, massive gauge
bosons and fermions.

Trilinear and Quartic scalar couplings

The trilinear (3 fields) et quartic (4 fields) couplings among Higgs
bosons can be obtained from the scalar potential VH by making:

2
ijk

94V
H

with the Hi expressed in terms of the fields h, H, A, i7± and G°,G±

with rotations of angles f3 et a. Examples (unit: Ao = —%M\jv)\

= 3 cos 2a sin(/7 + a) + rad. corr.

= 3 cos2 a/Af| + rad. corr. (in units of A

In the decoupling limit, MA ̂ > Mz we have a —>• j3 — TT/2:

Xhhh -> 3 cos2 (2^) = 3M2/Mf = A3|MS
2 = 3 M 2 / M l = A4

MS

In the decoupling limit, MA >̂ -Mz, the Higgs potential of the
MSSM becomes like the one of the SM: only one light Higgs with a
mass Mh ^ 130 GeV and with standard interactions. All other Hig-
gsses are heavy and decouple (but self-couplings are non-zero).
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Couplings to gauge bosons:

Higgs couplings to massive gauge bosons are obtained from the
kinetic terms of H\ et H2 in the SU(2)L X U(1)Y Lagrangian:

*-'kin.

Develop D^ and make the usual transformations on the fields:

-> W±
1 Z, 7 ; H12 -> h, H, A, H±, G°, G± via rotations f3, a

= coefficients dehiV^V^ (g^)

= coefficients de

= coefficients de

Some very important couplings for Higgs phenomenology:

cos((3 -
cos6w %

H : igMw

7 massless: no coupling with the neutral Higgsses at tree-level.
CP invariance: no ZZA and Zhh, ZHh, ZHH couplings e.g.
Couplings of h and H complementary: g\zz + g\zz ~ #MS*

Decoupling limit {MA —>• cxo, a —>- /3—|): sin(^—a) —>• 1, cos(/?—a) —>• 0:
y = 0 (=
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Yukawa couplings to fermions:

The Higgs couplings to fermions come from Super potential W:

W= * Yl
%2

i,j=gen

with £Yuk = —\ ^ + h.c.] evaluated in terms of Hi, H2.

Take bilinears out, digagonal Y matrices Y with relations to masses,
and expressings H\,H2 in terms of the physical fields, we get:

gml

2MW sin (3
gmd

2MW cos (3

9

[uu(H sin a + h cos a) — iwy^u A cos /3]

H cos a — h sin a) — id^^d A sin /?]

f 7 5) H ^:f 1 + /7K>)ld + hetan

Couplings in termsof those of Hsu [factor —(i)grrif/2Mw = —irrif/v]
and their values in the decoupling limit [cos a —>• sin /?, sin a —>• — cos/?]:

d

cos a / sin /3 —> 1
— sin a/ cos /? —>• 1

9ffH
sin a / sin ̂  —>• — tan (3

cos a/ cos /? —>• tan (3

9ffA
cot ^
tan/3

— The couplings of i7± have the same intensity as those of A.
— For tan/3 > 1: Cplgs to d enhanced, cplgs to u suppressed.
- For tan/3 >̂ 1: couplings to b quarks b (rattan/?) very strong.
- For MA > Mz: h couples like the SM Higgs boson and H like A.
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