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1 Topological degree of LERAY-SCHAUDER.

Let X be a real Banach space, let Ω be a bounded, open subset of X and
let Φ = I − T , where I is the inclusion map of Ω into X and T : Ω −→ X is
compact.

If b /∈ Φ(∂Ω), then there exists a map of finite range T1 : Ω −→ X1 (finite
range means that dimX1 < ∞) such that

sup
u∈Ω

‖T1u − Tu‖ < dist (b, Φ(∂Ω)).

In addition, the integer given by the Brouwer degree deg((I − T1)|Ω∩X1
, Ω1, b)

is independent on T1. Therefore we can define the topological degree of

Leray-Schauder

deg (Φ, Ω, b) = deg((I − T1)|Ω∩X1
, Ω1, b).

It satisfies the following basic properties.

i) Normalization property.

deg (I, Ω, b) = 1, if b ∈ Ω.

ii) Additivity property.

Assume that Ω1 and Ω2 are open, bounded, disjoint subsets of Ω. If
b /∈ Φ(Ω \ (Ω1 ∪ Ω2)) then

deg (Φ, Ω, b) = deg (Φ, Ω1, b) + deg (Φ, Ω2, b).

iii) Homotopy property.

Let S ∈ C([0, 1] × Ω, X) be a compact map and define H(t, u) =
u − S(t, u). If b : [0, 1] −→ X is continuous and b(t) /∈ H([0, 1] × ∂Ω),
then

deg (H(t, .), Ω, b(t)) = const. ∀t ∈ [0, 1].

From the above properties it is easy to prove [9] the following ones.

iv) deg(Φ, ∅, b) = 0.

v) Existence property.

If deg (Φ, Ω, b) 
= 0, then there exists u ∈ Ω such that Φ(u) = b.
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vi) Excision property.

If K ⊂ Ω is closed and b /∈ Φ(K), then

deg(Φ, Ω, b) = deg(Φ, Ω − K, b).

vii)
S|∂Ω = T |∂Ω =⇒ deg((I − S), Ω, b) = deg((I − T ), Ω, b).

viii) General homotopy property

Let O be a bounded, open subset of R × X and let H : O → X be a
compact map. For every λ ∈ R we consider the λ-slice

Oλ = {u ∈ X : (λ, u) ∈ O}

and the map Hλ : Oλ → X given by

Hλ(u) = H(λ, u).

If
u − Hλ(u) 
= b, ∀u ∈ ∂Oλ, ∀λ ∈ [a, b],

then the topological degree deg(I −Hλ,Oλ, b) is well-defined and inde-
pendent of λ.

ix) Continuity

a) Continuity with respect to b.

The degree is constant in each connected component of X−Φ(∂Ω).

b) Continuity with respect to T .

There exists a neighborhood V of T in the space1 Q(Ω, X) of the
compact operators from Ω in X such that2

deg (I − S, Ω, b) = const.(= deg (Φ, Ω, b)), ∀S ∈ V.

1Q(Ω, X) with the norm ‖T ‖ = sup
x∈Ω

‖T (x)‖.
2Note that V can be chosen to verify

b /∈ (I − S)(∂Ω), ∀S ∈ V.
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2 A theorem of Leray and Schauder

Let X be a real Banach space, let Ω be a bounded and open subset of X,
let a < b be and let T : [a, b] × Ω → X be a compact map. For λ ∈ [a, b],
consider the equation

Φ(λ, u) = u − T (λ, u) = 0, u ∈ X. (1)

Sometimes, to put in evidence the dependence of (1) on λ, we refer it as
(1)λ. Observe that T can be seen as a family of compact operators

Tλ(u) := T (λ, u), u ∈ X.

Similarly, we denote Φλ = I − Tλ. Define

Σ = {(λ, u) ∈ [a, b] × Ω : Φ(λ, u) = 0}.

We use the notation Σλ for the λ-slice, i.e. Σλ = {u ∈ Ω : (λ, u) ∈ Σ}.

λ

X

a b

C

Theorem 1 (Leray-Schauder, 1934 (see also [13])). Assume that X is a real
Banach space, Ω is a bounded, open subset of X and Φ : [a, b] × Ω −→ X is
given by Φ(λ, u) = u − T (λ, u) with T a compact map. Suppose also that

Φ(λ, u) = u − T (λ, u) 
= 0, ∀(λ, u) ∈ [a, b] × ∂Ω.

If
deg(Φa, Ω, 0) 
= 0, (2)

then
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1. (1)λ has a solution in Ω for every a ≤ λ ≤ b.

2. Furthermore, there exists a compact connected set C ⊂ Σ such that

C ∩ Σa 
= ∅ and C ∩ Σb 
= ∅.

Proof. 1. First, observe that the homotopy property of the degree implies
that

deg(Φλ, Ω, 0) = const., λ ∈ [a, b].

Therefore, by (2), deg(Φλ, Ω, 0) 
= 0, for every λ ∈ [a, b] and, in particular,
from the existence property, (1)λ has a solution uλ.

2. In the sequel, we see that the solutions uλ can be chosen in a connected
set of Σ. We argue by contradiction: suppose there does not exist a compact,
connected set C ⊂ Σ such that C ∩ Σa 
= ∅ and C ∩ Σb 
= ∅.

λ

X

a b

C
Ω

O

We apply the following lemma (see [11, 24]).

Lemma 2. Let (M, d) be a compact metric space, let A be a connected com-
ponent of M and let B be a closed subset of M such that A ∩ B = ∅. Then
there exists compact sets MA and MB satisfying

• A ⊂ MA, B ⊂ MB.

• M=MA ∪ MB and MA ∩ MB = ∅.

��
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Remark 3. As a consequence, if A and B are closed subsets of the compact
metric space M , then, either there exists a closed, connected set of M that
connects A and B or M = MA∪MB, where MA and MB are compact subsets
of M containing, respectively, to A and B.

Using this remark with A = Σa, and B = Σb we deduce that there exist
disjoint compact sets MA ⊃ A and MB ⊃ B such that Σ = MA ∪ MB. It
follows that there exists a bounded open set O in [a, b]×X such that Σa ⊂ O,
Σb ∩ O = ∅ and T (λ, u) 
= u for u ∈ ∂Oλ, with λ ∈ [a, b]. (We are denoting
by Oλ the λ-slice, i.e. Oλ = {u : (λ, u) ∈ Σ} (we allow Oλ to be empty)).

The general homotopy property of the degree implies that

deg(Φλ,Oλ, 0) = deg(Φa,Oa, 0)

for a ≤ λ ≤ b. However, we know that deg(Φb,Ob, 0) = 0, because Φb has no
zeroes in Ob. Since we assume (2), we have a contradiction. ��

3 Bifurcation from the zero solution

Let X be a real Banach space and let Φ : R × X → X be a compact map
satisfying

Φ(λ, 0) = 0, ∀λ ∈ R.

Denote by Σ∗ the closure in R ×X of the set of pairs (λ, u) ∈ R ×X with u
a nontrivial solution of the equation (1).

In next definition we give the notion of bifurcation from zero for this
problem.

λ

‖ · ‖X

(λn, un)

λ∗
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Definition 4. We say that λ∗ ∈ R is a bifurcation point from the trivial so-
lution for (1) if (λ∗, 0) ∈ Σ∗. Equivalently, if there exists a sequence (λn, un)
in R × X such that λn → λ∗, ‖un‖ → 0 and Φ(λ, un) = 0.

Remarks 5. 1. Observe that it can occur λn = λ (vertical bifurcation).

2. If Φ(λ, u) = u − λLu, with L a linear, compact operator, then λ∗ ∈
R \ {0} is a bifurcation point if and only if 1

λ∗ is a eigenvalue of L.

3. More generally, suppose that Φ(λ, u) = u − λLu + N(λ, u), where L is
a linear, compact operator and N is a compact operator satisfying

lim
‖u‖→0

N(λ, u)

‖u‖
= 0,

uniformly in bounded sets of values λ. If λ∗ ∈ R \ {0} is a bifurcation
point, then 1/λ∗ is an eigenvalue of L.

3.1 A necessary condition

A necessary condition to be a bifurcation point is easily deduced from the
implicit theorem. It is given in the following proposition.

Proposition 6. Assume that Φ is Fréchet differentiable and that λ∗ is a
bifurcation point from zero. Then the derivative Φu(λ

∗, 0) of Φ with respect
to u at (λ∗, 0) is not invertible:

Φu(λ
∗, 0) 
∈ Inv (X).

�

Example 7. For a bounded open subset D of R
N and f ∈ C1(R) such that

f(0) = 0 and f ′(0) 
= 0, let us consider the nonlinear boundary value problem

−∆u = λf(u), x ∈ D,
u = 0, x ∈ ∂D.

(3)

Observe that to find solutions of this problem is just to look for zeroes of an
operator Φ. Indeed, if we consider the linear operator (−∆)−1 : C(Ω) −→
C(Ω) defined by taking (−∆)−1(v) = w as the unique solution of

−∆w = v, x ∈ D,
w = 0, x ∈ ∂D,
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and we denote with the same letter f the Nemistki operator f : C(Ω) −→
C(Ω) given by

f(v)(x) = f(v(x)), ∀x ∈ Ω, ∀v ∈ C(Ω),

then the problem (3) is equivalent to the following one

Φ(λ, u) = u − (−∆)−1[f(u)] = 0, u ∈ C(Ω).

The above necessary condition implies that if λ∗ is a bifurcation point for
(3), i.e. for Φ(λ, u) = 0, then the derivative

Φu(λ
∗, 0)(v) = v − λ∗(−∆)−1[f ′(0)v], v ∈ C(Ω),

is not invertible. This means that necessarily, λ∗ is an eigenvalue of the
Laplacian operator with zero Dirichlet boundary conditions.

Remark 8. The necessary condition given by Proposition 6 is not sufficient
as it is proved by the following counterexample.

Example 9. Take X = R
2 and Φ : R×X −→ X given by Φ(λ, x, y) = (λx−

y3, λy + x3), for λ ∈ R and (x, y) ∈ R
2. It is easy to check that the equation

Φ(λ, x, y) = 0 have not bifurcations points. Furthermore, Φu(0, 0, 0) = 0 and
hence λ = 0 satisfies the necessary condition.

Another way to prove that the necessary condition is not sufficient is
given by the following example.

Example 10. Assume that Φ(λ, u) = λu − Lu with L an bounded linear
operator in X. Then a value λ∗ is a bifurcation point for Φ(λ, u) = 0 if and
only if λ∗ is an accumulation point of eigenvalues of L.

Observe that if λ ∈ R is not a bifurcation point, then (λ, 0) is an isolated
solution of (1). For isolated solutions it is useful the following definition.

3.2 Index of an isolated zero

Let Ψ = I − T be with T : Ω −→ X a compact operator. If u0 ∈ Ω is
an isolated solution of the equation Ψ(u) = 0, i.e. a unique solution of this
equation in a neighborhood of u0, then, for r0 > 0 sufficiently small, we
deduce from the excision property that

deg (Ψ, Br(u0), 0) = deg (Ψ, Br0(u0), 0), ∀r ∈ (0, r0),
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where Br(u0) = {u ∈ Ω : ‖u − u0‖ < r}. Therefore, the index of Ψ relative
to u0 is well-defined by

i (Ψ, u0) = lim
r→0

deg (Ψ, Br(u0), 0).

3.3 The Global bifurcation theorem of Krasnoselskii

and Rabinowitz

If Φ(λ, u) verifies the conditions of Remark 5-3, Krasnoselskii [18] showed
that each characteristic value3 λ∗ of odd algebraic multiplicity of L is a
bifurcation point. Furthermore, Rabinowitz [21] proved in 1971 that there
exists a continuum Cλ∗ of Σ∗ that either is unbounded, or (λ�, 0) ∈ Cλ∗ for
some characteristic value λ� 
= λ∗. To emphasize the role of the degree in this
result we give first a more general version of the Krasnoselskii-Rabinowitz
theorem.

Theorem 11 (Krasnoselskii-Rabinowitz). Let λ∗ ∈ R and ε0 > 0 be such
that the set (λ∗−ε0, λ

∗ +ε0)\{λ
∗} does not contain bifurcation points of (1).

Assume also that for every λ ∈ (λ∗ − ε0, λ
∗) and λ ∈ (λ∗, λ∗ + ε0) it holds

i(Φλ, 0) 
= i(Φλ, 0). (4)

Then

1. (Krasnoselskii) The value λ∗ is a bifurcation point of (1).

2. (Rabinowitz) The connected component, Cλ∗ , of Σ∗ that contains to
(λ∗, 0) satisfies al least one of the following conditions:

(i) Cλ∗ is not bounded in R × X,

(ii) there exists a bifurcation point λ� ∈ R\{λ∗} such that (λ�, 0) ∈ Cλ∗ .

Remark 12. Observe that, since (λ∗ − ε0, λ
∗ + ε0) \ {λ

∗} does not contains
bifurcations points, the homotopy property implies that

i(Φλ, 0) = constant, ∀λ ∈ (λ∗ − ε0, λ
∗)

and
i(Φλ, 0) = constant, ∀λ ∈ (λ∗, λ∗ + ε0).

3inverse of a nonzero eigenvalue
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Proof. 1. We make the proof by contrapositive. Assume that λ∗ is not a
bifurcation point. This means that there exists ρ > 0 such that

Φ(λ, u) 
= 0, ∀‖u‖ = ρ, ∀λ ∈ (λ∗ − ε0, λ
∗ + ε0).

Then the degree deg(Φλ, Bρ(0), 0) is well-defined and, by the homotopy
property, it is independent on λ, i.e.

i(Φλ, 0) = constant, ∀λ ∈ (λ∗ − ε0, λ
∗ + ε0),

and condition (4) fails.
2. By 1., (λ∗, 0) ∈ Σ∗. Let Cλ∗ be the connected component of Σ∗. We

argue by contrapositive and assume that Cλ∗ does not verify neither (i) nor
(ii). This means that Cλ∗ is bounded and that for every λ 
= λ∗ there exists
ρ(λ) > 0 such that

Cλ∗ ∩ Bρ(λ)(0) = ∅.

Now we use a similar argument to that of the Leray-Schauder theorem to
deduce that there exists a set O ⊂ R × X satisfying

∂O ∩ Σ∗ = ∅, (5)

(λ∗, 0) ∈ O (6)

and
O ∩ (R × X) ⊂ (λ∗ − ε0, λ

∗ + ε0) × X. (7)

The general homotopy property allows to deduce that

deg(Φλ,Oλ, 0) = constant, ∀λ ∈ R. (8)

Now, we are to compute this degree. To do it, fix λ ∈ (λ∗, λ∗ + ε0) such
that (λ, 0) ∈ O. We can choose ρ > 0 such that

a) For every λ ∈ [λ, λ + ε0], the problem (1)λ has no nontrivial solutions
in Bρ(0), i.e.

Σ∗ ∩ Bρ(0) = ∅.

b) For every λ ≥ λ + ε0, the λ-slice Oλ of O does not contains points of
the closed ball Bρ(0), i.e.

Oλ ∩ Bρ(0) = ∅.
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Take
U = O ∩

[
[λ, +∞) × (X \ Bρ(0))

]
.

Observe that the λ-slice Uλ of Uλ is given by

Uλ = Oλ \ Bρ(0),

for every λ ≥ λ.
By a) and b), the general homotopy property of the degree implies that

deg(Φλ,Uλ, 0) = constant, ∀λ ≥ λ.

But, since O is bounded, Uλ = Oλ \ Bρ(0) = Oλ = ∅ provided that λ >> λ.
We obtain as a consequence that the above degree is zero. In particular,
deg(Φλ,Uλ, 0) = 0, that is,

deg(Φλ,Oλ \ Bρ(0), 0) = 0.

By the additivity property we conclude that

deg(Φλ,Oλ, 0) = deg(Φλ,Oλ \ Bρ(0), 0) + deg(Φλ, Bρ(0), 0)

= i (Φλ, 0)

Similarly, if we fix λ ∈ (λ∗ − ε0, λ
∗) such that (λ, 0) ∈ O, we can prove

that
deg(Φλ,Oλ, 0) = i (Φλ, 0).

Consequently, taking into account (8) we conclude that

i(Φλ, 0) = i(Φλ, 0),

and (4) fails. ��

Now, as a consequence of the above theorem, we are ready to prove the
classical result by Krasnoselskii and Rabinowitz.

Corollary 13. Assume that Φ(λ, u) = u − λLu + N(λ, u), where L is a
linear, compact operator and N is a compact operator satisfying

lim
‖u‖→0

N(λ, u)

‖u‖
= 0,

uniformly in bounded sets of values λ. Then each characteristic value λ∗

of odd algebraic multiplicity of L is a bifurcation point. Furthermore, there
exists a continuum Cλ∗ of Σ∗ that either is unbounded, or (λ�, 0) ∈ Cλ∗ for
some characteristic value λ� 
= λ∗.
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Proof. The proof is based on the computation of the index by linearization.

Lemma 14. Assume that Φ = I − T , with T ∈ Q(Ω, X), where Ω is a
neighborhood of zero. Suppose also that T (0) = 0 and that T is Fréchet
differentiable in 0. We have:

1. The derivative T ′(0) of T at zero is compact.

2. If I−T ′(0) is invertible4 in X, then 0 is the unique solution of Φ(u) = 0
and

i (Φ, 0) = i (Φ′(0), 0) = (−1)β,

where
β =

∑
λ∈µ(T ′(0))

0<λ<1

mult (λ),

with µ(T ′(0)) is denoting the set all characteristic values of T ′(0) and
mult (λ) is denoting the multiplicity of λ. �

By applying the preceding lemma, we obtain for every λ ∈ R that

i (Φλ, 0) = i (Φ′
λ(0), 0) = i (I − λL), 0) = (−1)β ,

with
β =

∑
β∈µ(λL)

0<β<1

mult (β) =
∑

µ∈µ(L)

0<µ<λ

mult (µ).

In particular, if we fix λ < λ∗ < λ such that the unique characteristic value
in the interval (λ, λ) is λ∗, we deduce from the oddness of the multiplicity of
λ∗ that

i (Φλ, 0) = (−1)
mult (λ∗)+

P
µ∈µ(L)

0<µ<λ∗

mult (µ)

= (−1)mult (λ∗) i (Φλ, 0) = −i (Φλ, 0)

and the Theorem 11 applies. ��

4i.e., if 1 is not a characteristic value of T ′(0)
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4 Asymptotically linear problems

We give here some of the existence results in the work by Ambrosetti and Hess
[1]. Specifically we study the existence of positive solutions of the boundary
value problem

−∆u = λf(u), x ∈ D
u = 0, x ∈ ∂D,

(9)

where D is a bounded open subset of R
N , λ > 0 and f ∈ C1([0, +∞), with

f(0) = 0 and with positive right derivative f ′
+(0) = m0 > 0.

First we reduce the study of the existence of positive solutions to this
one of the existence of solutions of an extended problem. Indeed, we extend
f to (−∞, 0) by defining f(s) = f(0) for s < 0. With this extension, the
maximum principle implies that every nontrivial solution of (9) is positive.

Now, take X = C(Ω), and consider the operator Φ : [0,∞) × X −→ X
given by Φ(λ, u) = u − λ(−∆)−1[f(u)], for every λ ≥ 0 and u ∈ X. Observe
that we can rewrite the extended problem (9) as the zeros of Φ, i.e.

Φ(λ, u) = 0.

In the next theorem we denote by λ1 > 0 the first eigenfunction of the Laplace
operator with zero Dirichlet boundary condition. We also denote by ϕ1 > 0
an eigenfunction associated to λ1 with ‖ϕ1‖ = 1.

Theorem 15. If f(0) = 0 and f ′
+(0) = m0 > 0, then λ0 = λ1/m0 is the

unique bifurcation point from zero of positive solutions of (9). In addition,
the continuum emanating from (λ0, 0) is unbounded.

Proof. To apply the Theorem 11 we just have to prove the change of index
to cross λ = λ0. We divide the proof of it into two steps:

Step 1 There exists λ0 > 0 such that for every interval Λ ⊂ [0, +∞) \ {λ0}
there is ε > 0 satisfying

Φ(λ, u) 
= 0, ∀λ ∈ Λ, ∀0 < ‖u‖ < ε.

Step 2 For every λ > λ0 there exists δ > 0 such that

Φ(λ, u) 
= τϕ1, ∀0 < ‖u‖ < δ, ∀τ ≥ 0.

13



To prove the Step 1, we argue by contradiction that there exists a sequence
(λn, un) ∈ Λ × X satisfying

λn −→ λ 
= λ0, ‖un‖ −→ 0,

Φ(λn, un) = 0, un ≥ 0.

Since (−∆)−1 is compact, dividing by ‖un‖ the equation un = λn(−∆)−1 [f(un)],
we deduce that, up to a subsequence,

un

‖un‖
−→ v,

with v ∈ X an eigenfunction of norm one associated to λ, i.e. it satisfies

v = λ(−∆)−1[f ′(0)v], ‖v‖ = 1.

Using ϕ1 as test function in this eigenvalue problem we obtain

λ1

∫
vϕ1 = λf ′(0)

∫
vϕ1

and we conclude that λ1 = λf ′(0) which is a contradiction and the proof of
Step 1 is finished.
Consequences of Step 1:

a) The unique possible bifurcation point of positive solutions is λ = λ0.

b) If λ < λ0 and we take Λ = [0, λ] then

i (Φλ, 0) = i (Φ0, 0) = i (I, 0) = 1.

With respect to the proof of Step 2, we fix λ > λ0 and we assume,
by contradiction, that there exist sequences un ∈ X and τn ≥ 0 satisfying
un > 0 in D, ‖un‖ −→ 0 and

Φ(λ, un) = τϕ1,

or, equivalently,
un = λ(−∆)−1[f(un)] + τnϕ1.

Dividing this equation by ‖un‖ and using the compactness of (−∆)−1, we

deduce that, up to a subsequence, (−∆)−1[f(un)
‖un‖

] is convergent and hence τn

‖un‖

14



is bounded. Passing again to a subsequence, if necessary, we can assume that
τn

‖un‖
−→ τ ≥ 0 and un

‖un‖
−→ v with v ∈ X satisfying

−∆v = λf ′(0)v + τλ1ϕ1, x ∈ D
v = 0, x ∈ ∂D

‖v‖ = 1.

As in the Step 1, we deduce then that λf ′(0) = λ1, a contradiction.
Consequence of Step 2: For every λ > λ0, we have from Step 2 that

i (Φλ, 0) = i (Φλ − τϕ1, 0), ∀τ > 0.

Using again the Step 2, the problem

−∆w = λf(w) + τϕ1, x ∈ D
w = 0, x ∈ ∂D

has not any nontrivial solutions. Since, w = 0 is not a solution provided that
τ > 0, we deduce that the last index is zero, i.e.

i (Φλ, 0) = 0.

��

5 Bifurcation from infinity

Definition 16. λ∞ is a bifurcation point from infinity of (1) if there exists
a sequence (λn, un) ∈ R × X satisfying

λn −→ λ∞, ‖un‖ −→ +∞, Φ(λn, un) = 0.

Assume that
Φ(λ, u) = u − T (λ, u),

with T a compact operator. Following [22], if we make the Kelvin transform

z =
u

‖u‖2
, u 
= 0,

we derive that

Φ(λ, u) = 0
u 
= 0

}
⇐⇒

⎧⎨
⎩ z − ‖z‖2T

(
λ,

z

‖z‖2

)
= 0

z 
= 0.
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Therefore, if we define

Φ̃(λ, z) =

⎧⎨
⎩ z − ‖z‖2T

(
λ,

z

‖z‖2

)
, if z 
= 0,

0, if z = 0,

we deduce that λ∞ is a bifurcation point from infinity for Φ(λ, u) = 0 if and

only if λ∞ is a bifurcation point from zero for Φ̃(λ, z) = 0.

Theorem 17. Let D ⊂ R
N be bounded and open and let f be a C1-function

in [0, +∞) such that
f(s) = m∞s + g(s)

where g satisfies
lim

s→+∞
g(s)/s = 0.

Then λ∞ = λ1/m∞ is the unique bifurcation point from infinity of positive
solutions of (9). Moreover, there exists a subset S∞ in R×C(Ω) of positive

solutions of (9) such that if S̃∞ = {(λ, z) / (λ, z/‖z‖) ∈ S∞} then S̃∞ ∪
{(λ∗, 0)} is connected and unbounded.

Proof. Apply the same ideas of the proof of Theorem 15 to verify that Φ̃
satisfies the claims of Steps 1 and 2 of this proof. ��

‖ · ‖∞

λ∞λ0

λ

Figure 1: Bifurcation diagram for the case i) of Remark 18.
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Remark 18. Assume that the hypotheses of Theorems 15 and 17 are satis-
fied.

1. Let α be a positive number. If f(s) > αs for every s > 0 then it is
easy to show (taking ϕ1 as test function) that the problem (9) has not
any solution for λ >> λ∗. In this case, the continuum bifurcating from
(λ, 0) is the same that emanates from infinity at λ∞.

2. In the case that there exists 0 < θ1 < θ2 such that f(s) ≤ 0, for every
s ∈ (θ1, θ2), then the reader can verify that the problem (9) has not
any solution (λ, u) in the strip of R × C(Ω) given by θ1 ≤ ‖u‖ ≤ θ2.

λ0 λ∞

λ

‖ · ‖∞

θ2

θ1

Figure 2: Bifurcation diagram for the case ii) of Remark 18.

6 On the side of the bifurcations from infinity

Let D ⊂ R
N be bounded and open and let g be a C1-function in [0, +∞)

satisfying
lim

s→+∞
g(s)/s = 0.

Consider the boundary value problem

−∆u = λu + g(u), x ∈ D,
u = 0, x ∈ ∂D.

(10)

In a similar way to the preceding results, it is possible to prove the following
result.
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Theorem 19. The value λ = λ1 is the unique bifurcation point from infinity
of positive solutions of (10). Moreover, if g(0) = 0, then λ = λ1−g′(0) is the
unique bifurcation point from zero of positive solutions of (10). In addition,
it emanates from it a continuum ”connecting” (λ1 − g′(0), 0) with (λ1,∞).

Proof. The bifurcation from zero at λ1 − g′(0) and the bifurcation from in-
finity at λ1 are deduced as in the preceding theorems. On the other hand,
since g is C1, there exists α > 0 such that αu > g(u) > −αu for u > 0. Then
the problem (10) has no solution provided that |λ| >> 0 and, therefore, the
continuum emanating from zero at λ1 − g′(0) is also bifurcating from infinity
at λ1. ��

Remark 20. In particular, there exists a solution of (10) for every λ in
the interval of extrema λ1 and λ1 − g′(0). However, in the cases that we be
able to decide the side of the bifurcations from infinity and from zero, we will
improve this existence result.

The side of the bifurcation from zero is completely described by the fol-
lowing theorem.

Theorem 21. If there exists ε > 0 such that

g(u) ≥ 0, ∀u ∈ (0, ε), (11)

then the bifurcation from zero of the Theorem 19 is to the left. Similarly,
if the inequality in (11) is reversed, then the bifurcation from zero is to the
right.

Proof. If (λn, un) ∈ R × X are solutions of (9) with λn → λ1 − g′(0) and
‖un‖ → 0, then, as we have seen before, up to a subsequence un/‖un‖ con-
verges to ϕ1. Using this eigenfunction as test function in the equation satis-
fied by un, we obtain

(λ1 − λn)

∫
D

unϕ1 =

∫
D

g(un)ϕ1.

Since 0 < un is uniformly convergent to zero, we deduce by (11) that
g(un(x)) ≥ 0, for every x ∈ D and hence that λn ≤ λ1.

Similarly it is proved the result for the reversed inequalities. ��

With respect to the bifurcation from infinity we deduce the following
result.

18



Theorem 22 ([6]). If there exists ε > 0 such that

g(u)u2 ≥ ε, ∀u >> 0, (12)

then the bifurcation from infinity of the preceding theorem is to the left. Sim-
ilarly, if the inequality in (12) is reversed, then the bifurcation from infinity
is to the right.

Proof. If (λn, un) ∈ R×X are solutions of (9) with λn → λ1 and ‖un‖ → ∞,
then, up to a subsequence un/‖un‖ converges to ϕ1. Using this eigenfunction
as test function in the equation satisfied by un and dividing by ‖un‖, we
obtain

(λ1 − λn)

∫
D

un

‖un‖
ϕ1 =

1

‖un‖

∫
D

g(un)ϕ1.

Hence, taking into account that
∫

D
un

‖un‖
ϕ1 converges to

∫
D

ϕ2
1 > 0, we deduce

sgn [λ1 − λn] = sgn

[∫
D

g(un)ϕ1

]
.

To conclude the proof, we just have to show that the sign of the right hand
is positive. This is deduced from the Fatou lemma. Indeed, by (12), we have

lim inf
n→+∞

∫
D

g(un)ϕ1 = lim inf
n→+∞

1

‖un‖2

∫
D

g(un)u
2
n

(
un

‖un‖

)−2

ϕ1

≥ ε

∫
D

1

ϕ1
> 0.

��

Remark 23. In [6], some counterexamples show that, in general, if the
nonlinearity g is below any quadratic hyperbola c/s2, then the side of the
bifurcation from infinity can not be decided. The case of quasilinear operators
in divergence form (instead of the Laplacian operator) is studied in [5]. More
recent results can be found in [15, 16].

7 The local anti-maximum principle

As a consequence of the preceding results, we also point out the bifurcation
nature of some classical results like the (local) Antimaximum Principle of
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Clement and Peletier and the Landesman-Lazer theorem for resonant prob-
lems. We devote this section to give either the local anti-maximum principle
or a local maximum principle.

Theorem 24. Let r > N . For every h ∈ Lr(D), there exists ε = ε(h) > 0
such that

1. If

∫
D

hϕ1 < 0, then every solution (λ, u) of

−∆u = λu + h(x), if x ∈ D,
u(x) = 0, if x ∈ ∂D,

(13)

satisfies

(a) u > 0 in D provided that λ1 < λ < λ1 + ε,

(b) u < 0 in D provided that λ1 − ε < λ < λ1.

2. If

∫
D

hϕ1 > 0, then every solution (λ, u) of (13) satisfies

(a) u < 0 in D provided that λ1 < λ < λ1 + ε,

(b) u > 0 in D provided that λ1 − ε < λ < λ1.

3. If

∫
D

hϕ1 = 0, then every solution (λ, u) of (13) with λ 
= λ1 changes

its sign in D.

Remark 25. In [10, Theorem 2] Clement and Peletier proved a slightly
less general version of this theorem. Indeed, these authors substituted the
condition of the sign of the integral of uϕ by a condition on the sign of h in
all D.

Proof. We start with the case 1. Note that by the Fredholm Alternative,
the linear problem (13) has no solutions for λ = λ1, and a unique solution
if λ is not an eigenvalue of the Laplacian operator. In addition, for X =
W 2,r(D), the value λ = λ1 is a bifurcation point “from +∞” in the sense
that there are solutions (λ, u) emanating from λ1 at infinity satisfying that
u/‖u‖ is converging in W 2,r(D) ⊂ C1(D) to +ϕ1 as λ tends to λ1. Also,
there is a bifurcation “from −∞”, i.e. solutions (λ, u) emanating from λ1 at
infinity satisfying that u/‖u‖ is converging to −ϕ1 as λ tends to λ1. Now
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it is immediate to conclude from the preceding section that the bifurcation
from +∞ (of positive solutions at the beginning) is to the right, while the
bifurcation from −∞ is to the left. The proof of 1 is thus concluded. The
argument for 2 is similar.

Finally, to prove 3, it suffices to take ϕ1 as test function in (13) to conclude

that every solution (λ, u) of this problem satisfies (λ1 − λ)

∫
D

uϕ1 = 0 and u

changes of sign. ��

Remarks 26. 1. The choice of r > N allows to apply our bifurcation
results which involve the space X = W 2,r(D), continuously embedded
in C1(D). As we pointed out in the introduction, this fact allows to
ensure that the normalized solutions converge to ϕ1 (or to −ϕ1) in
the C1-topology. Since ϕ1 lies in the interior of the cone of positive
functions of C1(D), then the positivity (or negativity) of the solutions
near the bifurcation point easily follows. On the contrary, if we consider
r ≤ N , such an argument does not work, and in fact the result is not
true, as it is proved in [23].

2. A related result for elliptic problems with nonlinear boundary condi-
tions is given in [7].

8 The Landesman-Lazer condition

In this section we study the problem

−∆u = λ1u + g(u), if x ∈ D,
u(x) = 0, if x ∈ ∂D,

(14)

where g is a continuous function for which

∃g(+∞) = lim
s→+∞

g(s) (pointwise limit), (15)

∃g(−∞) = lim
s→−∞

g(s) (pointwise limit). (16)

Recall the classical result by Landesman and Lazer [19] related to resonance
at the principal eigenvalue λ1.
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Theorem 27. Assume one of the following two conditions:∫
D

g(+∞)ϕ1 < 0 <

∫
D

g(−∞)ϕ1, (17)

or ∫
D

g(+∞)ϕ1 > 0 >

∫
D

g(−∞)ϕ1. (18)

Then the problem (14) admits at least one solution.

Proof. We approach the problem (14) by imbedding it into a one parameter
family of problems as follows

−∆u = λu + g(u), if x ∈ D,
u(x) = 0, if x ∈ ∂D,

(19)

with λ ∈ R. Observe that the boundedness of the function g ensures that
bifurcation from infinity occurs for problem (19) at λ1. In addition, by taking
ϕ1 as test function in (19), it is easily deduced that if the condition (17) holds
then the bifurcation from infinity is to the right. Similarly, if (18) holds, the
bifurcation from infinity is to the left.

As we will see, the behavior of the bifurcations from infinity at λ1 for
problem (19) determines the existence of solution for the resonant problem
(14). The key to relate these two problems is to interpretate the concepts
of bifurcations to the left and to the right in the sense of a priori bounds
for the norms of the solutions. From this point of view, observe that every
possible bifurcation from ∞ at λ1 is to the left (respectively to the right) if
and only if there exist ε > 0 and M > 0 such that for every solution (λ, u)
of (19) one has

λ ∈ [λ1, λ1 + ε] ⇒ ‖u‖ ≤ M

(respectively λ ∈ [λ1 − ε, λ1] ⇒ ‖u‖ ≤ M).

We just complete here the proof in case that condition (18). Our assump-
tion implies that there exists ε > 0 and M > 0 such that

‖u‖ ≤ M

for every solution (λ, u) of (19) with λ1 ≤ λ ≤ λ1 + ε.
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λ

∫
D

uϕ1

(λn, un)

λ1

For every λ which is not an eigenvalue, there exists at least a solution
(λ, u) of (19). Hence, if we take a sequence (λn, un) of solutions with λn → λ1,
λn > λ1, ∀n ∈ N, then ‖un‖ ≤ M for n large. Standard arguments prove that
a subsequence of un must converge to a solution of the resonant problem (14).

��

Remark 28. The previous general results of the side of bifurcations from
infinity can be applied to obtain an improvement of the above classical exis-
tence result (see [6]).

9 Continuum with the shape ⊃ and the Am-

brosetti-Prodi problem

Let X be a real Banach space and consider a compact map T : R×X → X.
We denote again by Σ the closed set of the pairs (λ, u) ∈ R × X with u a
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solution (not necessarily non-trivial) of (1)λ. Next result is useful to prove
existence of a continuum with the shape ⊃.

Theorem 29. Let U ⊂ X be bounded, open and let a, b ∈ R be such that
(1)λ has no solution in ∂U , provided that λ ∈ [a, b], and that (1)b has no
solution in U . Let U1 ⊂ U be open such that (1)a has no solution in ∂U1 and
deg(I − Ta, U1, 0) 
= 0. Then there exists a continuum C in Σ = {(λ, u) ∈
[a, b] × X : u is a solution of (1)λ}, such that

C ∩ ({a} × U1) 
= ∅, C ∩ ({a} × (U \ U1)) 
= ∅.

a

X

b
λ

C
U

U1

Proof. We use the following notation

K = ([a, b] × U) ∩ Σ,

A = ({a} × U 1) ∩ K,

B = ({a} × (U \ U1)) ∩ K.

Since (1)b has no solution in U and K is compact, we can consider K ⊂
[a, s] × U for some s ∈ (a, b).

We argue by contradiction and assume that the theorem is false. By
Lemma 2, there exist disjoint, compact subsets KA, KB containing respec-
tively to A and B, such that K = KA ∪ KB. Let O be a δ-neighborhood
of KA such that dist(O, KB) > 0. Hence the Leray-Schauder degree is well

24



defined in Oλ = {u ∈ U : (λ, u) ∈ O} for every λ ∈ [a, b]. Furthermore, by
the general homotopy property, we have

deg(I − Tλ,Oλ, 0) = constant,

and consequently

deg(I − Ta,Oa, 0) = deg(I − Tb,Ob, 0). (20)

On the other hand, since O ∩ KB = ∅, there are no solutions of e (1)a in
Oa \ U1 and hence, by excision property, we deduce that

deg(I − Ta,Oa, 0) = deg(I − Ta, U1, 0) 
= 0.

However, by hypothesis we know that Ob = ∅, and thus we conclude that
deg(I−Tb, Ob, 0) = 0. This is a contradiction with (20), proving the theorem.

��

We apply the preceding theorem to give a proof of the well-known theorem
of Ambrosetti and Prodi [2] for the boundary value problem

−∆u = f(x, u) + tϕ, x ∈ D,
u = 0, x ∈ ∂D.

(Pt)

where ϕ ∈ L∞(D) is a positive function, f is a continuous function such that

lim
s→±∞

f(s)

s
= f ′

±∞. (21)

Theorem 30. Let ϕ ∈ L∞(D) be a positive function and let f : R −→ R be
a continuous function satisfying (21) and the condition

f ′
−∞ < λ1 < f ′

+∞ < λ2. (22)

Then t∗ ≡ sup{t ∈ R : (Pt) admits a solution} is finite and for every t0 < t∗

there exists a continuum C in Σ ≡ {(t, u) ∈ R ×C1
0(D) : u solution of (Pt)}

satisfying that

1. [t0, t
∗] ⊂ Proj

R
C.

2. For every t ∈ [t0, t
∗), ProjC1

0 (D)

[
C ∩ ({t} × C1

0(D))
]

contains two dis-

tinct solutions of (Pt) .
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λ

‖ · ‖∞

t∗t0

Remark 31. We observe that, roughly speaking, the continuum C of solu-
tions in R × C1

0(D) emanates from {t0} × C1
0(D), reaches {t∗} ×C1

0 (D) and
then, it turns left to meet a different solution in {t0} × C1

0(D) (⊃-shaped
continuum). As a consequence,

1. (Pt) has, at least, two solutions for t < t∗,

2. (Pt) has, at least, one solution for t ≤ t∗,

3. (Pt) has no solution for every t > t∗.

Proof. Let us denote S ≡ {t ∈ R : (Pt) admits a solution}. First we show
that S is not the empty set. This relies upon two facts [12]:

• (Pt) has a supersolution for some t ∈ R,

• given a supersolution, u, of (Pt) for some t ∈ R, there exists a subsolu-
tion u of it, such that u < u in D.

Indeed, by means of the sub and super solution method, this implies that
S is a closed interval unbounded from below. Moreover, the usual trick
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of multiplying by one positive eigenfunction associated to λ1 leads to the
nonexistence of solution for t >> 0 large enough and thus S is bounded from
above. This means that the supremum of the closed interval S is attained.
Denote

t∗ ≡ sup S = maxS.

We now prove the existence of the continuum of solutions. First it is
easily deduced that if t0 < t∗ < t1, then there exists R > 0 such that
‖u‖C1 < R for each solution u of (Pt) with t ∈ [t0, t1]. Denote by Φt the
map Φt(u) ≡ u − (−∆)−1(f(x, u) + tϕ). Using the homotopy invariance of
Leray-Schauder degree and that problem (Pt1) has no solution, we get

deg(Φt, BR(0), 0) = deg(Φt1 , BR(0), 0) = 0, ∀t ∈ [t0, t1],

where BR(0) denotes the open ball in C1
0(D) of radius R centered at zero.

Let u∗ be a solution of (Pt∗). Observe that u∗ is a super-solution of
(Pt) for every t ∈ [t0, t

∗) and it is not a solution. Moreover, as it has been
mentioned above, there exists a sub-solution ut0 < u∗ of (Pt0) which is not
a solution. Clearly ut0 is also a sub-solution and no solution for (Pt) if
t ∈ [t0, t

∗). Consider the set

U1 = {u ∈ C1
0 (D) : ut0 < u < u∗ in D,

∂u∗

∂n
<

∂u

∂n
<

∂ut0

∂n
on ∂D} ∩ BR(0).

The strong maximum principle implies the nonexistence of solutions of (Pt)
on ∂U1 if t < t∗ (see [14]). Hence, the degree of Φt is well defined in this set
U1. In addition, by using the results in [12],

deg(Φt, U1, 0) = 1, ∀t ∈ [t0, t
∗).

Applying Lemma 29 with E = C1
0(D), [a, b] = [t0, t1] and U = BR(0), we

deduce the existence of a continuum C in Σ such that

C ∩ ({t0} × U1) 
= ∅,

and
C ∩ ({t0} × [BR(0) \ U1]) 
= ∅.

In particular, the continuum C crosses {t}× ∂U1, for some t ∈ (t0, t
∗]. It has

been observed that this is possible if and only if t = t∗. This concludes the
proof.
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Remark 32. The above proof can cover the case of a nonlinearity f such
that f ′

+∞ = +∞ (superlinear at +∞) (see [4]). In this case the necessary
a priori bound of the solutions of (Pt) is obtained by slightly improving
the Gidas-Spruck technique [17]. More general (nonvariational) quasilinear
elliptic operators than the Laplacian one can be considered [3, 8].
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