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Chapter 1

The Mountain Pass
Theorem

1. Function Spaces

We recall the definition and some properties of some function spaces.

Definition 1.1. Let Ω ⊂ RN , Ω open. We denote by C∞c (Ω) the set of all
C∞ real valued function with compact support in Ω. We will also assume
that the reader is familiar with the Sobolev Spaces H1(Ω), H1

0 (Ω). We recall
that, for N ≥ 3 and 2∗ = 2N/(N − 2), the space

D1,2(RN ) =
{
u ∈ L2∗(RN ) | ∇u ∈ L2(RN )

}
with scalar product and norm∫

RN

∇u · ∇v,
(∫

RN

|∇u|2
)1/2

is a Hilbert space. We also let D1,2
0 (Ω) be the closure of C∞c (Ω) in D1,2(RN ).

It follows that H1
0 (Ω) ⊂ D1,2

0 (Ω). Poincaré inequality (see theorem 1.4
below) implies that H1

0 (Ω) = D1,2
0 (Ω) if |Ω| < +∞.

Theorem 1.2 (Sobolev imbedding theorem). The following imbeddings are
continuous:

H1(RN ) ⊂ Lp(RN ), 2 ≤ p <∞, N = 1, 2,(1.1)

H1(RN ) ⊂ Lp(RN ), 2 ≤ p ≤ 2∗, N ≥ 3,(1.2)

D1,2(RN ) ⊂ L2∗(RN ), 2 ≤ p ≤ 2∗, N ≥ 3.(1.3)
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4 1. The Mountain Pass Theorem

In particular we have the following:

S = inf
{∫

RN

|∇u|2
∣∣∣ u ∈ D1,2(RN ),

∫
RN

u2∗ = 1
}
> 0.

Theorem 1.3 (Rellich theorem). If |Ω| < +∞ the imbeddings

H1
0 (Ω) ⊂ Lp(Ω), 1 ≤ p <∞, N = 1, 2,

H1
0 (Ω) ⊂ Lp(Ω), 1 ≤ p < 2∗, N ≥ 3,

are compact.

Theorem 1.4 (Poincaré inequality). Assume |Ω| < +∞. Then

(1.4) λ1(Ω) = inf
{∫

Ω
|∇u|2

∣∣∣ u ∈ H1
0 (Ω),

∫
Ω
u2 = 1

}
> 0

2. Differentiability

Let us recall some notion in differential calculus in Banach spaces (see [1,
12, 13]).

Definition 2.1. Let f : U → R, U open in the Banach space V . We say
that f is Gateaux-differentiable at x0 ∈ U if there exist g ∈ V ′ (the dual of
V ) such that for all h ∈ V

(2.1) lim
t→0

f(x0 + th)− f(x0)− t〈g, h〉
t

= 0.

We also say that f is Frechet-differentiable at x0 if there exist g ∈ V ′

such that

lim
‖h‖→0

f(x0 + h)− f(x0)− 〈g, h〉
‖h‖

= 0

If f is Gateaux or Frechet-differentiable at x0 we write df(x0) = g. If f
is Frechet-differentiable at all points x ∈ U , and the map x 7→ df(x) is
continuous, we write f ∈ C1(U).

Clearly Frechet-differentiability implies Gateaux-differentiability.
If f is Gateaux differentiable at x0 and df(x0) = 0 we say that x0 is a

critical point or stationary point and that c = f(x0) is a critical value.
If V is a Hilbert space and f is Gateaux differentiable at x0, we define

the gradient ∇f(x0) ∈ V of f as the element such that

(∇f(x0) |h) = 〈df(x0), h〉 for all h ∈ V.

Proposition 2.2. f ∈ C1(U) if f is Gateaux-differentiable in U and x 7→
df(x) is continuous.

Definition 2.3. Let Ω ⊂ RN . We say that g : Ω×R satisfy the Carathéodory
condition if
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• For all s ∈ R the function x 7→ g(x, s) is measurable;

• for almost all x ∈ Ω the function s 7→ g(s, x) is continuos.

Proposition 2.4. If g : Ω × R → R satisfies the Carathéodory condition,
then x 7→ g(x, u(x)) is measurable for all measurable u : Ω → R.

Proof. It is clear if u is a simple, measurable function. The general case
follows taking a sequence un of simple, measurable functions which converge
to u almost everywhere. �

Proposition 2.5. Let g satisfy the Carathéodory condition and, for some
p, q ≥ 1 and a(x) ∈ Lq(Ω),

|g(s, x)| ≤ a(x) + c|s|p/q.

Then the Nemitskii operator

g# : Lp(Ω) → Lq(Ω) (g#u)(x) = g(x, u(x))

is continuous.

Proof. From |g(x, u(x))|q ≤ |a(x)+c|u(x)|p/q|q ≤ 2q−1|a(x)|q+2q−1c|u(x)|p ∈
L1(Ω) we deduce that g(x, u(x)) ∈ Lq(Ω). Take un → u in Lp(Ω). There is
a subsequence unk

and a function ḡ ∈ Lp(Ω) such that, almost everywhere,
unk

(x) converges to u(x) and |unk
(x)| ≤ ḡ(x) (see, for example [3, 13]).

Then g(x, unk
(x)) → g(x, u(x)) almost everywhere and, since

|g(x, unk
(x))− g(x, u(x))|q ≤ 2q(|a(x)|+ cḡ(x)p/q)q ∈ L1(Ω)

the result follows by dominated convergence. �

Proposition 2.6. Let 1 < p < ∞ and Ω ⊂ RN . Assume g : Ω × R → R
satisfy the Carathéodory condition and

(2.2) |g(x, s)| ≤ a(x) + c|s|p/q

for some a ∈ Lq(Ω) and 1 = 1
q + 1

p . Let

G(x, s) =
∫ s

0
g(x, t) dt (x, s) ∈ Ω× R.

Then the functionals ψ : Lp(Ω) → R defined as

ψ(u) =
∫

Ω
G(x, u(x)) dx,

is of class C1(Lp(Ω),R) and

〈dψ(u), v〉 =
∫

Ω
g(x, u(x))v(x) dx.
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Proof. We have to show that (2.1) holds. For all v ∈ Lp(Ω), for all x ∈ Ω
and for all t ∈ [−1, 1] by the mean value theorem there is λ ∈ (0, 1) such
that

G(x, u(x) + tv(x))−G(x, u(x)) = g(x, u(x) + λtv(x))tv(x).

Since

|g(x, u(x) + λtv(x))||tv(x)| ≤
(
a(x) + c|u(x) + λtv(x)|p/q

)
|v(x)|

≤
(
a(x) + c(|u(x)|+ |v(x)|)p/q

)
|v(x)|

and(
a(x) + c(|u(x)|+ |v(x)|)p/q

)q
≤ 2q−1

(
a(x)q + 2p−1c|u(x)|p + 2p−1c|v(x)|p

)
∈ L1(Ω)

we have, by Hölder’s inequality, that

|g(x, u(x) + λtv(x))||tv(x)|
≤ 2q−1

(
a(x)q + 2p−1c|u(x)|p + 2p−1c|v(x)|p

)
|v(x)|. ∈ L1(Ω)

From dominated convergence we then have

lim
t→0

∫
Ω

G(x, u(x) + tv(x))−G(x, u(x))
t

=
∫

Ω
g(x, u)v

and the Gateaux-differentiability follows.
To prove that ψ is Frechet-differentiable, let us show that u 7→ g(x, u(x))

is continuous from Lp(Ω) to Lq(Ω). This is a simple consequence of propo-
sition 2.5.

�

Remark 2.7. It is possible to prove that ψ is of class C2 in Lp with p >
2 when g(x, s) is differentiable with respect to s and gs(x, s) satisfies the
Carathéodory condition and the growth condition

|gs(x, s)| ≤ a(x) + b|s|p−2

for some a ∈ Lp/(p−2) and b > 0. ψ is not C2 in L2 unless g(x, s) is linear in
s.

A direct consequence of Sobolev imbedding 1.2 is

Corollary 2.8. Let 1 < p ≤ 2∗ if N ≥ 3 (1 < p < +∞ if N = 1, 2). Then
ψ ∈ C1(H1

0 (Ω); R).

If N ≥ 3 and p = 2∗, then ψ ∈ C1(D1,2
0 (Ω); R).
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3. Minimization

Let us recall some results on minimization.

Theorem 3.1. Let V be a Hausdorff topological space, and f : V → R ∪
{+∞} be such that

for all α ∈ R the set Kα =
{
u ∈ V

∣∣∣ f(u) ≤ α
}

is compact (or sequentially compact).
(BC)

Then

(a) β = infV f > −∞;
(b) Exists x0 ∈ V such that f(x0) = β.

Remark 3.2. Let us note that

(1) (BC) implies that f is lower semi-continuous (sequentially lower
semi-continuous).

(2) the conclusion of theorem 3.1 hold if f is lower semi-continuous (se-
quentially lower semi-continuous) and Kα is compact (sequentially
compact) for some α ∈ R.

In case we are dealing with functionals defined in a Banach space, the
following consequence of 3.1 is useful

Theorem 3.3. Let V be a reflexive Banach space, and let X be a weakly
closed subset of V . Let f : X → R ∪ {+∞} be such that

(1) f is coercive, that is f(un) → +∞ whenever un ∈ X, ‖un‖ → +∞;
(2) f is sequentially weakly lower semicontinuous, that is un ∈ X,

un ⇀ u implies f(u) ≤ lim infn→∞ f(un).

Then

(a) β = infX f > −∞;
(b) Exists x0 ∈ X such that f(x0) = β.

Whenever f is differentiable, local minima are critical points of f . Indeed

Theorem 3.4. Let V be a Banach space, and assume

(1) x0 is a local minimum for f ;
(2) f is Gateaux differentiable in x0.

Then df(x0) = 0.

In the assumptions of theorem 3.1, every minimizing sequence converges.
The following theorem, and the related corollary, shows that it is possible to
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find minimizing sequences with additional properties (and also gives infor-
mation about minimizing sequences of bounded, non-coercive functionals).

Theorem 3.5 (Ekeland’s Variational Principle, see, for example, [12]). Let
f : M → R ∪ {+∞}, where M is a complete metric space, and assume

(1) f is lower semicontinuous;
(2) f is bounded from below: β = infM f > −∞;
(3) f 6≡ +∞.

Then for all ε, δ > 0 and for all u ∈ M such that f(u) ≤ β + ε there exist
v ∈M such that

(a) f(v) ≤ f(u);
(b) dist(u, v) ≤ δ;
(c) f(v) < f(w) + ε

δ dist(v, w) for all w ∈M , w 6= v.

A rather direct consequence of the above theorem is

Theorem 3.6. Let V be a Banach space, f ∈ C1(V ), β = infM f > −∞.
Then there exist a sequence un ∈ V such that

(a) f(un) → β;
(b) df(un) → 0 in V ′.

as n→ +∞.

We will see later, in section 4, that sequences satisfying (a) and (b) of
theorem 3.6 play an important rôle in critical point theory.

4. The Palais-Smale condition

Definition 4.1. Let V be a Banach space, f ∈ C1(V ). We say that un ∈ V
is a Palais-Smale sequence at level β (shortly a (PS)β sequence), if

(1) f(un) → β;
(2) df(un) → 0.

We say that f satisfies the (PS)β condition if every (PS)β sequence has
a converging subsequence.

We say that f satisfies the (PS) condition if it satisfies the (PS)β condi-
tion for all β ∈ R.

Remark 4.2. If V is a finite dimensional space, (PS)β follows from bound-
edness of (PS)β sequences. In particular (PS) follows from coerciveness.
More in general, (PS) follows (always in the finite dimensional case) from
coerciveness of x 7→ f(x) + ‖df(x)‖.
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If f(x) =
∑N

i,j=1 aijxixj +
∑N

i=1 bixi +c, then f satisfies (PS) if A = [aij ]
is an invertible matrix.

For the infinite dimensional case, will be useful the following result:

Theorem 4.3. Let f ∈ C1(V ), V Banach, be such that

(1) Any (PS)β sequence is bounded;

(2) For all u ∈ V
df(u) = Lu+K(u)

where L is an invertible linear operator and K is a compact opera-
tor.

Then f satisfies (PS)β.

Proof. Take a (PS)β sequence. Then it is bounded by (1) and Lun +
K(un) = df(un) → 0. Let yn = K(un). By (2) ynk

→ y in V ′. We deduce
that

unk
= L−1(df(unk

)− ynk
) → −L−1y

�

From (PS) we deduce, in particular

Proposition 4.4. Let f ∈ C1(V ), V Banach. Assume that f satisfies
(PS)β. Then

(a) Kβ =
{
u ∈ V | f(u) = β and df(u) = 0

}
is compact;

(b) If Kβ = ∅ then exists δ > 0 such that ‖df(u)‖ ≥ δ for all u such
that |f(u)− β| < δ.

(c) For all neighborhoods U of Kβ there exists δ > 0 such that

Kβ ⊂ Nβ,δ :=
{
u ∈ V | |f(u)− β| < δ and ‖df(u)‖ < δ

}
⊂ U.

Proof. (a) un ∈ Kβ is clearly a (PS)β sequence. Hence it has a con-
verging subsequence.

(b) Assume, by contradiction, that there exists un such that f(un) → β
and df(un) → 0. Then un is a (PS)β sequence which then converges
to a critical point u at level β.

(c) Assume, by contradiction, that there exists un /∈ U such that
f(un) → β and df(un) → 0. By (PS)β un converges (up to a
subsequence), to a critical point in Kβ, contradiction.

�

Recalling Ekeland’s variational principle 3.6, we get that
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Theorem 4.5. Suppose f ∈ C1(V ), V Banach, f ∈ C1(V ), β = infM f >
−∞. If (PS)β holds, then the infimum is achieved.

Remark 4.6. Actually it can be shown (see [5]) that any differentiable
function bounded below which satisfies (PS) is coercive.

5. The deformation lemma

Definition 5.1. Let f ∈ C1(V ). We let Ṽ =
{
u ∈ V | df(u) 6= 0

}
. We say

that a map
v : Ṽ → V

is a pseudo-gradient vector field for f if

(1) v is lipschitz-continuous;
(2) ‖v(u)‖ ≤ 2‖df(u)‖;
(3) 〈df(u), v(u)〉 ≥ ‖df(u)‖2.

Remark 5.2. If V = H is an Hilbert space and ∇f(u) is the gradient of
f , we have that 3

2∇f(u) is a continuous pseudo-gradient vector field. The
pseudo-gradient vector field is a something that “looks like” a gradient vector
field in case ∇f(u) does not exists (is the case of the Banach space case) or
is not regular enough.

Theorem 5.3. Let f ∈ C1(V ), V Banach. Then there exists a pseudo-
gradient vector field.

Proof. Fix u ∈ Ṽ . Since df(u) 6= 0, there exist w̄(u) ∈ V such that
‖w̄(u)‖ = 1 and

〈df(u), w̄(u)〉 > 2
3
‖df(u)‖.

Let w(u) = 3
2‖df(u)‖w̄(u). Then

‖w(u)‖ = 3
2‖df(u)‖ < 2‖df(u)‖

〈df(u), w(u)〉 > ‖df(u)‖2.

Since f ∈ C1(V ), for any given u ∈ Ṽ there exist a neighborhood Uu of u
such that, for all v ∈ Uu

(5.1) ‖w(u)‖ < 2‖df(v)‖ 〈df(v), w(u)〉 > ‖df(v)‖2.

{Uu}u∈Ṽ is an open cover of the metric (and hence paracompact) space Ṽ .
Then there exist a locally finite refinement {Vα}α∈A of {Uu}u∈Ṽ , that is

(1) {Vα}α∈A is an open cover of Ṽ ;

(2) for all α ∈ A we have Vα ⊂ Uuα for some uα ∈ Ṽ .
(3) for a given α ∈ A, Vα ∩ Vβ 6= ∅ only for finitely many β ∈ A.
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Define on Ṽ , the Lipschitz continuous functions

ρα(v) = dist(v, Ṽ \ Vα)

and

W (v) =
∑
α∈A

ρα(v)w(uα)∑
β∈A ρβ(v)

Remark that the above series is actually a finite sum. It is clearly Lips-
chitz continuous and, using the convexity of the norm, the linearity of df(u)
together with (5.1) the result follows. �

We now state and prove a rather general version of the deformation
lemma.

Theorem 5.4 (Deformation Lemma). Let f ∈ C1(V ) and assume (PS)β

holds.
Then for all ε̄ > 0 and for all U neighborhood of Kβ there exist ε > 0

and η ∈ C(V × R;V ) such that

(a) η(u, 0) = u for all u;

(b) df(u) = 0 implies η(u, t) = u for all t;

(c) |f(u)− β| > ε̄ implies η(u, t) = u for all t;

(d) t 7→ f(η(u, t)) is nonincreasing in t;

(e) u ∈ fβ+ε \ U implies η(u, 1) ∈ fβ−ε

(f) u ∈ fβ+ε implies η(u, 1) ∈ fβ−ε ∪ U
(g) η(η(u, t), s) = η(u, t+s) (which implies that, for fixed t, u 7→ η(u, t)

is a homeomorphism).

Proof. The idea is to construct η as the solution of the Cauchy problem
η′ = f ′(η), η(0) = u. But in order to do this we will need to use the
pseudo-gradient vector field (which is Lipschitz-continuous) and to truncate
it.

Given ε̄ and U , take ρ, δ > 0 such that (see (c) of Proposition 4.4)

Kβ ⊂ Nβ,δ ⊂ Uρ ⊂ U2ρ ⊂ U

where
Uρ =

{
u ∈ V

∣∣∣ dist(u,Kβ) < ρ
}
.

We also take ρ, δ ≤ 1.
We first define two cutoff functions in order to achieve (b) and (c).
We let χ : V → R be a Lipschitz-continuous function such that 0 ≤

χ(u) ≤ 1, χ(u) = 0 if u ∈ Nβ,δ/2, χ(u) = 1 if u /∈ Nβ,δ.
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We then define φ : R → R be a Lipschitz-continuous function such that
0 ≤ φ(s) ≤ 1, φ(s) = 0 if |s−β| ≥ min{ε̄, δ

4}, φ(s) = 1 if |s−β| ≤ min{ ε̄
2 ,

δ
8}.

Finally we let ξ(s) = min{1, 1
|s|}. We will need this to get a bounded

vector field.
Let v : Ṽ → V be a pseudo-gradient vector field for f . Define

e(u) =

{
−χ(u)φ(f(u))ξ(‖v(u)‖

2 )v(u) u ∈ Ṽ
0 if df(u) = 0

Then e : V → V is a Lipschitz-continuous vector field (remark that χ = 0
near the critical points having value in [β − δ, β + δ] while φ = 0 close to
the other critical points). We also have that ‖e(u)‖ ≤ 2. Hence the Cauchy
problem

(5.2)

{
∂η
∂t = e(η)
η(u, 0) = u

has a solution defined for all t ∈ R, continuous in t and u. Then (a) and (g)
follow.

The definition of the cutoff functions χ and φ immediately give (b) and
(c).

To prove (d), it is enough to compute

d

dt
f(η(t, u)) = 〈df(η),

∂η

∂t
〉

= 〈df(η), e(η)〉

= −χ(η)φ(f(η))ξ(‖‖v(u)‖
2

‖)〈df(η), v(η)〉

≤ −χ(η)φ(f(η))ξ(‖‖v(u)‖
2

‖)‖df(η)‖2 ≤ 0.

We now take ε > 0 such that ε < ε̄
2 , ε < δ

8 , ε < δ2ρ
4 .

We assume

f(u) < β + ε(5.3)

η(u, t) /∈ Nβ,δ ∀t ∈ [0, 1](5.4)

and claim that in such a case f(η(u, 1)) < β − ε. We can, by (d), assume
f(η(u, t)) ≥ β − ε for all t ∈ [0, 1]. Then it is clear that

χ(η(t, u)) = 1 ∀t ∈ [0, 1]

φ(f(η(t, u))) = 1 ∀t ∈ [0, 1]

‖df(η(t, u))‖ ≥ δ ∀t ∈ [0, 1]
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and
d

dt
f(η(u, t)) ≤ −ξ(‖df(η)‖)‖df(η)‖2 ≤ −δ2

so that
f(η(u, 1)) ≤ f(u)− δ2 < β − ε

by the assumptions on ε.
We can now prove (e). Assume u ∈ fβ+ε \ U , f(η(u, 1)) ≥ β − ε. We

show that η(u, t) /∈ Nβ,δ for all t ∈ [0, 1]. Then (e) will follow from the claim
above.

If exists t̄ ∈ [0, 1] such that η(u, t̄) ∈ Nβ,δ, then dist(u, η(u, t̄)) > ρ and
we find an interval [0, t1] ⊂ [0, t̄] such that, for all t ∈ [0, t1]

β − ε ≤ f(η(u, t)) ≤ β + ε

η(u, t) /∈ Nβ,δ

‖u− η(u, t1)‖ > ρ.

Then

ρ ≤ ‖u− η(u, t1)‖ ≤
∫ t1

0
‖e(u)‖ ≤ 2t1

that is, t1 ≥ ρ
2 . As before, we get

f(η(u, t1)) ≤ f(u)− t1δ
2 < β + ε− ρδ2

2
and our choice of ε shows that f(η(u, t1)) < β − ε.

The proof of (f) is similar. Assume u ∈ fβ+ε, η(u, 1) /∈ fβ−ε. Then, by
(e), u ∈ U . We want to show that η(u, 1) ∈ U . Assume not. If η(u, t) /∈ Nβ,δ

for all t ∈ [0, 1] we can use the claim to prove that f(η(u, 1)) ≤ β− ε. So for
some t1 ∈ [0, 1] η(u, t1) ∈ Nβ,δ. But then ‖η(u, t1) − η(u, 1)‖ > ρ and one
can proceed as in proving (e). �

6. The Mountain Pass Theorem

Theorem 6.1. Suppose f ∈ C1(V ), V Banach space. Assume

(1) f(0) = 0;
(2) Exist r > 0 such that f(u) > α > 0 for all ‖u‖ = r;
(3) Exist ū ∈ V such that ‖ū‖ > r and f(ū) < 0.

Then, setting

Γ =
{
γ ∈ C([0, 1] ;V )

∣∣∣ γ(0) = 0, γ(1) = ū
}

and
β := inf

γ∈Γ
max
t∈[0,1]

f(γ(t))
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we have that β ≥ α > 0, there exist a (PS)β sequence and, if (PS)β holds,
β is a critical level for f .

Proof. The original proof of the theorem can be found in [2].
One immediately checks that β ≥ max‖u‖=r f(u) ≥ α > 0.
Let us assume (PS)β holds, and let us show that it is a critical level.

By contradiction, assume Kβ = ∅. Take ε̄ = β, U = ∅ and find, using the
deformation lemma 5.4, ε > 0 and a deformation η.

Take γ ∈ Γ such that maxt∈[0,1] f(γ(t)) < β + ε. Let γ̄(t) = η(γ(t), 1).
Using the properties of the flow η (in particular point (c) of theorem 5.4
implies that η(0, 1) = 0 and η(ū, 1) = ū) we see immediately that γ̄ ∈ Γ. But
then point (e) of theorem 5.4 implies that max f(γ̄(t)) < β−ε, contradiction
which proves that β is a critical level.

Suppose now that there is no (PS)β sequence. Then (PS)β holds; from
what we have seen β should then be a critical level. But this implies that a
(PS)β sequence exist. Contradiction. �

Remark 6.2. It is easy to see that in the Mountain Pass theorem one can
replace the class Γ of paths with the class

Γ =
{
γ ∈ C([0, 1], E)

∣∣∣ γ(0) = 0, f(γ(1)) < 0
}

The same proof given here allows us to prove a “general” minimax the-
orem (already stated in a similar form in [9]).

Theorem 6.3. Suppose f ∈ C1(V ) and that (PS) holds. Assume Γ is a
class of subsets of V such that

(1) β = infA∈Γ supu∈A f(u) ∈ R;
(2) for all A ∈ Γ and for all maps η ∈ C(V ×R; R) satisfying, for some

ε̄, (a), (b), (c), (d) and (g) of the deformation lemma 5.4 we have
that η(A, 1) ∈ Γ.

Then β is a critical level for f .



Chapter 2

Applications to elliptic
equations

1. Application I: superlinear elliptic equations

In this section we will apply some of the above abstract results to study the
boundary value problem

(BVP)

{
−∆u+ u = g(x, u) x ∈ Ω
u = 0 x ∈ ∂Ω.

Here Ω ⊂ RN (n ≥ 3 for simplicity) is an open set. If Ω is not bounded, the
boundary condition must be understood as u ∈ H1

0 (Ω).
We will assume

(g1) g ∈ C1(RN × R; R), g(x, 0) = ∂g
∂u(x, 0) = 0 for all x ∈ Ω;

(g2) c1|s|p−1 ≤ |g(x, s)| ≤ c2|s|p−1 for some p ∈ (2, 2∗], 2∗ = 2n
n−2 ;

(g3) Exist µ > 2 such that 0 < µG(x, s) ≤ g(x, s)s for all x ∈ Ω and
s 6= 0, where G(x, s) =

∫ s
0 g(x, t) dt.

The above assumptions are satisfied if g(x, s) = |s|p−2s. We also remark
that the theory which follows can be applied (with minor changes) also if g
satisfies (g1), g(x, s) = 0 for all s ≤ 0 and (g2) and (g3) hold for all s > 0,
in particular if g(x, s) = (s+)p−1.

Let us remark that one can take much weaker assumptions, in particular
if Ω is bounded. See, for example [12, Theorem 8.5, pp. 128] and the
reference in this book, or [2, 10]. For the case Ω = RN , see, for example,
[11]. Here we just want to indicate how the abstract results can be applied.

15
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Let H = H1
0 (Ω) with norm ‖u‖ =

∫
Ω[|∇u|2 + u2] dx and scalar product

〈u, v〉 =
∫
Ω[∇u∇v + uv] dx and define, for all u ∈ H,

f(u) =
1
2

∫
Ω
[|∇u|2 + u2] dx−

∫
Ω
G(x, u) dx =

1
2
‖u‖2 −

∫
Ω
G(x, u) dx.

Since u 7→ ‖u‖2 is differentiable, it follows from corollary 2.8 that f is
differentiable in H1

0 (Ω), more precisely that f ∈ C1(H1
0 (Ω)).

Lemma 1.1. f satisfies the geometric assumptions of the Mountain Pass
Theorem 6.1, that is

(a) Exists ρ > 0 such that f(u) ≥ α > 0 for all ‖u‖ = ρ;

(b) For all ū 6≡ 0 f(λū) → −∞ as λ→ +∞.

Proof. (a) From G(x, u) ≤ c2
µ |u|

p we deduce that∫
G(x, u) ≤ c2

µ

∫
|u|p ≤ C‖u‖p.

Hence

f(u) =
1
2
‖u‖2 −

∫
G(x, u)

≥ 1
2
‖u‖2 − C‖u‖p ≥ 1

4
‖u‖2

for ‖u‖ = ρ small.

(b) Remark that (g3) implies that g(x, u) > 0 if u > 0, and hence, for
u > 0,

G(x, u) =
∫ u

0
g(x, s) ds ≥ c1

∫ u

0
|u|p−1 = Cup = C|u|p.

Similarly one gets G(x, u) ≥ C|u|p for all u. Hence, for all ū 6≡ 0

f(λū) ≤ λ2

2
‖ū‖ − λpC

∫
|ū|p → −∞.

�

In order to apply the Mountain Pass theorem 6.1, we have to study (PS)
sequences.

Lemma 1.2. Palais Smale sequences are bounded.
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Proof. Take un ∈ H such that f(un) → β, df(un) → 0. Then

β + 1 +
εn‖un‖
µ

≥ f(un)− 1
µ
〈df(un), un〉

=
(1

2
− 1
µ

)
‖un‖2 −

∫ [
G(x, un)− 1

µ
g(x, un)un

]
≥
(1

2
− 1
µ

)
‖un‖2

and the boundedness of (PS) sequences follow. �

We can now prove that (PS) holds whenever |Ω| < +∞.

Lemma 1.3. Suppose |Ω| < +∞ and p ∈ (2, 2∗). Then (PS) holds.

Proof. The lemma will follow from lemma 1.2 and Theorem 4.3. Indeed,
let us remark that the gradient ∇f(u) ∈ H1

0 (Ω) is defined by

〈df(u), v〉 = (∇f(u) | v) = (u | v)−
∫

Ω
g(x, u)v.

Hence ∇f(u) = u−K(u), where K : H1
0 (Ω) → H1

0 (Ω) is defined by

(K(u) | v) =
∫

Ω
g(x, u)v.

Let us show that K is compact. Assume that un ∈ H1
0 (Ω) is bounded and fix

p ∈ [2, 2∗). By Rellich theorem 1.3, there exists a subsequence (still denoted
un), such that un → u in Lp(Ω), un(x) → u(x) a.e. and such that |un(x)|p ≤
h(x) ∈ L1(Ω). It is then a consequence of Lebesgue dominated convergence,
together with the growth conditions on g, that g(x, un(x)) → g(x, u(x)) in
Lq(Ω), 1

p + 1
q = 1. This implies that

‖K(un)−K(u))‖ = sup
‖v‖≤1

(K(un)−K(u) |un − u)

≤ ‖g(x, un)− g(x, u)‖q‖v‖p → 0,

showing that K is a compact operator. �

Putting all together, we have proved:

Theorem 1.4. Suppose g satisfies (g1–3) with p ∈ (2, 2∗) in an open set
Ω ⊂ RN , |Ω| < +∞.

Then (BVP) has a nontrivial solution.

Proof. The theorem follows from an application of the Mountain Pass the-
orem 6.1, which can be applied thanks to the lemmas 1.1 and 1.3. The
solution is not trivial since we know that the MP level β > 0 is critical,
while f(0) = 0. �
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A particular case of the above theorem is the following:

Theorem 1.5. Suppose |Ω| < +∞ and 2 < p < 2∗. Then the problem

(MP)


−∆u+ λu = |u|p−2u

u > 0,
u ∈ H1

0 (Ω)

has a (nontrivial) solution if and only if λ > −λ1(Ω).

Proof. The proof is essentially the same as that of Theorem 1.4. One has
just to apply the Mountain Pass theorem to the functional

f(u) =
1
2

∫
Ω
[|∇u|2 + λu2] dx− 1

p

∫
Ω
(u+)p dx

and notice that 0 is a (strict) local minimum, thanks to the Poincaré in-
equality (1.4), for all λ > −λ1(Ω). One deduce the existence of a critical
point, which is a solution of the problem

−∆u+ λu = (u+)p−1. u ∈ H1
0 (Ω).

Multiplying the equation by u− and integrating in Ω we obtain

0 =
∫

Ω
|∇u−|2 + λ|u−|2,

which, by Poincaré inequality, implies u− = 0 and u ≥ 0. From the strong
maximum principle we finally deduce that u > 0 hence is a solution of
(MP),

To prove that no positive solution exist if λ ≤ λ1(Ω), we assume u
is a solution and multiply equation (MP) by the eigenfunction φ1 of −∆
corresponding to the first eigenvalue λ1(Ω). Then we have

λ

∫
Ω
φ1u =

∫
Ω
φ1(up−1 + ∆u) > −λ1(Ω)

∫
Ω
φ1u

and hence λ > −λ1(Ω). �

2. Application II: the case Ω unbounded

With the same notations and under the same assumptions of the preceding
section, we know, using the Mountain pass theorem 6.1, that the functional
f has a (PS)β sequence even when Ω is unbounded. But we do not no, in
general, if such a (PS) sequence (bounded by lemma 1.2), has a subsequence
(strongly) convergent to a (non-trivial) critical point of f . In this section
we will analyze more closely the situation, and prove, under some additional
assumption, that a solution exists.

Let us start by showing that
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Lemma 2.1. Suppose un ∈ H1
0 (Ω) is a (PS)β sequence for f . Then it is

bounded. Let u ∈ H be such that

(1) un ⇀ u weakly in H;

(2) un → u in Lp
loc for p ∈ [2, 2∗), and a.e..

Then u is a critical point for f with f(u) ≤ β.

Proof. Take φ ∈ C∞c (Ω). We have that

〈df(un), φ〉 = 〈un, φ〉 −
∫
g(x, un)φ.

Since 〈un, φ〉 → 〈u, φ〉 by weak convergence and∫
g(x, un)φ→

∫
g(x, u)φ

since the Lp
loc convergence of un implies that g(x, un) converges in Lq

loc (1
p +

1
q = 1). We deduce that

〈df(u), φ〉 = 〈u, φ〉 −
∫
g(x, u)φ

= lim
n→+∞

(
〈un, φ〉 −

∫
g(x, un)φ

)
= lim

n→+∞
〈df(un), φ〉 = 0.

And hence u is a critical point for f by the density of C∞c in H1
0 (Ω). �

Remark 2.2. The above lemma states that the weak limit of a (PS)β

sequence is a solution. We know that u = 0 is a solution. So, how can we
prove that u is non trivial? In the proof of theorem 1.4, the solution we
found was non trivial since we found it at the positive MP level β > 0. In
this case, since we only know that un ⇀ u we cannot deduce that f(u) > 0
(the fact that f(v) ≥ 0 for all critical points v is an easy consequence of the
superquadraticity assumption (g3), we will see this later).

In order to continue our analysis, we need a general result about bounded
sequences in H1(RN ).

Lemma 2.3 (P.L. Lions [8]). Let um ∈ H1(RN ) be a sequence such that

(1) ‖um‖ ≤ C;

(2) There exist R > 0 such that

lim sup
m→+∞

sup
y∈RN

∫
BR(y)

|um|2 = 0

Then um → 0 in Lq(RN ) for all q ∈ (2, 2∗).
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Proof. Recall that, by Sobolev embedding,

‖u‖Lq(BR(y)) ≤ C‖u‖1−θ
L2(BR(y))

‖u‖θ
H1(BR(y)),

where θ = q−2
2q n. Then∫

BR(y)
|u|q ≤ C‖u‖(1−θ)q

L2(BR(y))
‖u‖θq

H1(BR(y))
.

Let us distinguish two cases:

The case θq ≥ 2. In this case q ≥ 2 + 4
n and∫

BR(y)
|u|q ≤ C‖u‖(1−θ)q

L2(BR(y))
‖u‖θq−2

H1(BR(y))
‖u‖2

H1(BR(y))

≤ C
(

sup
y∈RN

‖u‖(1−θ)q
L2(BR(y))

)
‖u‖θq−2

H1(RN )

∫
BR(y)

(|∇u|2 + u2).

Take now yk ∈ RN such that

(1) RN ⊂ ∪kBR(yk);

(2) There exist ` ∈ N such that every point x ∈ RN belongs to at most
` sets BR(yk).

Then∫
RN

|u|q ≤
∑

k

∫
BR(yk)

|u|q

≤ C
(

sup
y∈RN

‖u‖(1−θ)q
L2(BR(y))

)
‖u‖θq−2

H1(RN )

∑
k

∫
BR(yk)

(|∇u|2 + u2)

≤ `C‖u‖θq
H1

RN

(
sup

y∈RN

‖u‖(1−θ)q
L2(BR(y))

)
and assumption 2 implies that∫

RN

|um|q → 0.

The case θq < 2. In this case 2 < q < 2+ 4
n = q̄. Let us remark that,

since θq̄ ≥ 2, ‖um‖Lq̄(RN ) → 0 (we are in the first case). Let q = λ2+(1−λ)q̄.
Then

‖um‖Lq(RN ) ≤ ‖um‖λ
L2(RN )‖um‖(1−λ)

Lq̄(RN )
→ 0

�

Remark 2.4. A general way to analyze the behavior of sequences of func-
tions (even measures) bounded in some norm (as it is the case for the (PS)
sequence um we found via the MP theorem), has been developed by P.L. Li-
ons. It is called Concentration-compactness methods. See [8], [12] or [13].



2. Application II: the case Ω unbounded 21

In terms of this theory, the above lemma shows that if the sequence un van-
ish in the L2 norm, then it converges to 0 strongly in Lp, p ∈ (2, 2∗). We
will now see that this is not possible for (PS) sequences.

Lemma 2.5. Assume Ω = RN , and let um be a (PS)β sequence with β > 0.
Then there exists a sequence ym ∈ RN such that the sequence vm(x) =
um(x− ym) converges v ∈ H1(RN ), v 6≡ 0, weakly in H1.

Proof. We know, from lemma 1.2, that um is bounded in H1. Suppose, by
contradiction, that exists R > 0 such that

lim sup
m→+∞

sup
y∈RN

∫
BR(y)

|um|2 = 0.

Then we can apply lemma 2.3 to deduce that ‖um‖Lq(RN ) → 0 for all q ∈
(2, 2∗). Hence, from 〈df(um), um〉 = ‖um‖2−

∫
RN g(x, um)um we deduce that

‖um‖2 ≤ ‖df(um)‖‖um‖+ C‖um‖p
Lp(RN )

→ 0.

Hence

f(um) =
1
2
‖um‖2 −

∫
RN

G(x, um) → 0,

contradiction (since β > 0) which shows that for all R > 0 exist ym ∈ RN

such that ∫
BR(ym)

|um|2 ≥ δ > 0.

Let vm(x) = um(x− ym). Then ‖vm‖ = ‖um‖ ≤ C and∫
BR(0)

|vm|2 ≥ δ > 0.

Since vm is bounded, it converges to some v ∈ H1(RN ), weakly in H1 and
strongly in Lp

loc for all p ∈ [2, 2∗). Then∫
BR(0)

|u|2 ≥ δ > 0,

showing that v 6≡ 0. �

A rather direct consequence of the this lemma is the following existence
theorem:

Theorem 2.6. Suppose g ∈ C1(RN × R,R) satisfies (g1-3) with Ω = RN .
Assume also

(g4) g(x, s) is periodic in x ∈ RN , that is

g(x1 + k1, . . . , xn + kn, s) = g(x1, . . . , xn, s) ∀(k1, . . . , kn) ∈ ZN .
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Then the boundary value problem{
−∆u+ u = g(x, u)
u ∈ H1(RN )

has a non trivial solution w.

Proof. We know that there exists um, a (PS)β sequence, where β is the
Mountain Pass critical level.

The lemma 2.5 then shows that there exists a sequence ym ∈ RN such
that um(·+ ym) converges weakly to a nontrivial function v ∈ H1.

We let ỹm be the point of ZN closer to ym. Then ‖ym‖ − ỹm ≤
√
n. We

claim that wm(x) = um(x − ỹm) is a (PS) sequence for f which converges
weakly to a nontrivial w ∈ H1. Then the theorem follow from 2.1.

To prove the claim it is enough to remark that, thanks to the symmetry
assumption (g4), f(um) = f(wm) and ‖df(um)‖ = ‖df(wm)‖. To show that
the weak limit of wm is non trivial, it is enough to remark that∫

BR+
√

n(0)
w2 ≥

∫
BR(0)

v2 > 0

for some R > 0 since v is non trivial. �

Remark 2.7. Let us point out that in general we can only prove that
0 < f(w) ≤ β. Indeed a more careful analysis (see for example [6]) shows
that

(a) if un is a (PS)α sequence for f , then α ≥ 0 (in particular f(u) > 0
if u is a nontrivial critical point);

(b) if un is a (PS)α sequence for f , having a weak limit u, then un − u
is a (PS)α−f(u) sequence;

In particular we cannot say, even if we are able to find a solution, that
the functional satisfies (PS) at level β.

We now present a situation in which we are able to prove that β is a
critical level. We first prove the following lemma.

Lemma 2.8. Assume g satisfies (g1–3) and

(g5)
g(x, u)
u

is non decreasing for u ≥ 0, non increasing for u ≤ 0.

Then, if Γ =
{
γ ∈ C([0, 1], E) | γ(0) = 0, f(γ(1)) < 0

}
the mountain pass

level
β = inf

γ∈Γ
max
t∈[0,1]

f∞(γ(t))
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is such that
β ≤ inf

{
f(u)

∣∣∣ df(u) = 0, u 6= 0
}
.

Proof. Take u such that df(u) = 0, u 6= 0. Consider the line γ : R → H1

defined by γ(λ) = λλ0u. We have that γ ∈ Γ if λ0 is large enough and

f(γ(λ)) =
λ2λ2

0

2
‖u‖2 −

∫
G(x, λλ0u)

d

dλ
f(γ(λ)) = λλ2

0‖u‖2 −
∫
g(x, λλ0u)u.

Since ‖u‖2 =
∫
g(x, u)u, we find that

d

dλ
f(γ(λ)) =

∫ [
g(x, u)λλ2

0u− g(x, λλ0u)λ0u
]

= λλ2
0

∫ [g(x, u)
u

− g(x, λλ0u)
λλ0u

]
u2.

Since
g(x, u)
u

− g(x, λλ0u)
λλ0u

is nonnegative for λλ0 ∈ [0, 1], nonpositive for λλ0 ≥ 1 (from assumption
(g3)), we get that df

dλ ≥ 0 for λλ0 ∈ [0, 1], df
dλ ≤ 0 for λλ0 ≥ 1. So we find

that maxλ≥0 f(λλ0u) = f(u) if u is a critical point. Since the path γ is an
element of Γ, one gets that

β = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)) ≤ inf
u critical

max
λ≥0

f(λu) = inf
u critical

f(u),

and the lemma follows. �

The following Theorem, due to Brezis and Lieb, allows us to better
describe sequences that do not converge.

Theorem 2.9 (Brezis and Lieb [4]). Let um be a sequence of measurable
functions such that, for some 0 < p < +∞ and C > 0

(1) um(x) → u(x) almost everywhere;
(2)

∫
Ω|um|p ≤ C.

Then

(2.1) lim
m→∞

∫
Ω

∣∣|um(x)|p − |um(x)− u(x)|p − |u(x)|p
∣∣ = 0.

Proof. We will follow the proof in [7]. Let us assume the following inequal-
ities: for all ε > 0 there is Cε ∈ R such that for all a, b ∈ C

(2.2)
∣∣|a+ b|p − |b|p

∣∣ ≤ ε|b|p + Cε|a|p.

We first remark that, by Fatou lemma,
∫
Ω|u|

p ≤ C.



24 2. Applications to elliptic equations

Let um = u+ vm. It follows that vm → 0 almost everywhere. We claim
that

(2.3) wm,ε =
(∣∣|u+ vm|p − |vm|p − |u|p

∣∣− ε|vm|p
)+

is such that limm→∞
∫
Ωwm,ε = 0. We first remark that∣∣|u+ vm|p − |vm|p − |u|p

∣∣ ≤ ∣∣|u+ vm|p − |vm|p
∣∣+ |u|p

≤ ε|vm|p + (1 + Cε)|u|p

so that wm,ε ≤ (1 +Cε)|u|p. Moreover wm,ε → 0 almost everywhere, so that
the claim follows from Lebesgue dominated convergence. Then∫

Ω

∣∣|u+ vm|p − |vm|p − |u|p
∣∣ ≤ ε

∫
Ω
|vm|p +

∫
Ω
wm,ε.

So we only have to show that
∫
Ω|vm| is uniformly bounded. This follows

from ∫
Ω
|vm|p =

∫
Ω
|u− um|p ≤ 2p

∫
Ω
(|u|p + |um|p) ≤ 2p+1C.

Hence

lim sup
m→+∞

∫
Ω

∣∣|u+ vm|p − |vm|p − |u|p
∣∣ ≤ εD,

and the theorem follows.
To prove (2.2) we first remark that the function t 7→ |t|p is convex for

p > 1. Hence

|a+ b|p ≤ (|a|+ |b|)p = ((1− λ)
|a|

1− λ
+ λ

|b|
λ

)p ≤ (1− λ)1−p|a|p + λ1−p|b|p

for all 0 < λ < 1. Taking λ = (1 + ε)−1/(p−1) we get (2.2) when p > 1. If
0 < p ≤ 1 we have the simple inequality |a+ b|p − |b|p ≤ |a|p. �

Remark 2.10. From (2.1) we deduce that

(2.4)
∫

Ω
|um|p =

∫
Ω
|u|p +

∫
Ω
|u− um|p + o(1),

where o(1) → 0 as m→∞. We also deduce from (2.4), that
∫
|um|p →

∫
|u|p

and um → u a.e., imply ∫
|u− um|p → 0.

As a consequence of Brezis-Lieb theorem and lemma 2.8, we have:

Theorem 2.11. Suppose g satisfies (g1–5) in Ω = RN . Then the Mountain
pass level β is critical.
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Proof. Let us give the proof in the case G(x, s) = |s|p.
We first remark that, whenever (g3) holds, lim infm→+∞ f(wm) ≥ 0

along any bounded (PS) sequence wm. Indeed

f(wm) =
1
2
‖wm‖2 −

∫
Ω
G(x,wm)

=
1
2
〈df(wm), wm〉+

∫
Ω

(1
2
g(x,wm)wm −G(x,wm)

)
≥
(µ
2
− 1
) ∫

Ω
G(x,wm) +

1
2
〈df(wm), wm〉

≥
(µ
2
− 1
) ∫

Ω
C|wm|p +

1
2
〈df(wm), wm〉 ≥

1
2
〈df(wm), wm〉 → 0.

If f(wm) → 0, we deduce from above that wm → 0 in Lp and also that
‖wm‖2 = 2f(wm) +

∫
ΩG(x,wm) → 0.

So we have that wm → 0 if wm is a bounded (PS) sequence such that
f(um) → 0.

We know that there is a bounded (PS)β (here β is the (MP) level)
sequence whose weak limit u is a non zero critical point for f . We want to
show that f(u) ≤ β. Indeed we have from theorem 2.9 that

f(um) =
1
2
‖um‖2 − 1

p

∫
Ω
|um|p

=
1
2
‖um − u‖2 +

1
2
‖u‖2 + (um − u |u)−

− 1
p

∫
Ω
|u|p − 1

p

∫
Ω
|u− um|p + o(1)

= f(u) + f(um − u) + o(1)

We can also easily check that um − u is a (PS) sequence: taking any
h ∈ C∞c (Ω) we have that

〈df(u− um), h〉 = (um − u |h)−
∫

Ω
g(x, um − u)h→ 0

since um → u weakly in H1
0 and strongly in Lp

loc. Then lim infm→∞ f(um −
u) ≥ 0 and

f(u) = f(um)− f(um − u) + o(1) ≤ β + o(1).

Since f(u) ≥ β (by lemma 2.8) we get that f(u) = β. �

We now consider a non periodic case.

Theorem 2.12. Assume p ∈ (2, 2∗), a(x) ≥ 1, a(x) → 1 as |x| → +∞, .
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Then equation

(PU)

{
−∆u+ u = a(x)|u|p−2u

u ∈ H1
0 (RN )

has a nontrivial solution.

Proof of Theorem 2.12. We consider the functional

f(u) =
1
2

∫
RN

(|∇u|2 + u2)− 1
p

∫
RN

a(x)|u|p

in H1(RN ), whose critical points give rise to solutions of (PU). Remark
that the nonlinearity g(x, s) = a(x)|s|p−1 satisfies (g1), (g2), (g3), (g5).

We also introduce the functional

f∞(u) =
1
2

∫
RN

(|∇u|2 + u2)− 1
p

∫
RN

|u|p

For f∞ also (g4) holds and we can apply Theorem 2.11 to deduce the
existence of a nontrivial critical point ū ∈ H1(RN ) at the min-max level

f∞(ū) = β∞ = inf
γ∈Γ

max
t∈[0,1]

f∞(γ(t)) = inf
u 6=0

max
t>0

f∞(tu) = max
t>0

f∞(tū).

An easy calculation then shows that

β∞ =
(1
2
− 1
p

)(‖ū‖
|ū|p

)2p/p−2

.

If a(x) ≡ 1, the above shows that the theorem holds. In case a(x) 6≡ 1,
we have the the mountain pass level

β = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)) < β∞.

Indeed we have that

β ≤ max
t>0

f∞(tū) =
(1
2
− 1
p

)( ‖ū‖(∫
Ω a(x)|ū|p

)1/p

)2p/p−2

.

We also know that the Palais-Smale sequences are bounded (lemma 1.2),
that for all Palais-Smale sequences um there is a sequence ym ∈ RN such
that the sequence vm(x) = um(x − ym) converges weakly in H1(RN ) to a
nontrivial function v ∈ H1(RN ) (lemma 2.5). Moreover also (g5) holds, so
that lemma 2.8 implies that the MP level is smaller or equal than the least
(nontrivial) critical level.

Assume first that ym is bounded, so that um converges weakly to u 6= 0.
Since (g5) holds, f(u) ≥ β. Arguing as in the proof of theorem 2.11, we
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have that

f(um) =
1
2
‖um − u‖2 +

1
2
‖u‖2

− 1
p

∫
Ω
a(x)|u|p − 1

p

∫
Ω
a(x)|u− um|p + o(1).

We know that um converges weakly to u. We can assume that it also con-
verges strongly in Lp

loc, and hence∫
Ω
a(x)|u− um|p →

∫
Ω
|u− um|p

so that
f(um) = f(u) + f∞(u− um) + o(1).

It can be easily shown that u− um is a (PS) sequence for f∞. We also
know that

o(1) ≤ f∞(u− um) = f(um)− f(u) + o(1) ≤ β − β ≤ o(1).

so that f∞(u − um) → 0 and we deduce that u − um → 0 and um → u
strongly.

If ym is unbounded and um converges weakly to 0, we can consider
vm(x) = um(x− ym). In this case we deduce that

f(um) =
1
2
‖vm‖2 − 1

p

∫
Ω
a(x+ ym)|vm|p

=
1
2
‖vm‖2 − 1

p

∫
Ω
|vm|p + o(1)

=
1
2
‖vm − v‖2 +

1
2
‖v‖2

− 1
p

∫
Ω
|v|p − 1

p

∫
Ω
|v − vm|p + o(1)

= f∞(v) + f∞(v − vm) ≥ β∞,

contradicting the fact that f(um) → β < β∞.
�





Chapter 3

A linking theorem

1. The abstract result

In this section we will present a theorem which is a generalization of the
Mountain Pass theorem.

We start by giving some abstract definitions.

Definition 1.1. Let S be a closed subset of a Banach space V , and Q a
submanifold of V . We say that S and ∂Q link if

(1) S ∩ ∂Q = ∅;
(2) for all h ∈ C(V ;V ) such that h|∂Q = id we have that h(Q)∩ S 6= ∅

In practical applications, one needs to know when some particular ∂Q
and S link. The following examples shows two such situations.

Proposition 1.2. Let V be a Banach space, V = V1⊕V2, V1 and V2 closed,
dimV2 < +∞. Let S = V1, Q = BR(0, V2) =

{
u ∈ V2 | ‖u‖ ≤ R

}
so that

∂Q =
{
u ∈ V2 | ‖u‖ = R

}
(see figure 1).

Then S and ∂Q link.

Proof. Let π : V → V2 be the projection onto V2, and take h : V → V such
that h|∂Q = id. Let us show that 0 ∈ π(h(Q)).

We take t ∈ [0, 1], u ∈ V2 and define

ht(u) = tπ(h(u)) + (1− t)u.

We have that ht ∈ C([0, 1] × V2, V2) is a homotopy between h0(u) = u and
h1(u) = π(h(u)). We want to apply degree theory. Let us observe that, for

29
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V1 = S

V2

R

∂Q

Figure 1. a linking

all u ∈ ∂Q,

ht(u) = tπ(h(u)) + (1− t)u = tπ(u) + (1− t)u = u.

Hence it is well defined, for all t ∈ [0, 1], deg(ht, Q, 0) and by homotopy
invariance of the degree

deg(π ◦ h,Q, 0) = deg(h1, Q, 0) = deg(h0, Q, 0) = deg(id,Q, 0) = 1.

Hence π(h(u)) = 0 has a solution u ∈ Q. �

Proposition 1.3. Let V be a Banach space, V = V1⊕V2, V1 and V2 closed,
dimV2 < +∞. Let ū ∈ V1, ‖ū‖ = 1 and ρ, R1, R2 ∈ R be such that
0 < ρ < R1, 0 < R2.

Let S =
{
u ∈ V1 | ‖u‖ = ρ

}
and Q =

{
sū + u2 | 0 ≤ s ≤ R1, u2 ∈

V2, ‖u2‖ ≤ R2

}
, so that ∂Q =

{
sū + u2 ∈ Q | s ∈ {0, R1} or ‖u2‖ = R2

}
(see figure 2).

Then S and ∂Q link.

Proof. Let π : V → V2 be the projection onto V2, and take h : V → V such
that h|∂Q = id. Let us show that exists u ∈ Q such that h(u) ∈ S, that is
such that π(h(u)) = 0 and ‖h(u)‖ = ρ.

We take u2 ∈ V2, s ∈ R, t ∈ [0, 1] and let u = sū+ u2 and

ht(s, u2) = (t(‖h(u)‖ − ρ) + (1− t)(s− ρ), tπ(h(u)) + (1− t)u2).

Hence ht : R × V2 → R × V2 is a homotopy between h0(u) = (s − ρ, u2)
and h1(u) = (‖h(u)‖ − ρ, π(h(u))). We want to find u ∈ Q such that
h1(u) = (0, 0).
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∂Q

R1ū

R2

S

ρ

V2

V1

Figure 2. another linking

Let us observe that, for all u ∈ ∂Q,

ht(u) = (t(‖h(u)‖ − ρ) + (1− t)(s− ρ), tπ(h(u)) + (1− t)u2)

= (t(‖u‖ − ρ) + (1− t)(s− ρ), tπ(u) + (1− t)u2)

= (t(‖u‖ − ρ) + (1− t)(s− ρ), tu2 + (1− t)u2)

= (t(‖u‖ − ρ) + (1− t)(s− ρ), u2)

Since u = sū + u2 ∈ ∂Q and u2 = 0 implies s ∈ {0, R2}, we have that
ht(u) 6= 0 for all t ∈ [0, 1]. Hence by the invariance under homotopy of the
degree, we get that deg(h0, Q, 0) = deg(h1, Q, 0) = 1 and the existence of
the required u ∈ Q follows. �

Remark 1.4. Let us note that, if ū ∈ V is such that ū 6= 0, then Q ={
λū | λ ∈ [0, 1]

}
and S =

{
u ∈ V | ‖u‖ = α

}
, 0 < α < ‖ū‖, then S and

∂Q = {0, ū} link.

The following theorem is a generalization of the Mountain Pass Theorem.

Theorem 1.5 (Linking Theorem). Suppose f ∈ C1(V ) satisfies the (PS)
condition. Let S ⊂ V be a closed set and Q ⊂ V be a submanifold with
relative boundary ∂Q. Suppose

(1) S and ∂Q link;
(2) α = infu∈S f(u) > supu∈∂Q f(u) = α0.

Let
Γ =

{
h ∈ C(V, V )

∣∣∣ h|∂Q = id
}
.

Then, setting
β = inf

γ∈Γ
sup
u∈Q

f(h(u))

we have that β ≥ α, and β is a critical value for f .
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Proof. It is clear from the assumptions that β ≥ α.
Suppose Kβ =

{
u ∈ V | df(u) = 0 and f(u) = β

}
= ∅. Let ε̄ = α− α0,

U = ∅. Then, by theorem 5.4, there exist ε > 0 and a deformation η. From
the properties of η, it follows that η(u, t) = u for all t ∈ [0, 1] if u ∈ ∂Q.
Indeed u ∈ ∂Q implies that f(u) ≤ α0 = α0 − (α− α0) ≤ β − ε̄.

Take h ∈ Γ such that

sup
u∈Q

f(h(u)) ≤ β + ε,

and let h̄(u) = η(h(u), 1). Then h̄ ∈ Γ and supu∈Q f(h̄(u)) ≤ β − ε, contra-
diction which proves the theorem. �

2. Application III

In this section we will show how to apply the Linking theorem to study a
problem a semilinear elliptic problem similar to the ones already seen in
sections 1 and 2.

Let Ω be an open and bounded subset of RN , λ ∈ R, and assume g
satisfies (g1-3). Consider the semilinear elliptic problem

(BVPλ)

{
−∆u− λu = g(x, u) x ∈ Ω
u = 0 x ∈ ∂Ω

Remark 2.1. We will denote by λ1 = λ1(Ω) > 0 the smallest eigenvalue of
the linear eigenvalue problem

(EVP)

{
−∆u = λu x ∈ Ω
u = 0 x ∈ ∂Ω

and by φ1(x) > 0 the corresponding eigenfunction, normalized by
∫
Ω φ

2
1 = 1.

Then it holds that

(2.1)
∫

Ω
|∇u|2 ≥ λ1

∫
Ω
u2 ∀u ∈ H1

0 (Ω).

Similarly λk will denote the k-th eigenvalue of (EVP), with corresponding
normalized eigenfunction φk. Recall that λ1 < λ2 ≤ · · · ≤ λk → +∞.

Let f : H1
0 (Ω) → R be defined by

f(u) =
1
2

∫
Ω
|∇u|2 − λ

2

∫
Ω
u2 −

∫
Ω
G(x, u).

where G is defined as in (g3). When working in H1
0 (Ω), Ω bounded, we will

take as a norm ‖u‖ =
∫
Ω|∇u|

2, which, as a consequence of (2.1), is a norm
equivalent to the usual one. Then our functional can be written as

f(u) =
1
2
‖u‖2 − λ

2

∫
Ω
u2 −

∫
Ω
G(x, u).
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We already know from the results of section 1 that f ∈ C1.

Remark 2.2. If λ < λ1, one immediately sees that

f(u) ≥ 1
2

(
1− λ

λ1

)∫
|∇u|2 −

∫
G(x, u)

and also in this situation u = 0 is a strict local minimum; moreover, since G
is superquadratic, our functional has the Mountain Pass geometry. Since it
can be proved (exactly as in section 1, see also lemma 2.3 below) that (PS)
holds, the Mountain Pass theorem applies to prove existence of a nontrivial
critical point.

Let us prove that (PS) holds for f regardless of the value of λ. (We
remark here that this is true thanks to the rather strong assumptions (g1–
g3). Under less restrictive assumptions (PS) would fail for λ = λk). Since
the case λ < 0 is the one already seen in section 1, we will restrict to λ > 0.

Lemma 2.3. Assume (g1–3) hold. Then, for all λ ≥ 0, (PS) holds.

Proof. Let us show that (PS) sequences are bounded. We have that

〈df(un), un〉 = ‖un‖ − λ

∫
u2

n −
∫
g(x, un)un

f(un) =
1
2
‖un‖ −

λ

2

∫
u2

n −
∫
G(x, un)un.

Hence

f(un)− 1
2
〈df(un), un〉 =

∫ [1
2
g(x, un)un −G(x, un)

]
≥
(µ

2
− 1
)∫

G(x, un)

≥ C|un|pp ≥ C|un|p2

and

f(un)− 1
µ
〈df(un), un〉 =

(1
2
− 1
µ

)(
‖un‖2 − λ

∫
u2

n

)
+
∫ [ 1

µ
g(x, un)un −G(x, un)

]
≥
(1

2
− 1
µ

)(
‖un‖2 − λ|un|22

)
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From the above equations we get that(1
2
− 1
µ

)
‖un‖2 ≤ f(un)− 1

µ
〈df(un), un〉+ λ

(1
2
− 1
µ

)
|un|22

≤ C + εn‖un‖+ C
(
f(un)− 1

2
〈df(un), un〉)2/p

≤ C + εn‖un‖+ ε′n‖un‖2/p

and the boundedness of the sequence {un} follows.
To prove that (PS) holds we can then use theorem 4.3 as in lemma

1.3. �

We can now prove that the boundary value problem (BVPλ) has a so-
lution for all λ ∈ R. Since we have already remarked that a solution exist
whenever λ < λ1 (see remark 2.2), we will only study the case λ ≥ λ1.

Theorem 2.4. Suppose (g1–3) hold, λ ≥ λ1 and Ω is an open and bounded
subset of RN . Then there exist a nontrivial solution of (BVPλ).

Proof. We want to apply theorem 1.5, taking S and Q as in proposition
1.3.

Suppose that λk0 ≤ λ < λk0+1, and let H2 = span{φ1, . . . , φk0}, H1 =
H⊥

2 = span{φk0+1, . . . }. Then dimH2 = k0 < +∞, H1
0 = H1 ⊕H2. More-

over ∫
|∇u|2 ≤ λk0

∫
u2 ∀u ∈ H2(2.2) ∫

|∇u|2 ≥ λk0+1

∫
u2 ∀u ∈ H1(2.3)

It is then immediate to find that for u ∈ H1, ‖u‖ = ρ we have that

f(u) ≥ 1
2

(
1− λ

λk0+1

)∫
u2 − C

∫
|u|p

≥ 1
2

(
1− λ

λk0+1

)
‖u‖2 − C‖u‖p ≥ α > 0

provided ρ > 0 and small. We let S =
{
u ∈ H1 | ‖u‖ = ρ

}
.

We also have that

(2.4) f(u) ≤ 1
2
(λk0 − λ)

∫
u2 −

∫
G(x, u) ∀u ∈ H2.

Let us now fix ū ∈ H1, ū 6≡ 0. Take u = sū+u2, s ∈ R, u2 ∈ H2. Since such
a u belongs to the finite dimensional space H2 ⊕ Rū, there exist a constant
C > 1 such that

1
C

∫
u2 ≤

∫
|∇u|2 ≤ C

∫
u2.
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As a consequence we have that

f(u) =
1
2

∫
|∇u|2 − λ

∫
u2 −

∫
G(x, u)

≤
(C

2
− λ

2

)∫
u2 − C

∫
|u|p

≤
(C

2
− λ

2

)
− C

(∫
u2
)p/2

→ −∞

as ‖u‖ → +∞. It is then clear that, letting, as in proposition 1.3, Q ={
sū + u2 | 0 ≤ s ≤ R1, u2 ∈ H2, ‖u2‖ ≤ R2

}
, f|∂Q < 0 provided R1 > ρ

and R2 are large enough. This is enough to apply theorem 1.5 and to finish
the proof. �
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