SCHOOL ON PHYSICS AT LHC: "EXPECTING LHC"
 11-16 September 2006

Higgs bosons searches at LHC Part IV

(Excercises)

Abdelhak DJOUADI
Lab. de Physique Theorique (LPT Orsay)
Univ. Paris-Sud XI
Orsay Cedex, France

Higgs bosons at the LHC
 Abdelhak DJOUADI (LPT Orsay)

EXERCISES

Exercise I: Basic calcultaional rules

1. Vertices and propagators
2. Dirac algebra
3. Cross sections and decay widths
4. Calculation of loop integrals.

Exercise II: Higgs boson production and decay mechanisms.

1. Higgs decays into fermions and gauge bosons
2. Higgs production in $e^{+} e^{-}$collisions
3. Higgs production in hadronic collisions
4. Higgs contributions to radiative corrections.

Exercise III: Divergences and symmetries.

1. Lagrangians and interactions
2. Electron and photon self-energies
3. Higgs boson self-energy: fermion loops
4. Higgs boson self-energy: scalar contributions.

Exercise IV: Higgs masses and couplings in the MSSM.

1. Derivation of the Higgs boson masses in the MSSM
2. Radiative corrections to the Higgs boson masses
3. The MSSM Higgs boson couplings

For details on phneomenology, see AD: The anatomy of EWSB hep-ph/0503172 (SM) and hep-ph/0503173 (MSSM), to appear in Physics Reports.

E1: Basic Calculational Rules

1. Vertices and propagators

Rules for fermions:

$$
\begin{aligned}
& u_{s}\left(p_{i}\right) \\
& \bar{v}_{s}\left(-p_{i}\right) \\
& \Sigma_{s} u_{s}(p) \bar{u}_{s}(p)=\not p+m \quad, \Sigma_{s} v_{s} v_{s}(p) \bar{v}_{s}(p)=\not p-m \\
& \frac{i}{p \nrightarrow m}=i \frac{p \not p^{2}-m^{2}}{p} \\
& v_{s}\left(-p_{f}\right) \\
& \bar{p}_{f} \\
& \bar{u}_{s}\left(p_{f}\right) \\
& p_{p}
\end{aligned}
$$

Rules for gauge bosons:

$$
\epsilon_{\mu}(q) \quad{ }_{\mathrm{pol}}=\epsilon_{\nu}^{*} \epsilon_{\mu}=-\left(g_{\mu \nu}-q_{\mu} q_{\mu} / M_{V}^{2}\right)
$$

For the photon, discard everything which is longitudinal ($q^{\mu} q^{\nu}$) above. Note that the trasversality of the photon implies: $\epsilon_{\mu} \cdot q^{\mu}=0$.

Rules for Higgs bosons: H

$$
\text { Is: } H
$$

2. Diracology: contractions and traces of γ matrices

Basic relations:

$$
\begin{aligned}
& \left\{\gamma_{\mu}, \gamma_{\nu}\right\}=\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=2 g_{\mu \nu} \quad \text { and } \quad \not p=p_{\mu} \gamma^{\mu} \\
& \gamma_{5}=\frac{i}{4!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \text { and }\left\{\gamma_{\mu}, \gamma_{5}\right\}=0 \\
& \operatorname{Tr}(\mathbf{1})=4, \operatorname{Tr}\left(\gamma_{\mu}\right)=0, \operatorname{Tr}\left(\gamma_{5}\right)=0 \\
& \operatorname{Tr}\left(A_{1} A_{2}\right)=\operatorname{Tr}\left(A_{2} A_{1}\right), \operatorname{Tr}\left(A_{1} A_{2} \cdots A_{N}\right)=\operatorname{Tr}\left(A_{2} \cdots A_{N} A_{1}\right)
\end{aligned}
$$

Contractions of γ matrices

$$
\begin{aligned}
\gamma_{\mu} \gamma^{\nu} & =2 g_{\mu}^{\nu}-\gamma_{\mu} \gamma^{\nu} \Rightarrow \gamma^{\mu} \gamma_{\mu}=\delta_{\mu}^{\mu}=4 \\
\gamma^{\mu} \gamma_{\nu} \gamma_{\mu} & =\gamma^{\mu}\left(2 g_{\mu \nu}-\gamma_{\mu} \gamma_{\nu}\right)=2 \gamma_{\nu}-4 \gamma_{\nu}=-2 \gamma_{\nu} \\
\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\mu} & =\left(2 g^{\mu \nu}-\gamma^{\nu} \gamma^{\mu}\right)\left(2 g_{\mu}^{\rho}-\gamma_{\mu} \gamma^{\rho}\right) \\
& =4 g^{\nu \rho}-2 \gamma^{\nu} \gamma^{\rho}-2 \gamma^{\nu} \gamma^{\rho}+4 \gamma^{\nu} \gamma^{\rho}=4 g^{\nu \rho}
\end{aligned}
$$

Traces of γ matrices:
$\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=\operatorname{Tr}\left(2 g^{\mu \nu}-\gamma^{\mu} \gamma^{\nu}\right)=2 g^{\mu \nu} \operatorname{Tr}(1)-\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right) \Rightarrow \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}$ Trace of an odd number n of γ matrices (using $\gamma_{5}^{2}=1$):

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu_{1}} \cdot \gamma^{\mu_{n}}\right)=\operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}} \gamma^{5} \gamma^{5}\right)=(-1) \operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{5} \gamma^{\mu_{n}} \gamma^{5}\right) \\
& =(-1)^{n} \operatorname{Tr}\left(\gamma^{5} \gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}} \gamma^{5}\right)=-\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}} \gamma^{5}\right) \\
& \Rightarrow \operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}}\right)=0 \\
& \quad \operatorname{Tr}\left(\gamma^{\mu} \gamma_{5}\right)=\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \gamma_{5}\right)=\operatorname{Tr}\left(\gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}} \gamma^{5}\right)=0 \\
& \quad \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right)=\frac{1}{4} \operatorname{Tr}\left(\gamma^{\alpha} \gamma_{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{5}\right)=(1 / 4) \operatorname{Tr}\left(\gamma_{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{5} \gamma^{\alpha}\right) \\
& \quad=-(1 / 4) \operatorname{Tr}\left(\gamma_{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma_{5}\right)=-\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right)=0
\end{aligned}
$$

Using the same tricks as above, proof the trace of 4γ matrices:

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(g^{\mu \nu} g^{\rho \sigma}+g^{\mu \sigma} g^{\nu \rho}-g^{\mu \rho} g^{\nu \sigma}\right) \\
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{5}\right)=-4 i \epsilon^{\mu \nu \sigma \rho}
\end{aligned}
$$

3. Cross sections and decay widths

The differential cross section for a $2 \times n$ process $i_{1} i_{2} \rightarrow f_{1} \cdots f_{n}$ is

$$
\mathrm{d} \sigma=\frac{\left|M\left(i_{1} i_{2} \rightarrow f_{1} . . f_{n}\right)\right|^{2}}{4\left[\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}\right]^{1 / 2}}\left(\Pi_{n} \frac{d^{3} p_{f}}{(2 \pi)^{3} 2 e_{f}}\right)(2 \pi)^{4} \delta^{4}\left(\Sigma p_{i}-\Sigma p_{f}\right) S
$$

- In the amplitude squared $|M|^{2}$, one has to average (sum) on degrees of freedom (polarisation, color) of initial (final) particles.
- There is a symmetry factor $S=1 / n$! for n identical particles.
- The flux factor is $2\left(p_{1}+p_{2}\right)^{2}=2 s$ for $2 \rightarrow n$ process with $m_{1}=m_{2}=0$.

It is $2 M$ for the decay of a particle with a mass M ($1 \rightarrow n$ process). Calculation of phase-space for a two-body process $a+b \rightarrow f_{1}+f_{2}$:

$$
\begin{aligned}
& \mathrm{dPS} 2=\frac{1}{16 \pi^{2}} \frac{d^{3} p_{1}}{e_{1}} \frac{d^{3} p_{2}}{e_{2}} \delta^{4}\left(p_{a}+p_{b}-p_{1}-p_{2}\right) \\
& \quad \int \frac{d^{3} p_{2}}{e_{2}} \delta^{4}\left(p_{a}+p_{b}-p_{1}-p_{2}\right)=\frac{1}{e_{2}} \delta\left(e_{a}+e_{b}-e_{1}-e_{2}\right)
\end{aligned}
$$

with: $\quad\left|\vec{p}_{2}\right|=\left|\vec{p}_{a}+\vec{p}_{b}-\vec{p}_{2}\right|$ and $e_{2}^{2}=\left|\vec{p}_{2}\right|^{2}+m_{2}^{2}$
and $\quad \mathrm{d}^{3} p_{1}=\mathrm{d} \Omega\left|p_{1}\right|^{2} \mathrm{~d}\left|p_{1}\right|$ with $e_{1}^{2}=\left|\vec{p}_{1}\right|^{2}+m_{1}^{2}$
In the c.m. frame: $w=e_{a}+e_{b}, w^{\prime}=e_{1}+e_{2}=\left(m_{2}^{2}+p^{2}\right)^{\frac{1}{2}}\left(m_{1}^{2}+p^{2}\right)^{\frac{1}{2}}$:

$$
\begin{aligned}
& \frac{\mathrm{d} w^{\prime}}{\mathrm{d} p}=p\left(\frac{1}{e_{1}}+\frac{1}{e_{2}}\right) \Rightarrow \mathrm{d} w^{\prime}=p \mathrm{~d} p\left(\frac{1}{e_{1}}+\frac{1}{e_{2}}\right)=e_{1} \mathrm{~d} e_{1} \frac{e_{1}+e_{2}}{e_{1} e_{2}} \\
& =\frac{\mathrm{d} \Omega}{16 \pi^{2}}|p| \frac{e_{1} \mathrm{~d} e_{1}}{e_{1} e_{2}} \delta\left(w-w^{\prime}\right)=\frac{\mathrm{d} \Omega}{16 \pi^{2}}|p| \frac{\mathrm{d} w^{\prime}}{w^{\prime}} \delta\left(w-w^{\prime}\right) \Rightarrow \frac{\mathrm{d} \Omega}{16 \pi^{2}} \frac{|p|}{\sqrt{s}}
\end{aligned}
$$

(for the last equality, the integral over $\mathrm{d} w^{\prime}$ has been performed). The differential cross section for a two body process is then:

$$
\frac{d \sigma}{d \Omega}=\frac{1}{2 s} \times \Sigma\left|M\left(i_{1} i_{2} \rightarrow f_{1} f_{2}\right)\right|^{2} \times \frac{1}{16 \pi^{2}}\left(\frac{|p|}{\sqrt{s}}\right) \times S
$$

Note that $\left.|p|=\frac{1}{2} \sqrt{s} \lambda=\frac{1}{2} \sqrt{s}\left[1-m_{1}^{2} / s-m_{2}^{2} / s\right)^{2}-4 m_{1}^{2} m_{2}^{2} / s^{2}\right]^{\frac{1}{2}}$.
4. Calculation of loop integrals

- Measure of loop integral over internal momentum: $\int \mathrm{d}^{4} k /(2 \pi)^{4}$.
(For fermion loops: take trace and factor (-1) for Fermi stats).

$$
\begin{aligned}
& -i \Gamma=(i g)^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \frac{i}{(p+k)^{2}-m^{2}} \frac{i}{k^{2}-m^{2}} \\
& \Rightarrow \Gamma=i g^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \frac{1}{(p+k)^{2}-m^{2}} \frac{1}{k^{2}-m^{2}}
\end{aligned}
$$

- Symmetrize the integrand using: $1 / a b=\int_{0}^{1} \mathrm{~d} x /[a+(b-a) x]^{2}$

$$
\Gamma=i g^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \int_{0}^{1} \mathrm{~d} x \frac{1}{\left(k^{2}+2 p k x+p^{2} x-m^{2}\right)^{2}}
$$

- Shift variable $k \rightarrow k^{\prime}=k+p x$ (integrand becomes k^{2} symmetric)

$$
\Gamma=i g^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \int_{0}^{1} \mathrm{~d} x \frac{1}{\left(k^{2}+p^{2} x(1-x)-m^{2}\right)^{2}}
$$

- Wick rotation $k_{0} \rightarrow i k_{0}$ to go to Euclidean space $\left(k^{2} \rightarrow-k^{2}\right)$

$$
\Gamma=-g^{2} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \int_{0}^{1} \mathrm{~d} x \frac{1}{\left(k^{2}-p^{2} x(1-x)+m^{2}\right)^{2}}
$$

- Polar coordinates for $\mathrm{d}^{4} k: \int_{-\infty}^{+\infty} d^{4} k F\left(k^{2}\right)=\pi^{2} \int_{0}^{\infty} d k^{2} k^{2} F\left(k^{2}\right)$

$$
\Gamma=-\frac{g^{2}}{16 \pi^{2}} \int_{0}^{1} \mathrm{dx} \int_{0}^{\infty} y \mathrm{~d} y \frac{1}{\left(y-p^{2} x(1-x)+m^{2}\right)^{2}}
$$

- Perform the integrals over the variables y and x :
- If integral divergent: cut-off at the energy $\Lambda\left(\int_{0}^{\Lambda^{2}} \mathrm{~d} k^{2}\right)$.
- Eventually, use the on-shell mass relation $p^{2}=m^{2}$.

E2: Higgs production and decay mechanisms

1. Higgs bosons decays
1.1 Decays into fermions: $H \rightarrow f \bar{f}$

$$
\sum_{s_{1}, s_{2}} M M^{\dagger}=N_{c}\left(\frac{m_{f}}{v}\right)^{2} \sum_{s_{1}, s_{2}} \bar{v}^{s_{2}}\left(-p_{2}\right) u^{s_{1}}\left(p_{1}\right) \bar{u}^{s_{1}}\left(p_{1}\right) v^{s_{2}}\left(-p_{2}\right)
$$

with $N_{c}=3(1)$ for quarks (leptons). Only one polarisation for H.

$$
\begin{aligned}
\left(v / m_{f}\right)^{2} / N_{c} \times \Sigma|M|^{2} & =\operatorname{Tr}\left(\not p_{1}+m\right)\left(-\not p_{2}-m\right) \\
& =\operatorname{Tr}\left(\gamma_{\mu} p_{1}^{\mu}+m\right)\left(-\gamma_{\nu} p_{2}^{\mu}-m\right) \\
& =-p_{1}^{\mu} p_{2}^{\mu} \operatorname{Tr}\left(\gamma_{\mu} \gamma_{\nu}\right)-m^{2} \operatorname{Tr}(1) \\
& =-4 p_{1} \cdot p_{2}-4 m^{2}
\end{aligned}
$$

Using $q^{2}=\left(p_{1}-p_{2}\right)^{2}=2 m_{f}^{2}-2 p_{1} \cdot p_{2}=M_{H}^{2}$ and defining the velocity of the final fermions $\beta_{f}=2\left|p_{f}\right| / M_{H}=\left(1-4 m_{f}^{2} / M_{H}^{2}\right)^{1 / 2}$

$$
\Rightarrow \Sigma|M|^{2}=N_{c}\left(m_{f} / v\right)^{2} 2\left(M_{H}^{2}-4 m_{f}^{2}\right)=2 N_{c}\left(m_{f}^{2} / v^{2}\right) M_{H}^{2} \beta_{f}^{2}
$$

The differential decay width is then simply given by:

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \Omega}=\frac{1}{2 M_{H}} \times \Sigma|M|^{2} \times \frac{1}{32 \pi^{2}} \times \frac{2\left|p_{f}\right|}{M_{H}}
$$

Integrating over $\mathbf{d} \Omega=\mathrm{d} \phi \mathrm{d} \cos \theta$ (and since there is no angular dependence, $\int d \Omega=4 \pi$), one obtains the partial decay width:

$$
\Gamma(H \rightarrow f \bar{f})=N_{c} \frac{m_{f}^{2}}{v^{2}} \frac{M_{H}}{8 \pi} \beta_{f}^{3}
$$

H decays dominantly into heaviest fermion and width $\propto M_{H}$.
1.2 Decays into massive gauge bosons

$$
\begin{aligned}
& q \quad \sim V_{\mu}\left(p_{1}\right) \quad-i M=\epsilon_{\mu}^{*}\left(p_{1}\right)\left(-2 i M_{V}^{2} / v g^{\mu \nu}\right) \epsilon_{\nu}^{*}\left(-p_{2}\right) \\
& \imath_{V_{\nu}\left(-p_{2}\right)} \quad+i M^{\dagger}=\epsilon_{\mu^{\prime}}\left(p_{1}\right)\left(-2 i M_{V}^{2} / v g^{\mu^{\prime} \nu^{\prime}}\right) \epsilon_{\nu^{\prime}}\left(-p_{2}\right) \\
& \sum_{\text {pol }}|M|^{2}=\frac{4 M_{V}^{4}}{v^{2}} g^{\mu \nu} g^{\mu^{\prime} \nu^{\prime}} \sum_{\mathrm{pol}} \epsilon_{\mu}^{*}\left(p_{1}\right) \epsilon_{\mu^{\prime}}\left(p_{1}\right) \sum_{\mathrm{pol}} \epsilon_{\nu}^{*}\left(-p_{2}\right) \epsilon_{\nu^{\prime}}\left(-p_{2}\right) \\
& \left(v^{2} / 4 M_{V}^{4}\right) \Sigma=g^{\mu \nu} g^{\mu^{\prime} \nu^{\prime}}\left(g_{\mu \mu^{\prime}}-p_{1 \mu} p_{1 \mu^{\prime}} / M_{V}^{2}\right)\left(g_{\nu \nu^{\prime}}-p_{2 \nu} p_{2 \nu^{\prime}} / M_{V}^{2}\right) \\
& =\left(g_{\mu \mu^{\prime}}-p_{1 \mu} p_{1 \mu^{\prime}} / M_{V}^{2}\right)\left(g^{\mu \mu^{\prime}}-p_{2}^{\mu} p_{2}^{\mu^{\prime}} / M_{V}^{2}\right) \\
& =4-p_{1}^{2} / M_{V}^{2}-p_{2}^{2} / M_{V}^{2}+\left(p_{1} \cdot p_{2}\right)^{2} / M_{V}^{4} \\
& =\left(M_{H}^{4} / 4 M_{V}^{4}\right)\left[1-4 M_{V}^{2} / M_{H}^{2}+12 M_{V}^{4} / M_{H}^{4}\right]
\end{aligned}
$$

The differential decay width, $\frac{\mathrm{d} \Gamma}{\mathrm{d} \Omega}=\frac{1}{2 M_{H}} \times|M|^{2} \times \frac{1}{32 \pi^{2}} \frac{2\left|p_{V}\right|}{M_{H}} \times S$, with $S=\delta_{V}=\frac{1}{2}$ for two identical final Z bosons. This finally gives $\left(\int \mathrm{d} \Omega=4 \pi\right):$

$$
\Gamma(H \rightarrow V V)=\frac{\delta_{V} M_{H}^{3}}{16 \pi v^{2}}\left(1-\frac{4 M_{V}^{2}}{M_{H}^{2}}\right)^{1 / 2}\left(1-4 \frac{M_{V}^{2}}{M_{H}^{2}}+12 \frac{M_{V}^{4}}{M_{H}^{4}}\right)
$$

The dependence on M_{V} is hidden, since $v \equiv 2 M_{W} / g_{2}=2 M_{Z} c_{W} / g_{2}$. For large enough M_{H} [recall that $\left.H \rightarrow f \bar{f} \propto M_{H}\right]$, one has:

$$
\Gamma(H \rightarrow V V) \simeq \delta_{V} M_{H}^{3} /\left(8 \pi v^{2}\right) \Rightarrow \Gamma(H \rightarrow W W) \simeq 2 \Gamma(H \rightarrow Z Z)
$$

The decay widths grows like M_{H}^{3} i.e. is very large for $M_{H} \gg M_{V}$. For small M_{H}, one (two) V bosons can be off-shell, the width is

$$
\begin{gathered}
\Gamma=\frac{\Gamma_{0}}{\pi^{2}} \int_{0}^{M_{H}^{2}} \frac{\mathrm{~d} q_{1}^{2} M_{V} \Gamma_{V}}{\left(q_{1}^{2}-M_{V}^{2}\right)^{2}+M_{V}^{2} \Gamma_{V}^{2}} \int_{0}^{M_{H}^{2}-q_{1}^{2}} \frac{\mathrm{~d} q_{2}^{2} M_{V} \Gamma_{V}}{\left(q_{2}^{2}-M_{V}^{2}\right)^{2}+M_{V}^{2} \Gamma_{V}^{2}} \\
\Gamma_{0}=\frac{\delta_{V} M_{H}^{3}}{8 \pi v^{2}} \lambda^{1 / 2}\left(\lambda-\frac{12 q_{1}^{2} q_{2}^{2}}{M_{H}^{4}}\right), \lambda=\left(1-\frac{q_{1}^{2}}{M_{H}^{2}}-\frac{q_{1}^{2}}{M_{H}^{2}}\right)^{2}-\frac{4 q_{1}^{2} q_{2}^{2}}{M_{H}^{4}}
\end{gathered}
$$

1.3 Decays into photons and gluons: $H \rightarrow \gamma \gamma, g g$

H does not couple to massless particles at tree-level: loop induced. We have vertex diagrams with fermion (top) and W exchange for $H \rightarrow \gamma \gamma(Z \gamma)$; only top for $H \rightarrow g g$: calculation complicated. However it is simple if H momentum is small (i.e. $M_{H} \ll M_{\text {loop }}$):

$$
\begin{aligned}
& -i \mathcal{M}_{\mu \nu}^{H \gamma \gamma}=-\underset{\sim}{\sim}
\end{aligned}
$$

Let's calculate the derivative of the fermionic photon self-energy:

$$
\begin{gathered}
-i \Pi_{\mu \nu}^{\gamma \gamma}\left(p^{2}\right)=N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}}(-1) \operatorname{Tr}\left(-i e e_{f} \gamma_{\mu}\right) \frac{i}{\not \nmid x-m}\left(-i e e_{f} \gamma_{\nu}\right) \frac{i}{\not p+\not p \not-m} \\
\Pi_{\mu \nu}^{\gamma \gamma}(p)=-i N_{c} e^{2} e_{f}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\operatorname{Tr} \gamma_{\mu}(\not \nmid+m) \gamma_{\nu}(\not p+\not p \nmid m+m)}{\left[(p+k)^{2}-m^{2}\right]\left(k^{2}-m^{2}\right)}
\end{gathered}
$$

Using the rules for Diracology and loop integral calculations:

$$
\begin{aligned}
D & =\int_{0}^{1} \frac{\mathrm{~d} x}{\left(k^{2}+2 p k x+p^{2} x-m^{2}\right)^{2}}=\int_{0}^{1} \frac{\mathrm{~d} x}{\left[(k+p x)^{2}+p^{2} x(1-x)-m^{2}\right]^{2}} \\
N & =\operatorname{Tr}\left[\gamma_{\mu} \not k \gamma_{\nu}(p \not+\not p)+m^{2} \gamma_{\mu} \gamma_{\nu}\right]=k^{\rho}(k+p)^{\sigma} \operatorname{Tr}\left[\gamma_{\mu} \gamma_{\rho} \gamma_{\nu} \gamma_{\sigma}+m^{2} \gamma_{\mu} \gamma_{\nu}\right] \\
& =4\left[2 k_{\mu} k_{\nu}+\left(m^{2}-k^{2}-p . k\right) g_{\mu \nu}\right]
\end{aligned}
$$

Shift $k \rightarrow k+p x$, Wick rotation $k_{0} \rightarrow i k_{0}$ for Euclidean space \Rightarrow $k^{2} \rightarrow-k^{2}$ and sym. integrand with $\int_{-\infty}^{+\infty} d^{4} k F\left(k^{2}\right)=\pi^{2} \int_{0}^{\infty} d y y F(y)$
[also use of symmetry relation $\int d^{4} k\left(k_{\mu} k_{\nu}\right)=\frac{1}{4} g_{\mu \nu} \int d^{4} k\left(k^{2}\right)$]:

$$
\begin{aligned}
\Pi_{\mu \nu}^{\gamma \gamma}(p)= & -i N_{c} e_{f}^{2} e^{2} \times 4 \times \pi^{2} \times \frac{i}{16 \pi^{4}} \times \int_{0}^{1} \mathrm{~d} x \int_{0}^{\infty} y d y \\
& \frac{\left[\frac{1}{2} k^{2}+m^{2}-x(1-x) p^{2}\right] g_{\mu \nu}+2 x(1-x)\left[g_{\mu \nu} p^{2}-p_{\mu} p_{\nu}\right]}{\left[y+m^{2}-p^{2} x(1-x)\right]^{2}}
\end{aligned}
$$

Because of gauge invariance, photon is transverse ($\propto g_{\mu \nu} p^{2}-p_{\mu} p_{\nu}$): the first term ($\propto g_{\mu \nu}$ should vanish ${ }^{*}$ and we are left with:

$$
\Pi_{\mu \nu}^{\gamma \gamma}(p)=\frac{N_{c} e_{f}^{2} e^{2}}{4 \pi^{2}}\left(g_{\mu \nu} p^{2}-p_{\mu} p_{\nu}\right) \int_{0}^{1} \mathrm{~d} x \int_{0}^{\infty} y d y \frac{2 x(1-x)}{\left[y+m^{2}-p^{2} x(1-x)\right]^{2}}
$$

We can now calculate the $H \gamma \gamma$ vertex [photons to symmetrize $\rightarrow 2$; they are on-shell and $p_{1,2} \neq p$ but $\left.p^{2}=p_{1} \cdot p_{2}=\frac{1}{2} M_{H}^{2}\right]$

$$
\begin{aligned}
& \mathcal{M}_{\mu \nu}^{H \gamma \gamma}=-2 \frac{m}{v} \frac{\partial}{\partial m} \Pi \Pi_{\mu \nu}^{\gamma}\left(p_{1}, p_{2}\right)=-\frac{4 m^{2}}{v} \frac{\partial}{\partial m^{2}} \Pi_{\mu \nu}^{\gamma \gamma}\left(p_{1}, p_{2}\right) \\
& =-\frac{2 m^{2}}{v} \frac{N_{c} e_{f}^{2} e^{2}}{\pi^{2}}\left(g_{\mu \nu} p_{1} \cdot p_{2}-p_{1 \mu} p_{2 \nu}\right) \int_{0}^{1} \mathrm{~d} x \int_{0}^{\infty} \frac{-2 x(1-x) y d y}{\left[y+m^{2}-p^{2} x(1-x)\right]^{3}}
\end{aligned}
$$

Inside the integral, we can suppose $m^{2} \gg p^{2}\left(M_{H}^{2}\right)$ and integrate over x and $y\left[\int x(1-x) d x=1 / 6\right.$ and $\left.\int y /\left(y+m^{2}\right)^{3} d y=1 / 2 m^{2}\right]$

$$
\mathcal{M}_{\mu \nu}^{H \gamma \gamma}=\frac{2}{3 v} N_{c} e_{f}^{2} \frac{\alpha}{\pi}\left(g_{\mu \nu} p_{1} \cdot p_{2}-p_{1 \mu} p_{2 \nu}\right)
$$

Now we use the same machinery as for decays into gauge bosons:

$$
|\mathcal{M}|^{2}=\frac{4}{9 v^{2}} N_{c}^{2} e_{f}^{4} \frac{\alpha^{2}}{\pi^{2}} \frac{M_{H}^{4}}{2} \Sigma\left|g^{\mu \nu} \epsilon_{\mu}^{*}\left(p_{1}\right) \epsilon_{\nu}^{*}\left(p_{2}\right)\right|^{2}=\frac{2 M_{H}^{4}}{9 v^{2}} N_{c}^{2} e_{f}^{4} \frac{\alpha^{2}}{\pi^{2}}
$$

Integrating over phase space (with factor $\frac{1}{2}$ for identical photons):

$$
\Gamma(H \rightarrow \gamma \gamma)=\frac{M_{H}^{3}}{9 v^{2}} N_{c}^{2} e_{f}^{4} \frac{\alpha^{2}}{16 \pi^{3}}
$$

[^0]Several remarks to be made:

- The amplitude was of course finite (no tree level contribution)!
- The approximation $m_{f} \gg M_{H}$ is in practice good up to $M_{H} \sim 2 m_{f}$!
- Only tops contribute, other f have negligible Yukawa coupling.
- Infinitely heavy fermions do not decouple from the amplitude: a way to count the number of heavy particles coupling to the H !
- There are also contributions from W bosons. Also in the limit $M_{H} \ll M_{W}$ (valid for $M_{H} \lesssim 140 \mathrm{GeV}$), one has:

$$
\Gamma(H \rightarrow \gamma \gamma)=\frac{M_{H}^{3}}{9 v^{2}} \frac{\alpha^{2}}{16 \pi^{3}}\left|\Sigma_{f} N_{c} e_{f}^{2}-\frac{21}{4}\right|^{2}
$$

- The W contribution is larger (~ 4) than the t quark contribution and the interference of the two is destructive.
- With the same calculation, one can get the amplitude for $H \rightarrow$ $Z \gamma$. Only difference, $Z f f, Z W W$ couplings and M_{Z} in phase space. Here again, the W contr. is much ($\gtrsim 10$) larger than that of top.
- The calculation holds also for gluons if we make the changes: $Q_{e} e \rightarrow g_{s} T_{a}$ which means $\alpha \rightarrow \alpha_{s}$ and $N_{c}^{2} \rightarrow\left|\operatorname{Tr}\left(T_{a} T_{a}\right)\right|^{2}=\left|\frac{1}{2} \delta_{a b}\right|^{2}=2$:

$$
\Gamma(H \rightarrow g g)=\frac{M_{H}^{3}}{9 v^{2}} \frac{\alpha_{s}^{2}}{8 \pi^{3}}
$$

Decay width and branching ratios:
The total decay width of the Higgs is the sum of partial widths:

$$
\Gamma_{\text {tot }}(H \rightarrow \operatorname{all})=\Sigma_{f} \Gamma(H \rightarrow f \bar{f})+\Sigma_{V} \Gamma(H \rightarrow V V)
$$

and the branching ratio for Higgs decay into a given final state is:

$$
\mathrm{BR}(H \rightarrow X)=\Gamma(H \rightarrow X) / \Gamma_{\text {tot }}(H \rightarrow \text { all })
$$

2. Higgs bosons production in $e^{+} e^{-}$Collisions

2.1 The Higgs-strahlung process:

$$
\begin{aligned}
& \bar{v}_{\left(-l_{2}\right)}^{s} \\
& -i M=\bar{v}_{\left(-l_{2}\right)}^{s}(-i e) \gamma_{\mu}\left(v_{e}-a_{e} \gamma_{5}\right) u_{\left(l_{1}\right)}^{s} \frac{-i\left(g^{\mu \nu}-q^{\mu} q^{\nu} / M_{Z}^{2}\right)}{q^{2}-M_{Z}^{2}}\left(\frac{-2 i M_{Z}^{2}}{v} g_{\left.\nu \nu^{\prime}\right)}^{s}\right) \epsilon_{\nu^{\prime}}^{*}
\end{aligned}
$$

First thing to use for simplification is Dirac equation $\psi / u(l)=m_{e} \sim 0$:
where m_{e} is supposed to be much smaller than $\sqrt{s}=\sqrt{q^{2}}$. Then:

$$
|M|^{2}=\frac{4 e^{2} M_{Z}^{4} v^{-2}}{\left(q^{2}-M_{Z}^{2}\right)^{2}} \epsilon_{\left(p_{1}\right)}^{\nu} \epsilon_{\left(p_{1}\right)}^{* \mu} \bar{v}_{\left(-l_{2}\right)}^{s} \gamma_{\mu}\left(v_{e}-a_{e} \gamma_{5}\right) u_{\left(l_{1}\right)}^{s} \bar{u}_{\left(l_{1}\right)}^{s} \gamma_{\nu}\left(v_{e}-a_{e} \gamma_{5}\right) v_{\left(-l_{2}\right)}^{s}
$$

Average over polarizations of $e^{ \pm}$and sum on those of photon:

$$
\begin{aligned}
\frac{1}{4} \Sigma|M|^{2} & =\frac{k}{4} \operatorname{Tr} \not / /\left(v_{e}-a_{e} \gamma_{5}\right) \gamma_{\mu}(-\not / 2)\left(v_{e}-a_{e} \gamma_{5}\right) \gamma_{\nu}\left(-g^{\mu \nu}+\frac{p_{1}^{\mu} p_{1}^{\nu}}{M_{Z}^{2}}\right) \\
-\operatorname{Tr} & =\left(v_{e}^{2}+a_{e}^{2}\right) \operatorname{Tr} l_{1} \gamma_{\mu} l_{2} \gamma_{\nu}-2 a_{e} v_{e} \operatorname{Tr} \not l_{1} \gamma_{\mu} \not / 2 \gamma_{\nu} \gamma_{5} \\
& =4\left(v_{e}^{2}+a_{e}^{2}\right)\left[l_{1 \mu} l_{2 \nu}+l_{2 \mu} l_{1 \nu}-l_{1} \cdot l_{2} g_{\mu \nu}\right]-8 i a_{e} v_{e} l_{1}^{\alpha} l_{2}^{\beta} \epsilon_{\alpha \mu \mu \beta \nu} \\
\frac{1}{4} \Sigma|M|^{2} & =k\left(v_{e}^{2}+a_{e}^{2}\right)\left[2\left(l_{1} \cdot l_{2}\right)-2 \frac{\left(l_{1} \cdot p_{1}\right)\left(l_{2} \cdot p_{1}\right)}{M_{Z}^{2}}-4\left(l_{1} \cdot l_{2}\right)+\left(l_{1} \cdot l_{2}\right) \frac{p_{1}^{2}}{M_{Z}^{2}}\right] \\
& =k\left(v_{e}^{2}+a_{e}^{2}\right)\left[-\left(l_{1} \cdot l_{2}\right)-2\left(l_{1} \cdot p_{1}\right)\left(l_{2} \cdot p_{1}\right) / M_{Z}^{2}\right]
\end{aligned}
$$

where we have used the fact that $\left(\epsilon_{\alpha \mu \beta \nu}\right) g^{\mu \nu}-p_{1}^{\mu} p_{1}^{\nu}$ is (anti)symmetric. In the c.m. frame, one has (with $E_{1,2}^{2}=M_{Z, H}^{2}+|p|^{2}$) and $|p|=\sqrt{s} / 2 \lambda$):

$$
l_{1,2}=\frac{\sqrt{s}}{2}(1,0,0, \pm 1) \text { and } p_{1,2}=\left(E_{Z, H}, 0, \pm|p| \sin \theta, \pm|p| \cos \theta\right)
$$

$\Rightarrow k\left(v_{e}^{2}+a_{e}^{2}\right)\left[\frac{s}{2}+\frac{s\left(E_{Z}^{2}-|p|^{2} \cos ^{2} \theta\right)}{2 M_{Z}^{2}}\right]=k\left(v_{e}^{2}+a_{e}^{2}\right) \frac{s^{2}}{M_{Z}^{2}}\left[\frac{M_{Z}^{2}}{s}+\frac{\lambda^{2} \sin ^{2} \theta}{8}\right]$
The differential cross section is given by:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta \mathrm{~d} \phi}=\frac{1}{2 s}\left[\frac{4 e^{2} M_{Z}^{4}\left(v_{e}^{2}+a_{e}^{2}\right) s}{v^{2}\left(s-M_{Z}^{2}\right)^{2} M_{Z}^{2}}\left(\frac{M_{Z}^{2}}{s}+\frac{1}{8} \lambda^{2} \sin ^{2} \theta\right)\right] \frac{\lambda}{32 \pi^{2}}
$$

with $\int \mathrm{d} \phi=2 \pi$ and $\int \sin ^{2} \theta \mathrm{~d} \cos \theta=4 / 3$ one gets the cross section

$$
\sigma\left(e^{+} e^{-} \rightarrow H Z\right)=\frac{\alpha M_{Z}^{2}}{12 v^{2}} \frac{v_{e}^{2}+a_{e}^{2}}{s\left(1-M_{Z}^{2} / s\right)^{2}} \lambda\left(\lambda^{2}+12 M_{Z}^{2} / s\right)
$$

A few remarks:

- The cross section drops like $1 / s$ at high-energies (typical of an s-channel process). The maximum is reached at $\sqrt{s}=M_{Z}+\sqrt{2} M_{H}$.
- At the maximum LEP2 energy, $\sqrt{s}=209 \mathrm{GeV}$, the cross section for $M_{H}=(100) 115 \mathrm{GeV}$ is given by (using the fact that $\sigma_{0}=$ $4 \pi \alpha^{2}(0) / 3=86.8 \mathbf{n b}$ with $\alpha(0)=1 / 137, \alpha(s) \simeq 1 / 128$ and $\left.\sin ^{2} \theta_{W}=0.232\right)$:

$$
\sigma=0.42(0.16) \mathrm{pb} \text { for } M_{H}=100(115) \mathrm{GeV}
$$

If we have an integrated luminosity of $\int \mathcal{L} \sim 100 \mathbf{p b}^{-1}$, this means that we have $N=\sigma \times \int \mathcal{L} \sim 42(16)$ Higgs boson events.

- Since for $M_{H} \sim 100 \mathbf{G e V}, \mathbf{B R}(H \rightarrow b \bar{b}) \sim 90 \%$, the signal is $e^{+} e^{-} \rightarrow Z H \rightarrow Z b \bar{b}$ and the main background is $e^{+} e^{-} \rightarrow Z Z \rightarrow Z \bar{b} b$.
- At high energies $s \gg M_{Z}^{2}$, one has a differential cross section

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta} \simeq \frac{3}{4 \sigma} \sin ^{2} \theta \text { with } \sigma \simeq \frac{\alpha M_{Z}^{2}}{12 v^{2}} \frac{v_{e}^{2}+a_{e}^{2}}{s\left(1-M_{Z}^{2} / s\right)^{2}} \lambda^{3}
$$

the behaviour in $\sin ^{2} \theta$ of the angular distribution and in λ^{3} of the total cross section is typical for the production of two spin-zero particles (here, the Z boson is almost a Goldstone boson).
2.2 The vector boson fusion mechanism:

$M=\frac{i(-i e)^{2}(-i)^{2}\left(-2 i M_{V}^{2} / v\right)}{\left(q_{1}^{2}-M_{V}^{2}\right)\left(q_{2}^{2}-M_{V}^{2}\right)} g_{\mu^{\prime} \nu^{\prime}} \times \begin{aligned} & \bar{u}_{\left(p_{1}\right)}^{s} \gamma_{\mu}\left(v-a \gamma_{5}\right) u_{\left(l_{1}\right)}^{s}\left(g^{\mu \mu^{\prime}}-\frac{q_{1}^{\mu q_{1}^{\prime \mu_{1}}} M_{V}^{2}}{}\right) \\ & \bar{v}_{\left(-p_{2}\right)}^{s} \gamma_{\nu}\left(v-a \gamma_{5}\right) \bar{v}_{\left(l_{2}\right)}^{s}\left(g^{\nu \nu^{\prime}}-\frac{q_{2}^{\nu} q_{2}^{\nu^{\prime}}}{M_{V}^{2}}\right)\end{aligned}$
Using the relations $q_{1}^{\mu} \gamma_{\mu}=q=\not / 1-\not p_{1} \propto m_{e} \sim 0$ and $g^{\nu \nu^{\prime}} g^{\mu \mu^{\prime}} g_{\mu^{\prime} \nu^{\prime}}=g^{\mu \nu}$:

$$
\begin{aligned}
|M|^{2} & =\frac{4 e^{4} M_{V}^{4} / v^{2}}{D_{1}^{2} D_{2}^{2}} \times \begin{array}{l}
\bar{u}_{\left(p_{1}\right)}^{s} \gamma_{\mu}\left(v-a \gamma_{5}\right) u_{\left(l_{1}\right)}^{s} \cdot \bar{v}_{\left(-l_{2}\right)}^{s} \gamma_{\nu}\left(v-a \gamma_{5}\right) v_{\left(-p_{2}\right)}^{s} \\
u_{\left(l_{1}\right)}^{s} \gamma^{\mu}\left(v-a \gamma_{5}\right) u_{\left(p_{1}\right)}^{s} \cdot \bar{v}_{\left(-p_{2}\right)}^{s} \gamma^{\nu}\left(v-a \gamma_{5}\right) v_{\left(-l_{2}\right)}^{s}
\end{array} \\
& =\frac{4 e^{4} M_{V}^{4} / v^{2}}{D_{1}^{2} D_{2}^{2}} \times \begin{array}{l}
\operatorname{Tr} l / 1 \gamma_{\nu}\left(v-a \gamma_{5}\right) \not p_{1} \gamma_{\mu}\left(v-a \gamma_{5}\right) \\
\operatorname{Tr} l / 2 \gamma^{\nu}\left(v-a \gamma_{5}\right) \not p_{2} \gamma^{\mu}\left(v-a \gamma_{5}\right)
\end{array} \\
& =\frac{4 e^{4} M_{V}^{4} / v^{2}}{D_{1}^{2} D_{2}^{2}} \times \begin{array}{l}
\left(v^{2}+a^{2}\right) \operatorname{Tr} \not / 1 \gamma_{\nu} \not p_{1} \gamma_{\mu}-2 v a \operatorname{Tr} \not / 1 \gamma_{\nu} \not p_{1} \gamma_{\mu} \gamma_{5} \\
\left(v^{2}+a^{2}\right) \operatorname{Tr} l / 2 \gamma^{\nu} \not p_{2} \gamma^{\mu}-2 v a \operatorname{Tr} \not / / 2 \gamma^{\nu} \not p p_{2} \gamma^{\mu} \gamma_{5}
\end{array}
\end{aligned}
$$

Performing the trace and product using $\epsilon^{\mu \nu \alpha \beta} \epsilon_{\mu \nu \alpha^{\prime} \beta^{\prime}}=\delta_{\alpha^{\prime}}^{\alpha} \delta_{\beta^{\prime}}^{\beta}-\delta_{\beta^{\prime}}^{\alpha} \delta_{\alpha^{\prime}}^{\beta}$

$$
\begin{aligned}
& \frac{1}{4}|M|^{2}=\frac{32 e^{4} M_{V}^{4} / v^{2}}{D_{1}^{2} D_{2}^{2}} \times\left[g_{S}\left(l_{1} \cdot p_{2}\right)\left(l_{2} \cdot p_{1}\right)+g_{A}\left(l_{1} \cdot l_{2}\right)\left(p_{1} \cdot p_{2}\right)\right] \\
& \text { with } g_{S}=\left(v^{2}+a^{2}\right)^{2}+4 a^{2} v^{2} \text { and } g_{A}=\left(v^{2}+a^{2}\right)^{2}-4 a^{2} v^{2}
\end{aligned}
$$

Let's write the momenta of the particles in a convenient way:

$$
\begin{aligned}
& l_{1}=(E, 0,0, E), p_{1}=\left(\sqrt{x_{1}^{2} E^{2}+p_{T 1}^{2}}, p_{T 1} \sin \theta_{1}, p_{T 1} \cos \theta_{1}, x_{1} E\right) \\
& l_{2}=(E, 0,0,-E), p_{2}=\left(\sqrt{x_{2}^{2} E^{2}+p_{T 2}^{2}}, p_{T 2} \sin \theta_{1}, p_{T 1} \cos \theta_{1},-x_{2} E\right)
\end{aligned}
$$

and assume high energies $s \gg M_{V}^{2}$ so that $p_{T 1, T 2} / E$ are rather small:

$$
l_{i} \cdot p_{i} \sim p_{T i}^{2} / 2 x_{i}, l_{1} \cdot p_{2} \sim 2 E^{2} x_{2}, l_{2} \cdot p_{1} \sim 2 E^{2} x_{1}, p_{1} \cdot p_{2} \sim 2 E^{2} x_{1} x_{2}
$$

hold, together with $2 l_{1} \cdot l_{2}=s$ and the Higgs momentum squared:

$$
M_{H}^{2}=\left(q-p_{1}-p_{2}\right)^{2}=s-2 q \cdot p_{1}-2 q \cdot p_{2}+2 p_{1} \cdot p_{2}=s\left(1-x_{1}\right)\left(1-x_{2}\right)
$$

Using these products, one has then for the amplitude squared:

$$
\begin{aligned}
\frac{1}{4}|M|^{2} & =\frac{32 e^{4} M_{V}^{4}}{v^{2}} \times \frac{4 E^{4}\left(g_{S}+g_{A}\right) x_{1} x_{2}}{\left(p_{T 1}^{2} / x_{1}+M_{W}^{2}\right)^{2}\left(p_{T 2}^{2} / x_{2}+M_{W}^{2}\right)^{2}} \\
& =\frac{8 e^{4} M_{V}^{4}}{v^{2}} \times \frac{\left(g_{S}+g_{A}\right) s^{2} x_{1}^{3} x_{2}^{3}}{\left(p_{T 1}^{2}+x_{1} M_{W}^{2}\right)^{2}\left(p_{T 2}^{2}+x_{2} M_{W}^{2}\right)^{2}}
\end{aligned}
$$

Let us now deal with the three body phase space:

$$
\mathrm{dPS} 3=\frac{1}{(2 \pi)^{5}} \frac{\mathrm{~d}^{3} p_{1}}{2 E_{1}} \frac{\mathrm{~d}^{3} p_{2}}{2 E_{2}} \frac{\mathrm{~d}^{3} p}{2 E_{H}} \delta^{4}\left(q-p_{1}-p_{2}-p\right)
$$

Defining $\tau_{H}=M_{H}^{2} / s$ and using the known relation for δ functions:

$$
\int \frac{\mathrm{d}^{3} p}{2 E_{H}}=\int \mathrm{d}^{4} p \delta\left(p^{2}-M_{H}^{2}\right)=\int \mathrm{d}^{4} p \delta\left[s\left(1-x_{1}\right)\left(1-x_{2}\right)-s \tau_{H}\right]
$$

and decomposing the momenta along the 3 directions, one obtains:

$$
\mathrm{dPS} 3=\frac{1}{(2 \pi)^{5}} \frac{\mathrm{~d}\left(x_{1} E\right)}{2 x_{1} E} \mathrm{~d}^{2} p_{T 1} \frac{\mathrm{~d}\left(x_{2} E\right)}{2 x_{2} E} \mathrm{~d}^{2} p_{T 2} \delta\left[s\left(1-x_{1}\right)\left(1-x_{2}\right)-s \tau_{H}\right]
$$

Noting that $\int \mathrm{d} p_{T i}^{2} /\left(p_{T i}^{2}+x_{i} M_{V}^{2}\right)^{2}=\pi \int_{0}^{\infty} \mathrm{d} p^{2} /\left(p^{2}+x_{i} M_{V}^{2}\right)^{2}=\pi^{2} /\left(x_{i} M_{V}^{2}\right)$ and using $M_{W}=e v /\left(2 s_{W}\right)$, the differential cross section is given by:

$$
\begin{aligned}
\mathrm{d} \sigma & =\frac{1}{2 s} \times\left(\frac{8 e^{6} M_{V}^{4}}{4 M_{W}^{2} s_{W}^{2}}\right)\left(g_{S}+g_{A}\right) s^{2} x_{1}^{3} x_{2}^{3} \times \frac{1}{(2 \pi)^{5}} \frac{\mathrm{~d} x_{1}}{2 x_{1}} \frac{\mathrm{~d} x_{2}}{2 x_{2}} \frac{\pi^{2}}{x_{1} x_{2} M_{V}^{4}} \delta \\
\sigma & =\frac{\alpha^{3}}{2 M_{W}^{2} s_{W}^{2}}\left(g_{S}+g_{A}\right) \int \mathrm{d} x_{1} \int \mathrm{~d} x_{2} x_{1} x_{2} s \delta\left[s\left(1-x_{1}\right)\left(1-x_{2}\right)-s \tau_{H}\right]
\end{aligned}
$$

Now perform the integrals using $\int \delta[f(x)]=\left|f^{\prime}(x)\right|_{x=x_{0}}^{-1}$ with $f\left(x_{0}\right)=0$

$$
\begin{aligned}
& \int \mathrm{d} x_{1} \int \mathrm{~d} x_{2} \cdots=\int_{0}^{1-\tau_{H}} \mathrm{~d} x_{1} x_{1}\left(1-\frac{\tau_{H}}{1-x_{1}}\right) s \frac{1}{s\left(1-x_{1}\right)} \\
& =\int_{0}^{1-\tau_{H}} \mathrm{~d} x_{1}\left[-1+\frac{1+\tau_{H}}{1-x_{1}}+\frac{\tau_{H}}{\left(1-x_{1}\right)^{2}}\right]=\left(1+\tau_{H}\right) \log \frac{1}{\tau_{H}}-2\left(1-\tau_{H}\right)
\end{aligned}
$$

where the boundary conditions are obtained by requiring that $p_{1 Z}=p_{2 Z}=x_{1,2} E=0 \Rightarrow x_{1}=0$ and $x_{2}=1-\tau_{H} /\left(1-x_{1}\right)=0 \rightarrow x_{1}=1-\tau_{H}$. Collecting all results, one obtains then the total cross section*:

$$
\sigma=\frac{\alpha^{3}}{2 M_{W}^{2} s_{W}^{2}}\left(g_{S}+g_{A}\right)\left[\left(1+\tau_{H}\right) \log \frac{1}{\tau_{H}}-2\left(1-\tau_{H}\right)\right]
$$

Let us now make a few remarks:

- The cross section rises as $\log \left(s / M_{H}^{2}\right)$: small at low \sqrt{s} and large at high \sqrt{s}. Dominant Higgs production process for $s \gg M_{H}^{2}$.
- This approximation is good only within a factor of 2 and works better at higher energies. It can be obtained in an easier way using the effective longitudinal vector boson approximation.
- In the case of $W W$ fusion, $g_{s}=8 /(2 \sqrt{2})^{4}=1 / 8$ and $g_{A}=0$, one has:

$$
\sigma\left(e^{+} e^{-} \rightarrow H \bar{\nu} \nu\right)=\frac{\alpha^{3}}{16 M_{W}^{2} s_{W}^{2}}\left[\left(1+\tau_{H}\right) \log \frac{s}{M_{H}^{2}}-2\left(1-\tau_{H}\right)\right]
$$

- At LEP2 energies, $\sqrt{s} \sim 200 \mathrm{GeV}$, the cross section is $\sigma \sim 5(2) \cdot 10^{-3}$ pb for $M_{H}=100(115) \mathrm{GeV}$, i.e. less than one event for $\int \mathcal{L}=100$ $\mathbf{p b}^{-1}$. This process is not very useful for Higgs searches at LEP2. - For $Z Z$ fusion with $s_{W}^{2} \sim 1 / 4, g_{s} \sim g_{A} \sim a_{e}^{4} \sim 1 /(16 \times 9)$: the cross section $\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} H\right)$ is ~ 9 times smaller than for $W W$ fusion.

[^1]
3. Higgs bosons production in hadronic Collisions

3.1 The gluon-gluon fusion process*

The cross section of the subprocess, $g g \rightarrow H$, is given by:

$$
\mathrm{d} \hat{\sigma}=\frac{1}{2 \hat{s}} \times \frac{1}{2 \cdot 8} \times \frac{1}{2 \cdot 8}\left|\mathcal{M}_{H g g}\right|^{2} \frac{\mathrm{~d}^{3} p_{H}}{(2 \pi)^{3} 2 E_{H}}\left(2 \pi^{4}\right) \delta^{4}\left(q-p_{H}\right)
$$

Using the fact that $\int \mathrm{d}^{3} p_{H} /\left(2 E_{H}\right)=\int \mathrm{d}^{4} p_{H} \delta\left(p_{H}^{2}-M_{H}^{2}\right)$ and that $\left|M_{H g g}\right|^{2}=32 \pi M_{H} \Gamma(H \rightarrow g g)$ calculated before, one obtains for $\hat{\sigma}$:

$$
\hat{\sigma}=\frac{\pi^{2} M_{H}}{8 \hat{s}} \Gamma(H \rightarrow g g) \delta\left(\hat{s}-M_{H}^{2}\right)
$$

Convolute with gluon densities to obtain the total cross section

$$
\sigma=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} \frac{\pi^{2} M_{H}}{8 \hat{s}} \Gamma(H \rightarrow g g) g\left(x_{1}\right) g\left(x_{2}\right) \delta\left(\hat{s}-M_{H}^{2}\right)
$$

with $\hat{s}=s x_{1} x_{2}$, implying $\hat{s}-M_{H}^{2}=s\left(x_{1} x_{2}-\tau_{H}\right)$ with $\tau_{H}=M_{H}^{2} / s$:

$$
\sigma=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} \frac{\pi^{2}}{8 M_{H}} \Gamma(H \rightarrow g g) g\left(x_{1}\right) g\left(x_{2}\right) \delta\left[s\left(x_{1} x_{2}-\tau_{H}\right)\right]
$$

We perform the integral on $x_{2}\left[\int \delta[f(x)]=\left|f^{\prime}(x)\right|_{x=x_{0}}^{-1}\right.$ with $\left.f\left(x_{0}\right)=0\right]$

$$
\sigma=\frac{\pi^{2}}{8 M_{H}^{3}} \Gamma(H \rightarrow g g) \tau_{H} \int_{\tau_{H}}^{1} \frac{\mathrm{~d} x}{x} g(x) g\left(x / \tau_{H}\right)=\frac{1}{576 v^{2}} \frac{\alpha_{s}^{2}}{\pi} \tau_{H} \frac{\mathrm{~d} \mathcal{L}^{g g}}{\mathrm{~d} \tau_{H}}
$$

where the integration bounds are $x_{1}^{\max }=1, x_{1}^{\min }=x_{1}\left(\right.$ for $\left.x_{2}=1\right)=\tau$. At LHC, $g g$ luminosity is large and $g g \rightarrow H$ dominant process!

[^2]3.2 The Higgs strahlung and vector boson fusion process

The cross sections for these processes are the same as in $e^{+} e^{-}$ collisions, provided that the following changes are performed:

- The total energy \sqrt{s} is replaced by the subprocess energy \hat{s}.
- The average over the quark colors is made: factor $\frac{1}{3} \cdot \frac{1}{3}$.
- In the bremsstrahlung process, possibility of $q \bar{q}^{\prime} \rightarrow W^{*} \rightarrow W H$.
- The couplings of the electrons are replaced by those of quarks:

$$
\begin{aligned}
& \text { in } q \bar{q} \rightarrow V H: a_{e}^{2}+v_{e}^{2} \rightarrow a_{q}^{2}+v_{q}^{2} . \\
& \text { in } q q \rightarrow H q q: g_{S, A} \rightarrow\left[\left(v^{2}+a^{2}\right)\left(v^{\prime 2}+a^{\prime 2}\right) \pm 4(a v)\left(a^{\prime} v^{\prime}\right) .\right.
\end{aligned}
$$

The cross sections for a given initial state, are given by:

$$
\begin{aligned}
\sigma\left(q \vec{q}^{\prime} \rightarrow H V\right) & =\frac{1}{9} \frac{\alpha M_{V}^{2}}{12 v^{2}} \frac{v_{q}^{2}+a_{q}^{2}}{\hat{s}\left(1-M_{V}^{2} / \hat{s}\right)^{2}} \hat{\lambda}\left(\hat{\lambda}^{2}+12 M_{V}^{2} / \hat{s}\right) \\
\sigma(q q \rightarrow q q H) & =\frac{1}{9} \frac{\alpha^{3}}{2 M_{W}^{2} s_{W}^{2}}\left(g_{S}+g_{A}\right)\left[\left(1+\hat{\tau}_{H}\right) \log \frac{1}{\hat{\tau}_{H}}-2\left(1-\hat{\tau}_{H}\right)\right]
\end{aligned}
$$

Summing over all possibilities for quark/antiquark initial states and folding with the proper densities, the total cross sections are:

$$
\sigma[p p \rightarrow H+X]=\sum_{q, q^{\prime}} \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} f_{q}\left(x_{1}\right) f_{q^{\prime}}\left(x_{2}\right) \hat{\sigma}\left[q q^{\prime} \rightarrow H+X\right]
$$

Remarks:

- At LHC, $q q \rightarrow H q q$ is the dominant process but not as $g g \rightarrow H$.
- The cross section for $q \bar{q} \rightarrow H V$ is OK for low $M_{H} ; \sigma(H W) \sim 2 \sigma(H Z)$.
- At Tevatron, Higgs-strahlung (esp. $q \bar{q}^{\prime} \rightarrow H W$) more important.

E3: Divergences and Symmetries

1. Lagrangians and interactions

- Take QED Lagrangian for a fermion of charge e and mass m :

$$
\mathcal{L}_{\mathrm{QED}}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi+e \bar{\psi} \gamma^{\mu} A_{\mu} \psi
$$

with A_{μ} and $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$, the electromagnetic field and tensor. $\mathrm{U}(1)$ gauge invariance: no $A_{\mu} A^{\mu}$ term so that photon is massless.

- Let's add a scalar field ϕ :

$$
\mathcal{L}_{\phi}=\left|\partial_{\mu} \phi\right|^{2}-m_{S}^{2}|\phi|^{2}+\lambda\left(\phi^{+} \phi\right)^{2}
$$

which leads to a spontaneously broken symmetry (SSB), $\langle\phi\rangle=\frac{v}{\sqrt{2}}$, and we write $\phi=(H+v) / \sqrt{2}$ with H being the physical Higgs boson.

- And couple this field to a fermion f (à la Yukawa):

$$
\mathcal{L}_{f}=-\lambda_{f} . \bar{\psi} \psi \phi
$$

After SSB, the fermion acquires a mass $m_{f}=\lambda_{f} v / \sqrt{2}$.

- Let us introduce two scalar fields ϕ_{1} and ϕ_{2} :

$$
\mathcal{L}_{\text {kin }}=\left|\partial_{\mu} \phi_{1}\right|^{2}+\left|\partial_{\mu} \phi_{2}\right|^{2}-m_{1}^{2}\left|\phi_{1}\right|^{2}-m_{2}^{2}\left|\phi_{2}\right|^{2}
$$

they will have a coupling to the scalar field ϕ after SSB:

$$
\mathcal{L}_{S}=\lambda_{S}|\phi|^{2}\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)+2 v \lambda_{S} \phi\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)
$$

Plus, eventually, terms in $\phi_{1} \phi_{2}$ that we take zero for simplicity.
2. Self-energy of the electron and photon

Electron self-energy

$$
-i \Sigma_{e}(p)=\int \frac{d^{4} k}{(2 \pi)^{4}}\left(-i e \gamma_{\mu}\right) \frac{i}{\not p+\not p-m}\left(-i e \gamma_{\nu}\right) \frac{-i g^{\mu \nu}}{k^{2}}
$$

- Perform the Dirac Algebra: $\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=2 g_{\mu \nu}$, etc...
- Symmetrisation: $1 / a b=\int_{0}^{1} d x /[a+(b-a) x]^{2}+$ change of variable.
- Switch to Euclidean space with Wick rotation $k_{0} \rightarrow i k_{0}, k^{2} \rightarrow-k^{2}$.
- Integrate over momentum (symmetric integrand and regul.):

$$
\int_{-\infty}^{+\infty} d^{4} k F\left(k^{2}\right)=\pi^{2} \int_{0}^{\Lambda^{2}} d k^{2} k^{2} F\left(k^{2}\right)
$$

Definition of the correction to the mass: $\delta m_{e}=\left.\Sigma_{e}(\not p)\right|_{p=m}$:

$$
\begin{aligned}
\Rightarrow \delta m_{e} & =\frac{m_{e} e^{2}}{8 \pi^{2}} \int_{0}^{1} d x(1+x) \int_{0}^{\Lambda^{2}} d y y\left[y+m_{e}^{2} x^{2}\right]^{-2} \\
& =\frac{m_{e} e^{2}}{8 \pi}\left[\frac{3}{2} \log \frac{\Lambda^{2}}{m_{e}^{2}}\right]+\cdots=\frac{3 \alpha}{4 \pi} m_{e} \log \frac{\Lambda^{2}}{m_{e}^{2}}+\cdots
\end{aligned}
$$

UV divergence (at large k^{2}) logarithmic.
In principle $\Lambda=\infty \Rightarrow$ renormalization: $m_{e}^{\text {phys }}=m_{e}^{\mathrm{nu}}+\delta m_{e}$.
But QED valid up to GUT (M_{P}) scale, i.e. $\Lambda=M_{\text {GUT }}\left(M_{P}\right)$.
Correction logarithmic AND proportional to m_{e}, therefore small:

$$
\delta m_{e} \sim 0.2 m_{e} \text { for } \Lambda \sim M_{P} \sim 10^{19} \mathbf{G e V} .
$$

More fundamental: correction small due to chiral symmetry: if $m_{e}=0, \mathcal{L}_{\text {QED }}$ is invariant under the chiral transformation:

$$
\psi_{L} \rightarrow e^{i \theta_{L}} \psi_{L} \text { and } \psi_{R} \rightarrow e^{i \theta_{R}} \psi_{R} \text { with } \psi_{L, R}=1 / 2\left(1 \mp \gamma_{5}\right) \psi .
$$

But m_{e} breaks the chiral symmetry \rightarrow correction \propto to the mass.
\Rightarrow Symmetry \equiv protection for the mass.

Photon self-energy

$$
\begin{aligned}
\gamma & \text { enn }_{\gamma} \equiv-i \Pi_{\mu \nu}^{\gamma \gamma}\left(p^{2}\right) \\
-i \Pi_{\mu \nu}^{\gamma \gamma}\left(p^{2}\right)= & \int \frac{d^{4} k}{(2 \pi)^{4}}(-1) \operatorname{Tr}\left(-i e \gamma_{\mu}\right) \frac{i}{\not p-m}\left(-i e \gamma_{\nu}\right) \frac{i}{\not p+\not p-m}
\end{aligned}
$$

We already made the calculation and we reached the level where:

$$
\begin{aligned}
\Pi_{\mu \nu}^{\gamma \gamma}\left(p^{2}\right)= & -i e^{2} \times 4 \times 2 \pi^{2} \times \frac{i}{16 \pi^{4}} \times \int_{0}^{1} \mathrm{~d} x \int_{0}^{\infty} y d y \\
& \frac{\left[\frac{1}{2} y^{2}+m^{2}-x(1-x) p^{2}\right] g_{\mu \nu}+2 x(1-x)\left[g_{\mu \nu} p^{2}-p_{\mu} p_{\nu}\right]}{\left[y+m^{2}-p^{2} x(1-x)\right]^{2}}
\end{aligned}
$$

using usual tricks and a cut-off Λ for integral on k^{2}, one gets

$$
\delta m_{\gamma}=\frac{1}{4} g^{\mu \nu} \Pi_{\mu \nu}^{\gamma \gamma}(0)=\frac{e^{2}}{16 \pi^{2}} \int_{0}^{1} \mathrm{~d} x \int_{0}^{\Lambda^{2}} d y \frac{y^{2}+2 m^{2} y}{\left(y+m^{2}\right)^{2}} \sim \frac{\alpha}{4 \pi} \Lambda^{2}!!!
$$

But we must have $m_{\gamma} \equiv 0$ at all orders because of gauge invariance. Problem: the cut-off Λ^{2} violates the QED gauge invariance.

Solution: dimensional regularization, preserves gauge invariance! We work in a space-time of $n=4-\epsilon$ dimensions:

- Internal momentum in n dim: $\int d^{n} k /(2 \pi)^{n}$ etc...
- Dirac algebra in n dim: $\operatorname{Tr}(I)=n, \gamma_{\mu} \gamma^{\mu}=n I, g_{\mu}^{\mu}=n$, etc..
- UV divergence: poles in $1 /(n-4)=1 / \epsilon$ with $\epsilon \rightarrow 0$.

In this case, one would have for the integral:
$A\left(m^{2}\right)=\int\left[k^{2}-m^{2}\right]^{-1} \sim a m^{2} / \epsilon+\cdots \Rightarrow m^{2} \partial A / \partial 2 m^{2} \sim a m^{2} / \epsilon$.
With this regularization, $\delta m_{\gamma}=0$ at all orders: \Rightarrow massless photon.

Another example of a protection for a mass by a symmetry...

3. Higgs boson self-energy

Fermionic contributions:

$$
-i \Sigma_{H}\left(p^{2}\right)=N_{f} \int \frac{d^{4} k}{(2 \pi)^{4}}(-1) \operatorname{Tr}\left(-\frac{i \lambda_{f}}{\sqrt{2}}\right) \frac{i}{\not \nmid-m}\left(-\frac{i \lambda_{f}}{\sqrt{2}}\right) \frac{i}{\not p+\not p x-m}
$$

Usual calculation. Simpler: $p^{2}=M_{H}^{2}=0$ (fermion heavy compared to M_{H}). Using a cut-off Λ for the integral on k^{2}, one obtains:

$$
\Sigma_{H}\left(p^{2}=0\right)=4 N_{f}\left(\frac{\lambda_{f}}{\sqrt{2}}\right)^{2} \frac{1}{16 \pi^{2}} \int_{0}^{1} d x \int_{0}^{\Lambda^{2}} d y \frac{y\left(-y+m_{f}^{2}\right)}{\left(y+m_{f}^{2}\right)^{2}}
$$

After the trivial integral on x and the one on y, one gets:

$$
\Delta M_{H}^{2}==N_{f} \frac{\lambda_{f}^{2}}{8 \pi^{2}}\left[-\Lambda^{2}+6 m_{f}^{2} \log \frac{\Lambda}{m_{f}}-2 m_{f}^{2}\right]+\mathcal{O}\left(1 / \Lambda^{2}\right)
$$

We have thus a quadratic divergence, $\delta M_{H}^{2} \sim \Lambda^{2}$.
Divergence is independent of M_{H}, and does not disappear if $M_{H}=0$: The choice $M_{H}=0$ does not increase the symmetry of $\mathcal{L}_{S M}$. Here, the cut-off does not break any symmetry and the problem is not solved with dimensional regularization (though we have only poles in $1 / \epsilon$ and the quadratic divergence is not apparent).

If we fix the cut-off Λ to $M_{\text {GUT }}$ or $M_{P}: \Rightarrow M_{H} \sim 10^{14}$ to $10^{17} \mathrm{GeV}$! The Higgs boson mass prefers to be close to the very high scale: This is the hierarchy problem.

But we want a light Higgs ($\lesssim 1 \mathrm{TeV}$) for unitarity etc... reasons
We need thus to make: $\left.M_{H}^{2}\right|^{\text {Physical }}=\left.M_{H}^{2}\right|^{0}+\Delta M_{H}^{2}+$ countreterm And adjust this counterterm with a precision of 10^{30} (30 digits)!

This is the naturalness problem.
In a complete theory, no problem formally: we adjust the bare M_{H} and the counterterm which are infinite, to have the physical finite mass. This is the case of the log divergence of m_{e} in QED. However, we want to give a physical meaning to the cut-off Λ and the logarithmic and quadratic divergences are of different nature.

In the Standard Model:
besides the fermions, there are also contributions to M_{H} from the massive gauge bosons and from the Higgs boson itself:

Total contributions of fermions and bosons in the SM at one-loop:

$$
\Delta M_{H}^{2} \propto\left[3\left(M_{W}^{2}+M_{Z}^{2}+M_{H}^{2}\right) / 4-\sum m_{f}^{2}\right]\left(\Lambda^{2} / M_{W}^{2}\right)
$$

We can adjust the unknown M_{H} so that the quadratic divergence disappears (would be a prediction for Higgs mass, $M_{H} \sim 200 \mathrm{GeV}$).

However: does not work at two-loop level or at higher orders....
Summary: the problem of the quadratic divergences to M_{H} is there. There is no symmetry which protects M_{H} in the SM.

The contributions of (2) scalars

And here, really simple calculation... We get after integration:

$$
\begin{aligned}
\Delta M_{H}^{2} & =\frac{\lambda_{S} N_{S}}{16 \pi^{2}}\left[-2 \Lambda^{2}+2 m_{1}^{2} \log \left(\frac{\Lambda}{m_{1}}\right)+2 m_{2}^{2} \log \left(\frac{\Lambda}{m_{2}}\right)\right] \\
& -\frac{\lambda_{S}^{2} v^{2} N_{S}}{16 \pi^{2}}\left[-2+2 \log \left(\frac{\Lambda}{m_{1}}\right)+2 \log \left(\frac{\Lambda}{m_{2}}\right)\right]+\mathcal{O}\left(\frac{1}{\Lambda^{2}}\right)
\end{aligned}
$$

Again, quadratic divergences. But let us now assume:

- Scalar couplings related to fermion couplings: $\lambda_{f}^{2}=-\lambda_{S}$ (!).
- Multiplicative factors are the same: $N_{S}=N_{f}$ (nb: 2 scalars!).
- To simplify, the scalars have the same mass: $m_{1}=m_{2}=m_{S}$.

Let us now add the fermionic and scalar contributions:

$$
\Delta M_{H}^{2}{ }^{\text {tot }}=\frac{\lambda_{f}^{2} N_{f}}{4 \pi^{2}}\left[\left(m_{f}^{2}-m_{S}^{2}\right) \log \left(\frac{\Lambda}{m_{S}}\right)+3 m_{f}^{2} \log \left(\frac{m_{S}}{m_{f}}\right)\right]
$$

The quadratic divergences have disappeared in the sum!!
Logarithmic divergence still there, but even with $\Lambda=M_{P}$, contribution small. It disappears also if in addition we have $m_{S}=m_{f}$!
\Rightarrow Symmetry fermions-scalars \rightarrow no divergence in Λ^{2} "Supersymmetry" no divergences at all: M_{H} is protected!

E4: Higgs masses and couplings in the MSSM

1. The MSSM Higgs boson masses

To obtain the physical Higgs fields and their masses from V_{H},

$$
\begin{aligned}
V_{H} & =\bar{m}_{1}^{2}\left(\left|H_{0}^{1}\right|^{2}+\left|H_{1}^{+}\right|^{2}\right)+\bar{m}_{2}^{2}\left(\left|H_{2}^{0}\right|^{2}+\left|H_{2}^{-}\right|^{2}\right)-\bar{m}_{3}^{2}\left(H_{1}^{+} H_{2}^{-}-H_{1}^{0} H_{2}^{0}+\mathrm{hc}\right) \\
& +\frac{g_{2}^{2}+g_{1}^{2}}{8}\left(\left|H_{1}^{0}\right|^{2}+\left|H_{1}^{+}\right|^{2}-\left|H_{2}^{0}\right|^{2}-\left|H_{2}^{-}\right|^{2}\right)^{2}+\frac{g_{2}^{2}}{2}\left|H_{1}^{+*} H_{1}^{0}+H_{2}^{0 *} H_{2}^{-}\right|^{2}
\end{aligned}
$$

develop $H_{1}=\left(H_{1}^{0}, H_{1}^{-}\right)$and $H_{2}=\left(H_{2}^{+}, H_{2}^{0}\right)$ into real (corresponding to CP-even and charged Higgses) and imaginary ($\mathrm{CP}-$ odd Higgs and Goldstones) parts and diagonalize the mass matrices:

$$
\mathcal{M}_{i j}^{2}=\frac{1}{2} \partial^{2} V_{H} /\left.\partial H_{i} \partial H_{j}\right|_{\left\langle\mathrm{Re}\left(H_{1,2}^{0}\right)\right\rangle=v_{1,2},\left\langle\operatorname{Im}\left(H_{1,2}^{0}\right)\right\rangle=0,\left\langle H_{1,2}^{ \pm}\right\rangle=0}
$$

To obtain the masses and mixing angles, two useful relations are:

$$
\operatorname{Tr}\left(\mathcal{M}^{2}\right)=M_{1}^{2}+M_{2}^{2} \quad, \quad \operatorname{Det}\left(\mathcal{M}^{2}\right)=M_{1}^{2} M_{2}^{2}
$$

$\sin 2 \theta=\frac{2 \mathcal{M}_{12}}{\sqrt{\left(\mathcal{M}_{11}-\mathcal{M}_{22}\right)^{2}+4 \mathcal{M}_{12}^{2}}}, \cos 2 \theta=\frac{\mathcal{M}_{11}-\mathcal{M}_{22}}{\sqrt{\left(\mathcal{M}_{11}-\mathcal{M}_{22}\right)^{2}+4 \mathcal{M}_{12}^{2}}}$
where M_{1} and M_{2} are the physical masses and θ the mixing angle.
The procedure in the case of the CP -even Higgs bosons:
The neutral part of the scalar potential is (drop subscripts ...):

$$
V_{H}=\bar{m}_{1}^{2}\left|H_{1}\right|^{2}+\bar{m}_{2}^{2}\left|H_{2}\right|^{2}+\bar{m}_{3}^{2}\left(H_{1} H_{2}+\mathrm{hc}\right)+\left(M_{Z}^{2} / 4 v^{2}\right)\left(\left|H_{1}\right|^{2}-\left|H_{2}\right|^{2}\right)^{2}
$$

First perform the first derivative of the scalar potential:

$$
\begin{aligned}
& \partial V_{H} / \partial H_{1}^{0}=2 \bar{m}_{1}^{2} H_{1}+2 \bar{m}_{3}^{2} H_{2}+M_{Z}^{2} / v^{2} H_{1}\left(H_{1}^{2}-H_{2}^{2}\right) \\
& \partial V_{H} / \partial H_{2}^{0}=2 \bar{m}_{2}^{2} H_{2}+2 \bar{m}_{3}^{2} H_{1}+M_{Z}^{2} / v^{2} H_{2}\left(H_{2}^{2}-H_{1}^{2}\right)
\end{aligned}
$$

At the minimum, $\partial V_{H} / \partial H_{1,2}=0$, leading to the two relations:

$$
\bar{m}_{1}^{2}=-\bar{m}_{3}^{2} \tan \beta-\frac{1}{2} M_{Z}^{2} \cos (2 \beta), \bar{m}_{2}^{2}=-\bar{m}_{3}^{2} \cot \beta+\frac{1}{2} M_{Z}^{2} \cos (2 \beta)
$$

Then make the second derivative with respect to H_{1} and H_{2} :

$$
\begin{aligned}
& \frac{\partial^{2} V_{H}}{\partial H_{1}^{0} \partial H_{1}^{0}}=2 \bar{m}_{1}^{2}+\frac{M_{Z}^{2}}{v^{2}}\left(H_{1}^{2}-H_{2}^{2}+2 H_{1} H_{1}\right)=2 \bar{m}_{1}^{2}+M_{Z}^{2}\left(3 c_{\beta}^{2}-s_{\beta}^{2}\right) \\
& \frac{\partial^{2} V_{H}}{\partial H_{2}^{0} \partial H_{2}^{0}}=2 \bar{m}_{2}^{2}+\frac{M_{Z}^{2}}{v^{2}}\left(H_{2}^{2}-H_{1}^{2}+2 H_{2} H_{2}\right)=2 \bar{m}_{2}^{2}+M_{Z}^{2}\left(3 s_{\beta}^{2}-c_{\beta}^{2}\right) \\
& \frac{\partial^{2} V_{H}}{\partial H_{1}^{0} \partial H_{2}^{0}}=2 \bar{m}_{3}^{2}+\frac{M_{Z}^{2}}{v^{2}}\left(-2 H_{1} H_{2}\right)=2 \bar{m}_{3}^{2}-M_{Z}^{2} \sin 2 \beta
\end{aligned}
$$

Using the previous relations for \bar{m}_{1} and \bar{m}_{2} in terms of \bar{m}_{3} and M_{Z}, we then obtain the mass matrix for the CP even Higgs bosons:

$$
\mathcal{M}_{R}^{2}=\left[\begin{array}{cc}
-\bar{m}_{3}^{2} \tan \beta+M_{Z}^{2} \cos ^{2} \beta & \bar{m}_{3}^{2}-M_{Z}^{2} \sin \beta \cos \beta \\
\bar{m}_{3}^{2} M_{Z}^{2} \sin \beta \cos \beta & -\bar{m}_{3}^{2} \cot \beta+M_{Z}^{2} \sin ^{2} \beta
\end{array}\right]
$$

In the case of the CP -odd Higgs boson: use the same expressions for $\partial^{2} V / \partial H_{i}^{0} \partial H_{j}^{0}$ as above but set the fields to zero at the minimum:

$$
\mathcal{M}_{I}^{2}=\left[\begin{array}{cc}
-\bar{m}_{3}^{2} \tan \beta & \bar{m}_{3}^{2} \\
\bar{m}_{3}^{2} & -\bar{m}_{3}^{2} \cot \beta
\end{array}\right]
$$

Since $\operatorname{Det} \mathcal{M}_{I}^{2}=0$, one eigenvalue is zero (the Goldstone) while the other one corresponds to the mass of the pseudoscalar Higgs:

$$
M_{A}^{2}=-\bar{m}_{3}^{2}(\tan \beta+\cot \beta)=-2 \bar{m}_{3}^{2} / \sin 2 \beta
$$

The mixing angle θ is, in fact, just the angle β :

$$
\begin{aligned}
& \sin 2 \theta=2\left[\left(\frac{s_{\beta}}{c_{\beta}}-\frac{c_{\beta}}{s_{\beta}}\right)^{2}+4\right]^{-\frac{1}{2}}=2\left[\frac{c_{2 \beta}^{2}}{s_{2 \beta}^{2} / 4}+4\right]^{-\frac{1}{2}}=s_{2 \beta} \\
& \cos 2 \theta=\left(-\frac{s_{\beta}}{c_{\beta}}+\frac{c_{\beta}}{s_{\beta}}\right)[\cdots \cdots]^{-1 / 2}=\left(\frac{c_{2 \beta}}{s_{2 \beta}}\right)\left[s_{2 \beta}\right]=c_{2 \beta}
\end{aligned}
$$

In the case of the charged Higgs boson, same excercice:

$$
\binom{G^{ \pm}}{H^{ \pm}}=\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right)\binom{H_{1}^{ \pm}}{H_{2}^{ \pm}}
$$

with a massless charged Goldstone and a charged Higgs with mass:

$$
M_{H^{ \pm}}^{2}=M_{A}^{2}+M_{W}^{2}
$$

Back to the CP-even Higgsses: inject expression of M_{A}^{2} into \mathcal{M}_{R}^{2} :

$$
\mathcal{M}_{R}^{2}=\left[\begin{array}{cc}
M_{A}^{2} \sin ^{2} \beta+M_{Z}^{2} \cos ^{2} \beta & -\left(M_{A}^{2}+M_{Z}^{2}\right) \sin \beta \cos \beta \\
-\left(M_{A}^{2}+M_{Z}^{2}\right) \sin \beta \cos \beta & M_{A}^{2} \cos ^{2} \beta+M_{Z}^{2} \sin ^{2} \beta
\end{array}\right]
$$

Calculating determinant and trace, one obtains for the masses:
$\operatorname{Det} \mathcal{M}_{R}^{2}=\left(M_{A}^{2} s^{2}+M_{Z}^{2} c^{2}\right)\left(M_{A}^{2} c^{2}+M_{Z}^{2} s^{2}\right)-\left(M_{A}^{2}+M_{Z}^{2}\right) s^{2} c^{2}=M_{A}^{2} M_{Z}^{2} c_{2 \beta}^{2} \equiv M_{h}^{2} M_{H}^{2}$ $\operatorname{Tr} \mathcal{M}_{R}^{2}=M_{A}^{2} s^{2}+M_{Z}^{2} c^{2}+M_{A}^{2} c^{2}+M_{Z}^{2} s^{2}=M_{A}^{2}+M_{Z}^{2} \equiv M_{h}^{2}+M_{H}^{2}$
To obtain the CP-even Higgs masses, solve the equation:

$$
M_{h}^{2}\left(M_{A}^{2}+M_{Z}^{2}-M_{h}^{2}\right)=M_{A}^{2} M_{Z}^{2} c_{2 \beta}^{2} \Rightarrow M_{h}^{4}-M_{h}^{2}\left(M_{A}^{2}+M_{Z}^{2}\right)+M_{A}^{2} M_{Z}^{2} c_{2 \beta}^{2}=0
$$

with discriminant $\Delta=\left(M_{A}^{2}+M_{Z}^{2}\right)^{2}-4 M_{A}^{2} M_{Z}^{2} \cos ^{2} 2 \beta$, the two solutions are: $M_{h, H}^{2}=\frac{1}{2}\left(M_{A}^{2}+M_{Z}^{2} \mp \sqrt{\Delta}\right)$ giving (h is the lightest Higgs):

$$
M_{h, H}^{2}=\frac{1}{2}\left[M_{A}^{2}+M_{Z}^{2} \mp \sqrt{\left(M_{A}^{2}+M_{Z}^{2}\right)^{2}-4 M_{A}^{2} M_{Z}^{2} \cos ^{2} 2 \beta}\right]
$$

The mixing angle α which rotates the fields is ($-\frac{\pi}{2} \leq \alpha \leq 0$)

$$
\tan 2 \alpha=\frac{2 \mathcal{M}_{12}}{\mathcal{M}_{11}-\mathcal{M}_{22}}=\frac{-\left(M_{A}^{2}+M_{Z}^{2}\right) \sin 2 \beta}{\left(M_{Z}^{2}-M_{A}^{2}\right) \cos 2 \beta}=\tan 2 \beta \frac{M_{A}^{2}+M_{Z}^{2}}{M_{A}^{2}-M_{Z}^{2}}
$$

We see that we have an important constraint on the lightest h boson mass in the MSSM:

$$
M_{h} \leq \min \left(M_{A}, M_{Z}\right) \cdot|\cos 2 \beta| \leq M_{Z}
$$

besides some other (alos important) relations:

$$
M_{H}>\max \left(M_{A}, M_{Z}\right) \quad \text { and } \quad M_{H^{ \pm}}>M_{W}
$$

If we send M_{A} to infinity, we will have for the Higgs masses and α :

$$
M_{h} \sim M_{Z}|\cos 2 \beta|, \quad M_{H} \sim M_{H^{ \pm}} \sim M_{A}, \quad \alpha \sim \frac{\pi}{2}-\beta
$$

This is the decoupling regime: all Higgses are heavy except for h.

The h boson is lighter than M_{Z} and should have been seen at LEP2 (we have $\sqrt{s}_{\text {LEP2 }} \sim 200 \mathrm{GeV}>M_{h}+M_{Z} \sim 180 \mathrm{GeV}$).

So what happened in this case? Maybe the MSSM is ruled out?

No! This relation holds only at first order (tree-level): there are strong couplings involved, in particular the $h t t$ and $h \tilde{t t}$ couplings.
\Rightarrow Calculation of radiative corrections to M_{h} necessary. We have to include the important corrections due to top (s)quarks.
2. Calculation of radiative corrections to M_{h}

Let us do the calculation, but with some simplifications:

- take the (decoupling) limit $M_{A} \rightarrow 0$ and use $\tan \beta \gg 1$ ($\left.M_{h}^{\max }\right)$
- assume no stop mixing and same masses, $m_{\tilde{t}_{1}}=m_{\tilde{t}_{2}}=m_{\tilde{t}}$
- simple couplings: $h \bar{t} t \sim h \tilde{t} \tilde{t} \sim \lambda_{t}, h h \tilde{t}^{*} \tilde{t} \sim \lambda_{t}^{2}$ with $\lambda_{t}=\sqrt{2} m_{t} / v$
- work in the limit $M_{h} \ll m_{t}, m_{\tilde{t}}$.

In addition to two-point functions including fermion/scalar loops, we have also tadpole contributions (counterterm corrections):

- The calculation is almost already done: for two-point function:

$$
\left.\Delta M_{h}^{2}\right|_{2}=\frac{3 \lambda_{t}^{2}}{4 \pi^{2}}\left[\left(m_{t}^{2}-m_{\tilde{t}}^{2}\right) \log \left(\frac{\Lambda}{m_{\tilde{t}}}\right)+3 m_{t}^{2} \log \left(\frac{m_{\tilde{t}}}{m_{t}}\right)\right]
$$

- For the tadpole contributions, the calculation is very simple:

$$
\begin{aligned}
\left.\Delta M_{h}^{2}\right|_{1} & =i N_{f}\left(\frac{-i M_{H}^{2}}{v}\right) \frac{i}{-M_{h}^{2}}\left(-i \frac{\lambda_{f}}{\sqrt{2}}\right)(-4 m i) \int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m_{f}^{2}} \\
& +i N_{S}\left(\frac{-i M_{H}^{2}}{v}\right) \frac{i}{-M_{h}^{2}}\left(i v \lambda_{S}\right) i \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m_{S}^{2}} \\
& =\frac{4 N_{f} m_{f} \lambda_{f}}{\sqrt{2} v 16 \pi^{2}} \int_{0}^{\Lambda^{2}} d y \frac{y}{y+m_{f}^{2}}+\frac{N_{S} \lambda_{S}}{16 \pi^{2}} \int_{0}^{\Lambda^{2}} d y \frac{y}{y+m_{S}^{2}}
\end{aligned}
$$

Using $\lambda_{S}=-\lambda_{f}^{2}=-2 m_{f}^{2} / v$ and $\int \ldots=\Lambda^{2}-m^{2} \log \left(\Lambda^{2} / m^{2}\right)$, one obtains

$$
\left.\Delta M_{h}^{2}\right|_{1}=-\frac{3 \lambda_{t}^{2}}{4 \pi^{2} v^{2}}\left[m_{\tilde{t}}^{2} \log \left(\frac{\Lambda}{m_{\tilde{t}}}\right)-m_{t}^{2} \log \left(\frac{\Lambda}{m_{\tilde{t}}}\right)\right]
$$

- The total correction to the h boson mass is then given by:

$$
\Delta M_{h}^{2}=\frac{3 m_{t}^{4}}{2 \pi^{2} v^{2}} \log \frac{m_{\tilde{t}}}{m_{t}}=\frac{3 g^{2}}{2 \pi^{2}} \frac{m_{t}^{4}}{M_{W}^{2}} \log \frac{m_{t}^{2}}{m_{t}^{2}}
$$

Its depends on m_{t}^{4} and $\log \left(m_{\tilde{t}}^{2} / m_{t}^{2}\right)$, and is large: $M_{h}^{\max } \rightarrow M_{Z}+40$ GeV! This explains why the h boson has not been seen at LEP2.

3. The Higgs boson couplings

Can be derived by looking at the relevant parts of the Lagrangian. Here will discuss briefly couplings to Higgs bosons, massive gauge bosons and fermions.

Trilinear and Quartic scalar couplings
The trilinear (3 fields) et quartic (4 fields) couplings among Higgs bosons can be obtained from the scalar potential V_{H} by making:

$$
\begin{aligned}
\lambda_{i j k}^{2} & =\left.\frac{\partial^{3} V_{H}}{\partial H_{i} \partial H_{j} \partial H_{k}}\right|_{\left\langle H_{1}^{0}\right\rangle=v_{1},\left\langle H_{2}^{0}\right\rangle=v_{2},\left\langle H_{1,2}^{ \pm}\right\rangle=0} \\
\lambda_{i j k l}^{2} & =\left.\frac{\partial^{4} V_{H}}{\partial H_{i} \partial H_{j} \partial H_{k} \partial H_{l}}\right|_{\left\langle H_{1}^{0}\right\rangle=v_{1},\left\langle H_{2}^{0}\right\rangle=v_{2},\left\langle H_{1,2}^{ \pm}\right\rangle=0}
\end{aligned}
$$

with the H_{i} expressed in terms of the fields $h, H, A, H^{ \pm}$and $G^{0}, G^{ \pm}$ with rotations of angles β et α. Examples (unit: $\lambda_{0}=-i M_{Z}^{2} / v$):

$$
\begin{aligned}
\lambda_{h h h} & =3 \cos 2 \alpha \sin (\beta+\alpha)+\text { rad. corr. } \\
\lambda_{h h h h} & \left.=3 \cos ^{2} \alpha / M_{Z}^{2}+\text { rad. corr. } \quad \text { (in units of } \lambda_{0}^{2}\right)
\end{aligned}
$$

In the decoupling limit, $M_{A} \gg M_{Z}$ we have $\alpha \rightarrow \beta-\pi / 2$:

$$
\begin{aligned}
& \lambda_{h h h} \rightarrow 3 \cos ^{2}(2 \beta)=3 M_{h}^{2} / M_{Z}^{2}=\left.\lambda^{3}\right|_{\mathrm{MS}} \\
& \lambda_{h h h h} \rightarrow 3 \cos ^{2}(2 \beta) / M_{Z}^{2}=3 M_{h}^{2} / M_{Z}^{4}=\left.\lambda^{4}\right|_{\mathrm{MS}}
\end{aligned}
$$

\Rightarrow In the decoupling limit, $M_{A} \gg M_{Z}$, the Higgs potential of the MSSM becomes like the one of the SM: only one light Higgs with a mass $M_{h} \lesssim 130 \mathrm{GeV}$ and with standard interactions. All other Higgsses are heavy and decouple (but self-couplings are non-zero).

Couplings to gauge bosons:
Higgs couplings to massive gauge bosons are obtained from the kinetic terms of H_{1} et H_{2} in the $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$ Lagrangian:

$$
\mathcal{L}_{\text {kin. }}=\left(D^{\mu} H_{1}\right)^{\dagger}\left(D_{\mu} H_{1}\right)+\left(D^{\mu} H_{2}\right)^{\dagger}\left(D_{\mu} H_{2}\right)
$$

Develop D_{μ} and make the usual transformations on the fields:

$$
D_{\mu}=i \partial_{\mu}-g \frac{\vec{\tau}_{a}}{2} W_{\mu}^{a}-g^{\prime} \frac{Y_{H_{i}}}{2} B_{\mu}
$$

$W_{1,2,3}, B \rightarrow W^{ \pm}, Z, \gamma ; \quad H_{1,2} \rightarrow h, H, A, H^{ \pm}, G^{0}, G^{ \pm}$via rotations β, α

$$
\begin{aligned}
g_{h_{i} V V} & \equiv \text { coefficients de } h_{i} V_{\mu} V_{\mu} \quad\left(g_{\mu \nu}\right) \\
g_{h_{h} h_{j} V} & \equiv \text { coefficients de } h_{i} h_{j} V_{\mu} \quad\left(\partial_{\mu} \rightarrow p_{\mu}\right) \\
g_{h_{i} h_{j} V V} & \equiv \text { coefficients de } h_{i} h_{j} V_{\mu} V_{\mu} \quad\left(g_{\mu \nu}\right)
\end{aligned}
$$

Some very important couplings for Higgs phenomenology:

$$
\begin{aligned}
Z^{\mu} Z^{\nu} h & : \frac{i g M_{Z}}{\cos \theta_{W}} \sin (\beta-\alpha) g^{\mu \nu}, Z^{\mu} Z^{\nu} H: \frac{i g M_{Z}}{\cos \theta_{W}} \cos (\beta-\alpha) g^{\mu \nu} \\
W^{\mu} W^{\nu} h & : i g M_{W} \sin (\beta-\alpha) g^{\mu \nu}, W^{\mu} W^{\nu} H: i g M_{W} \cos (\beta-\alpha) g^{\mu \nu} \\
Z^{\mu} h A & : \frac{g \cos (\beta-\alpha)}{2 \cos \theta_{W}}\left(p+p^{\prime}\right)^{\mu}, Z^{\mu} H A:-\frac{g \sin (\beta-\alpha)}{2 \cos \theta_{W}}\left(p+p^{\prime}\right)^{\mu}
\end{aligned}
$$

$-\gamma$ massless: no coupling with the neutral Higgsses at tree-level.

- CP invariance: no $Z Z A$ and $Z h h, Z H h, Z H H$ couplings e.g.
- Couplings of h and H complementary: $g_{h Z Z}^{2}+g_{H Z Z}^{2}=g_{\mathrm{MS}}^{2}$!
- Decoupling limit $\left(M_{A} \rightarrow \infty, \alpha \rightarrow \beta-\frac{\pi}{2}\right): \sin (\beta-\alpha) \rightarrow 1, \cos (\beta-\alpha) \rightarrow 0$:

$$
\Rightarrow g_{h V V}=g_{H_{\mathrm{MS}} V V}, g_{H V V}=0\left(=g_{A V V}\right)
$$

Yukawa couplings to fermions:
The Higgs couplings to fermions come from Superpotential W :

$$
W=\sum_{\mathrm{i}, \mathrm{j}=\mathrm{gen}} Y_{i j}^{u} \hat{u}_{R}^{i} \hat{H}_{2} \cdot \hat{Q}^{j}+Y_{i j}^{d} \hat{d}_{R}^{i} \hat{H}_{1} \cdot \hat{Q}^{j}+Y_{i j}^{l} \hat{l}_{R}^{i} \hat{H}_{1} \cdot \hat{L}^{j}+\mu \hat{H}_{1} \cdot \hat{H}_{2}
$$

with $\mathcal{L}_{\text {Yuk }}=-\frac{1}{2} \sum_{i j}\left[\bar{\psi}_{i L} \frac{\partial^{2} W}{\partial z_{i} \partial z_{j}} \psi_{j}+\right.$ h.c. $]$ evaluated in terms of H_{1}, H_{2}. Take bilinears out, digagonal Y matrices Y with relations to masses, and expressings H_{1}, H_{2} in terms of the physical fields, we get:

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & -\frac{g m_{u}}{2 M_{W} \sin \beta}\left[\bar{u} u(H \sin \alpha+h \cos \alpha)-i \bar{u} \gamma_{5} u A \cos \beta\right] \\
& -\frac{g m_{d}}{2 M_{W} \cos \beta}\left[\bar{d} d(H \cos \alpha-h \sin \alpha)-i \bar{d} \gamma_{5} d A \sin \beta\right] \\
& +\frac{g}{2 \sqrt{2} M_{W}}\left\{H^{+} \bar{u}\left[m_{d} \tan \beta\left(1+\gamma_{5}\right)+\frac{m_{u}}{\tan \beta}\left(1+\gamma_{5}\right)\right] d+\mathrm{hc}\right\}
\end{aligned}
$$

Couplings in termsof those of H_{SM} [factor $-(i) g m_{f} / 2 M_{W}=-i m_{f} / v$] and their values in the decoupling limit $[\cos \alpha \rightarrow \sin \beta, \sin \alpha \rightarrow-\cos \beta]$:

f	$g_{f f h}$	$g_{f f H}$	$g_{f f A}$
u	$\cos \alpha / \sin \beta \rightarrow 1$	$\sin \alpha / \sin \beta \rightarrow-\tan \beta$	$\cot \beta$
d	$-\sin \alpha / \cos \beta \rightarrow 1$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$	$\tan \beta$

- The couplings of $H^{ \pm}$have the same intensity as those of A.
- For $\tan \beta>1$: Cplgs to d enhanced, cplgs to u suppressed.
- For $\tan \beta \gg 1$: couplings to b quarks b ($m_{b} \tan \beta$) very strong.
- For $M_{A} \gg M_{Z}: h$ couples like the SM Higgs boson and H like A.

[^0]: ${ }^{*}$ This statement is not trivial to prove and we will come back to this discussion later on.

[^1]: *This calculation, including details is done in: G. Altarelli, B. Mele and F. Pitolli, Nucl. Phys. B287 (1987) 205.

[^2]: * Calculation to be checked!!!

