School on Nonlinear Differential Equations

(9-27 October 2006)

Introduction to Optimization and Calculus of Variations

Mary Teuw Niane
Laboratoire d' Analyse Numérique et d' informatique (LANI)
Université Gaston Berger
Saint-Louis, Sénégal

Introduction to Optimization and Calculus of Variations

Mary Teuw Niane
Laboratoire d'Analyse Numérique et d'Informatique (LANI)
UFR de Sciences Appliquées et de Technologie
Université Gaston Berger
BP234 Saint-Louis, Sénégal
Emai: niane@ugb.sn

16 Octobre 2006

Contents

1 Direct Methods 5
1.1 An easy example 5
1.2 Minimum and maximum 6
1.2.1 Minimum 6
1.2.2 Maximum 6
1.3 Lower semi continuity and upper semi continuity 7
1.3.1 Lower semi continuity 7
1.3.2 Upper semi continuity 10
1.4 Wierstrass's theorem 10
1.4.1 Sequentially compact set 11
1.5 Coercivity property 12
1.5.1 Coercivity 12
1.6 Minimizing sequences 13
1.7 Convexity 14
1.7.1 Convex sets 14
1.7.2 The Convex Functions 16
1.7.3 Continuity of the convex functions 17
1.7.4 Lsc convex functions 19
1.7.5 Minimization of convex functions 21
1.8 Duality 23
1.8.1 Bidual 25
1.9 Applications to some problems of calculus of variations 26
2 Optimality Conditions 29
2.1 Different concepts of derivatives 30
2.1.1 Derivatives following a direction 30
2.1.2 Gâteaux Derivatives 33
2.1.3 Relationship between Gâteaux differentiability and Fréchet differentiability 34
2.1.4 Subdifferential 37
2.2 Euler Equations 40
2.2.1 Optimality conditions 40
2.2.2 Ekeland Variational Principle 42
2.2.3 Optimality conditions with constraints 46
2.2.4 Applications 50
2.2.5 Some examples in Hilbert spaces 50
2.2.6 An example in a Banach space 54
2.2.7 An eigenvalue problem 55
2.3 A very short bibliography 56

Chapter 1

Direct Methods

1.1 An easy example

Let a and b be real numbers such that $a<b$ and let $\mathbf{f}[a, b] \rightarrow \mathbf{R}$ be differentiable. The problem $\min _{x \in[a, b]} \mathbf{f}(x)$ has at least one solution $\underline{x} \in[a, b]$ by the Wierstrass's theorem. Moreover, the point \underline{x} satisfies the following :

$$
\forall x \in[a, b] \quad(x-\underline{x}) \mathbf{f}^{\prime}(\underline{x}) \geq 0
$$

This relation is called the Euler equation of the problem $\min _{x \in[a, b]} \mathbf{f}(x)$.
To prove this relation, we consider the three cases:

- If $\underline{x}=a$ then $\mathbf{f}^{\prime}(a)=\mathbf{f}_{d}^{\prime}(a) \geq 0$.
- If $\underline{x}=b$ then $\mathbf{f}^{\prime}(b)=\mathbf{f}_{g}^{\prime}(b) \leq 0$.
- If $\underline{x} \in] a, b\left[\right.$, we have $\mathbf{f}^{\prime}(\underline{x})=\mathbf{f}_{d}^{\prime}(\underline{x}) \geq 0$ and $\mathbf{f}^{\prime}(\underline{x})=\mathbf{f}_{g}^{\prime}(\underline{x}) \leq 0$ thus $\mathbf{f}^{\prime}(\underline{x})=0$.

The compactness of $[a, b]$ permits us to prove the existence of a minimum and the derivation leads to the relation verified by the point \underline{x} where \mathbf{f} reaches its minimum. In this relation one should note that the properties are different depending on whether \underline{x} is an interior point or a boundary point.

1.2 Minimum and maximum

1.2.1 Minimum

Definitions

Let \mathbf{X} is a non void (non empty) set and \mathbf{f} a map from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$.
Definition 1 Let $\underline{x} \in \mathbf{X}$, the function \mathbf{f} has a minimum over \mathbf{X} at the point $\underline{x} \in \mathbf{X}$, if we have :

$$
\forall x \in \mathbf{X} \quad \mathbf{f}(\underline{x}) \leq \mathbf{f}(x) .
$$

One notes:

$$
\mathbf{f}(\underline{x})=\min _{x \in \mathbf{X}} \mathbf{f}(x)
$$

Definition 2 Let $\underline{x} \in \mathbf{X}$, we say that \mathbf{f} has a strict minimum over \mathbf{X} at the point $\underline{x} \in \mathbf{X}$, if we have :

$$
\forall x \in \mathbf{X} \quad \mathbf{f}(\underline{x})<\mathbf{f}(x) .
$$

1.2.2 Maximum

Definitions

Let \mathbf{X} a non void set and let \mathbf{f} be a map from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$.
Definition 3 Let $\underline{x} \in \mathbf{X}$, we say that \mathbf{f} has a maximum over \mathbf{X} at the point $\underline{x} \in \mathbf{X}$, if we have :

$$
\forall x \in \mathbf{X} \quad \mathbf{f}(x) \leq \mathbf{f}(\bar{x}) .
$$

One notes:

$$
\mathbf{f}(\bar{x})=\max _{x \in \mathbf{X}} \mathbf{f}(x) .
$$

Definition 4 Let $\underline{x} \in \mathbf{X}$, we say that \mathbf{f} has a strict maximum over \mathbf{X} at the point $\underline{x} \in \mathbf{X}$, if we have :

$$
\forall x \in \mathbf{X} \quad \mathbf{f}(x)<\mathbf{f}(\bar{x}) .
$$

Remark 1 :

- The map \mathbf{f} has a maximum at the point \bar{x} if and only if the map - \mathbf{f} has a minimum at the point \bar{x}.
- The map \mathbf{f} has a strict maximum at the point \bar{x} if and only if the map $-\mathbf{f}$ has a strict minimum at the point \bar{x}.

Remark 1 shows that the problem of finding the maximum may be posed as a minimization problem. We, therefore, restrict ourselves to the study of the problem of finding a minimum in this note only.

1.3 Lower semi continuity and upper semi continuity

Let \mathcal{T} be a topology on \mathbf{X}. We denote the set of all neighbourhoods of a by $\mathcal{V}(a)$.

1.3.1 Lower semi continuity

Definition 5 A function \mathbf{f} of the topological space (\mathbf{X}, \mathcal{T}) which takes its values in $\boldsymbol{R} \cup\{+\infty\}$ is lower semi continuous (lsc) at the point $a \in \boldsymbol{X}$, if one has :

$$
\forall \lambda \in \mathbf{R}|\lambda<\mathbf{f}(a) \exists V \in \mathcal{V}(a)| \forall x \in V \Rightarrow \mathbf{f}(x)>\lambda
$$

Exercice 1 Show that if $\mathbf{f}(a) \in \mathbf{R}$ then \mathbf{f} is lsc at the point a if and only if :

$$
\forall \epsilon>0 \exists V \in \mathcal{V}(a) \mid \forall x \in V \Rightarrow \mathbf{f}(x)>\mathbf{f}(a)-\epsilon
$$

Deduce that if \mathbf{f} is continuous at a point $a \in \mathbf{X}$ then \mathbf{f} is lsc at the point a.
Exercice 2 Let \mathbf{f} be a map from the topological space (\mathbf{X}, \mathcal{T}) which takes its values in $\boldsymbol{R} \cup\{+\infty\}$.
Show that:

$$
\mathbf{f}(a) \geq \sup _{V \in \mathcal{V}(a)} \inf _{y \in V} \mathbf{f}(y)
$$

Deduce that \mathbf{f} is $\mathbf{l s c}$ at a point $a \in \boldsymbol{X}$ if and only if :

$$
\mathbf{f}(a)=\sup _{V \in \mathcal{V}(a)} \inf _{y \in V} \mathbf{f}(y)
$$

Exercice $\mathbf{3}$ Let \mathbf{f} and \mathbf{g} are maps from the topological space $(\mathbf{X}, \mathcal{T})$ which take there values in $\boldsymbol{R} \cup\{+\infty\}$ lsc, show if α and β are real positive numbers then $\alpha \mathbf{f}+\beta \mathbf{g}$ is $\mathbf{l s c}$.

Definition 6 A function \mathbf{f} from the topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup\{+\infty\}$ is lower semi continuous, if it is $\mathbf{l} \mathbf{s c}$ at every point of \mathbf{X}.

Remark $2 A$ continuous function is lsc.
We have the following properties :
Proposition 1 A function \mathbf{f} from the topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup\{+\infty\}$ is $\mathbf{l s c}$, if and only if :

$$
\left.\left.\forall \lambda \in \mathbf{R}, \quad \mathbf{f}^{-1}(] \lambda,+\infty\right]\right) \in \mathcal{T} .
$$

Proof :

Suppose that \mathbf{f} is $\mathbf{l s c}$. One sets :

$$
\left.\left.\mathcal{O}=\mathbf{f}^{-1}(] \lambda,+\infty\right]\right)
$$

Let $a \in \mathcal{O}$, then $\mathbf{f}(a)>\lambda$. Since the function \mathbf{f} is lsc,there exists $V \in \mathcal{V}(a)$ such that :

$$
\forall x \in V \Rightarrow \mathbf{f}(x)>\lambda
$$

This implies that $V \subset \mathcal{O}$, thus $\mathcal{O} \in \mathcal{T}$.
Next, we prove the reverse. Let $a \in \mathbf{X}$ and let $\lambda \in \mathbf{R}$ such that $\mathbf{f}(a)>\lambda$ then

$$
\left.\left.\mathcal{O}=\mathbf{f}^{-1}(] \lambda,+\infty\right]\right) \in \mathcal{V}(a)
$$

Thus \mathbf{f} is lsc.

Definition 7 If \mathbf{f} is a map from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, the subset of $\mathbf{X} \times \mathbf{R}$ defined by :

$$
\mathbf{e p i}(\mathbf{f})=\{(x, \lambda) \in \mathbf{X} \times \mathbf{R} \mid \mathbf{f}(x) \leq \lambda\}
$$

is called the epigraph of \mathbf{f}.

The following proposition gives a characterisation of the lower semi continuity of a function by the properties of its epigrah.

Proposition $2 A$ function \mathbf{f} defined from the topological space (\mathbf{X}, \mathcal{T}) which takes its values in $\mathbf{R} \cup\{+\infty\}$ is lsc if and only if epi (\mathbf{f}) is closed in $\mathbf{X} \times \mathbf{R}$.

Proof : Suppose that \mathbf{f} is lsc. Let $\left(a, \lambda_{0}\right) \in \mathbf{X} \times \mathbf{R}$ such that $\left(a, \lambda_{0}\right) \notin \operatorname{epi}(\mathbf{f})$ then $\mathbf{f}(a)>\lambda_{0}$. Let $\epsilon>0$ be such that $\lambda_{0}+\epsilon<\mathbf{f}(a)$. There exists $V \in \mathcal{V}(a)$ such that

$$
\forall x \in V \mathbf{f}(x)>\lambda_{0}+\epsilon
$$

1.3. LOWER SEMI CONTINUITY AND UPPER SEMI CONTINUITY9

Therefore ($V \mathbf{x}] \lambda_{0}-\epsilon ; \lambda_{0}+\epsilon[) \bigcap \mathbf{e p i}(\mathbf{f})$ is void (empty) ; but $\left.V \mathbf{x}\right] \lambda_{0}-\epsilon ; \lambda_{0}+\epsilon[$ is a neighbourhood of $\left(a, \lambda_{0}\right)$ thus, epi (\mathbf{f}) is closed.
Conversely, suppose that epi (f) is closed in $\mathbf{X} \times \mathbf{R}$. Let $a \in \mathbf{X}$ and $\lambda \in \mathbf{R}$ such that $\mathbf{f}(a)>\lambda$, then $(\mathbf{f}(a), \lambda) \notin$ epi (\mathbf{f}) thus, there exists $V \in \mathcal{V}(a)$ and $\epsilon>0$ such that $(V \mathbf{x}] \lambda-\epsilon ; \lambda+\epsilon[) \bigcap$ epi (\mathbf{f}) is void. Let $x \in V$,

$$
(x, \lambda) \notin \mathbf{e p i}(\mathbf{f})
$$

therefore $\mathbf{f}(x)>\lambda$. Then \mathbf{f} is lsc.

For a family of lsc functions, we have :
Proposition 3 If $\left(\mathbf{f}_{i}\right)_{i \in \mathbf{I}}$ is a family of lsc functions from the topological space $(\mathbf{X}, \mathcal{T})$ which take its values in $\mathbf{R} \cup\{+\infty\}$ then $\sup _{i \in \mathbf{I}} \mathbf{f}_{i}$ is a lsc function.

Proof : It is enough to remark that:

$$
\operatorname{epi}(\mathbf{f})=\bigcap_{i \in \mathbf{I}} \operatorname{epi}\left(\mathbf{f}_{i}\right)
$$

Proposition 4 If a function \mathbf{f} from a topological space $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup$ $\{+\infty\}$ is lsc at a point $a \in \mathbf{X}$, if $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a sequence in \mathbf{X} such that $\lim _{n \mapsto+\infty} x_{n}=a$, then $\liminf _{n \mapsto+\infty} \mathbf{f}\left(x_{n}\right) \geq \mathbf{f}(a)$

Proof : Let $\lambda<\mathbf{f}(a)$, there exists $V \in \mathcal{V}(a)$ such that :

$$
\forall x \in V \quad \mathbf{f}(x)>\lambda ;
$$

and since $\lim _{n \mapsto+\infty} x_{n}=a$, there exists $N \in \mathbf{N}$ such that

$$
\forall n \in \mathbf{N}, n \geq N \Rightarrow x_{n} \in V
$$

Thus if $n \in \mathbf{N}$ is such that $n \geq N$ then

$$
\inf _{p \geq n} \mathbf{f}\left(x_{p}\right) \geq \lambda
$$

therefore

$$
\sup _{n \in \mathbf{N}} \inf _{p \geq n} \mathbf{f}\left(x_{p}\right) \geq \lambda .
$$

Conequently,

$$
\liminf _{n \mapsto+\infty} \mathbf{f}\left(x_{n}\right)=\sup _{n \in \mathbf{N}} \inf _{p \geq n} \mathbf{f}\left(x_{p}\right) \geq \mathbf{f}(a)
$$

Exercice 4 Prove that if (\mathbf{X}, d) is a metric space, a function \mathbf{f} is $\mathbf{l s c}$ if and only if for all sequences $\left(x_{n}\right)_{n \in \mathbf{N}}$ such that $\lim _{n \mapsto+\infty} x_{n}=a$ implies $\lim _{n \mapsto+\infty} \mathbf{f}\left(x_{n}\right) \geq \mathbf{f}(a)$.

Definition 8 Let $\lambda \in \mathbf{R}$, a subset of \mathbf{X} denoted by $S_{\lambda}(\mathbf{f})$ where :

$$
S_{\lambda}(\mathbf{f})=\{x \in \mathbf{X} \mid \mathbf{f}(x) \leq \lambda\}
$$

is called a section of \mathbf{f}.
Remark 3 If \mathbf{f} is $\mathbf{l s c}$ then $S_{\lambda}(\mathbf{f})$ is closed.

1.3.2 Upper semi continuity

Definition 9 A function \mathbf{f} from a topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\boldsymbol{R} \cup\{-\infty\}$ is upper semi continuous (usc) at the point $a \in \boldsymbol{X}$, if one has:

$$
\forall \lambda \in \mathbf{R}|\mathbf{f}(a)<\lambda \exists V \in \mathcal{V}(a)| \forall x \in V \Rightarrow \mathbf{f}(x)<\lambda .
$$

Remark 4 The map \mathbf{f} is usc if and only if $-\mathbf{f}$ is lsc.

1.4 Wierstrass's theorem

Definition 10 If \mathbf{f} is a function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, the domain of \mathbf{f} is the subset denoted by $\operatorname{dom}(\mathbf{f})$ and defined by :

$$
\operatorname{dom}(\mathbf{f})=\{x \in \mathbf{X} \mid \mathbf{f}(x)<+\infty\} .
$$

If $\operatorname{dom}(\mathbf{f})$ is non void, one says that \mathbf{f} is proper.
Theorem 1 (Wierstrass)
If $(\mathbf{X}, \mathcal{T})$ is a compact topological space and if \mathbf{f} is a proper map and lsc from $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup\{+\infty\}$ then there exists $\underline{x} \in \mathbf{X}$ such that

$$
\forall x \in \mathbf{X} \quad \mathbf{f}(\underline{x}) \leq \mathbf{f}(x) .
$$

Proof : Let $m=\inf _{x \in \mathbf{X}} f(x)$.
Suppose that $m=-\infty$. There exists a sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ of elements of \mathbf{X} such that

$$
\forall n \in \mathbf{N} \mathbf{f}\left(x_{n}\right)<-n .
$$

Let $\lambda \in \mathbf{R}$, then there exists $N \in \mathbf{N}$ such that

$$
\forall n \in \mathbf{N} \mid n \geq N \Rightarrow \mathbf{f}\left(x_{n}\right)<\lambda
$$

The sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ has a cluster point $\underline{x} \in \mathbf{X}$. The function \mathbf{f} is lsc at \underline{x} then there exists $V \in \mathcal{V}(\underline{x})$ such that

$$
\forall x \in V \quad \mathbf{f}(x)>\lambda
$$

There exists also $p \in \mathbf{N}$ such that $p>N$ and $x_{p} \in V$ then $\mathbf{f}\left(x_{p}\right)>\lambda$ and $\mathbf{f}\left(x_{p}\right)<\lambda$. It is impossible. Thus $m \in \mathbf{R}$.
Let $\underline{x} \in \mathbf{X}$ be the cluster point of the minimizing sequence $\left(x_{n}\right)_{n \in \mathbf{N}^{*}}$. Suppose that $\mathbf{f}(\underline{x})>m$. Then there exists $\delta>0$ such that $\mathbf{f}(\underline{x})>m+\delta$. But the function \mathbf{f} is lsc at \underline{x}, thus there exists $V \in \mathcal{V}(\underline{x})$ such that

$$
\forall x \in V \quad \mathbf{f}(x)>m+\delta
$$

There exists also $N \in \mathbf{N}$ such that

$$
\forall n \in \mathbf{N} \mid n \geq N \Rightarrow m \leq \mathbf{f}\left(x_{n}\right)<m+\delta
$$

There exists $p \in \mathbf{N}$ such that $p>N$ and $x_{p} \in V$ then $\mathbf{f}\left(x_{p}\right)>m+\delta$ and $\mathbf{f}\left(x_{p}\right)<m+\delta$. It is impossible. Thus $m=\mathbf{f}(\underline{x})$.

1.4.1 Sequentially compact set

Let $(\mathbf{X}, \mathcal{T})$ a topological space.

Definition 11 A subset \mathbf{K} of \mathbf{X} is said to be sequentially compact if every sequence of elements of \mathbf{K} has a subsequence which converges to an element of \mathbf{K}.

Following the proof of the Wierstrass's theorem we have:
Theorem 2 If $(\mathbf{X}, \mathcal{T})$ is a sequentially compact topological space and if \mathbf{f} is a proper map and lsc from $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup\{+\infty\}$ then there exists $\underline{x} \in \mathbf{X}$ such that

$$
\forall x \in \mathbf{X} \quad \mathbf{f}(\underline{x}) \leq \mathbf{f}(x) .
$$

1.5 Coercivity property

1.5.1 Coercivity

Definition 12 A function \mathbf{f} from the topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup\{+\infty\}$ is said coercive if the closure of every section

$$
S_{\lambda}(\mathbf{f})=\{x \in \mathbf{X} \mid \mathbf{f}(x) \leq \lambda\}
$$

is compact in \mathbf{X}.
Definition 13 A map from the topological space $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup\{+\infty\}$ is said to be sequentially coercive if the closure of every section

$$
S_{\lambda}(\mathbf{f})=\{x \in \mathbf{X} \mid \mathbf{f}(x) \leq \lambda\}
$$

is sequentially compact in \mathbf{X}.
If ($\mathbf{X},\| \|_{\mathbf{X}}$) is a reflexive Banach space, one defines, in general, the coercivity of \mathbf{f} by the property :

$$
\lim _{\|x\|_{\mathbf{X}} \mapsto+\infty} \mathbf{f}(x)=+\infty .
$$

In fact we have :
Proposition 5 If $\left(\mathbf{X},\| \|_{\mathbf{X}}\right)$ is a reflexive Banach space then the map \mathbf{f} is weakly sequentially coercive if and only if :

$$
\lim _{\|x\|_{\mathrm{x}} \mapsto+\infty} \mathbf{f}(x)=+\infty
$$

Proof : One supposes that \mathbf{f} is weakly sequentially coercive. If \mathbf{f} does not tend to $+\infty$ when $\|x\|_{\mathbf{x}} \mapsto+\infty$, there exists a sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ such that : $\lim _{n \mapsto+\infty}\left\|x_{n}\right\|_{\mathbf{x}}=+\infty$ and $\left(\mathbf{f}\left(x_{n}\right)\right)_{n \in \mathbf{N}}$ is bounded. Let $\lambda \in \mathbf{R}$ such that :

$$
\forall n \in \mathbf{N},\left|\mathbf{f}\left(x_{n}\right)\right| \leq \lambda
$$

As $S_{\lambda}(\mathbf{f})$ is weakly sequentially compact, the sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ has a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbf{N}}$ which converges weakly to an element \underline{x} of $S_{\lambda}(\mathbf{f})$. Then $\left(x_{n_{k}}\right)_{k \in \mathbf{N}}$ is bounded. This is impossible .
Now, we prove the converse. Let $\lambda \in \mathbf{R}$ and $\left(x_{n}\right)_{n \in \mathbf{N}}$ a sequence of elements of $S_{\lambda}(\mathbf{f})$ then $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a bounded sequence ; then it has a weakly convergent subsequence $\left(x_{n_{k}}\right)_{k \in \mathbf{N}}$ in the closure of $S_{\lambda}(\mathbf{f})$. Thus \mathbf{f} is sequentially coercive.

Theorem 3 (Tonelli's Theorem) Let \mathbf{f} from $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup\{+\infty\}$, be a proper, coercive, lsc function. Then \mathbf{f} has a minimum in \mathbf{X}.

Proof : Let $a \in \mathbf{X}$ be such that $\mathbf{f}(a)<+\infty$, the subset $S_{\mathbf{f}(a)}(\mathbf{f})$ is relatively compact (that is, the closure is compact), but \mathbf{f} is $\mathbf{l s c}$, since $S_{\mathbf{f}(a)}(\mathbf{f})$ is closed, it is compact. Thus by Wierstrass's theorem, there exists $\underline{x} \in$ $S_{\mathbf{f}(a)}(\mathbf{f})$ such that :

$$
\forall x \in S_{\mathbf{f}(a)}(\mathbf{f}) \mathbf{f}(\underline{x}) \leq \mathbf{f}(x)
$$

As a result :

$$
\forall x \in \mathbf{X} \mathbf{f}(\underline{x}) \leq \mathbf{f}(x)
$$

The following theorem is easy to prove :
Theorem 4 (Tonelli's Theorem) A map from the topological space $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup\{+\infty\}$, proper, lsc and sequentially coercive has at least a minimum in \mathbf{X}.

1.6 Minimizing sequences

Let \mathbf{f} be a map from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ such that

$$
m=\inf _{x \in \mathbf{X}} \mathbf{f}(x)
$$

Definition 14 We say that a sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a minimizing sequence of \mathbf{f}, if it verifies:

$$
\lim _{n \mapsto+\infty} \mathbf{f}\left(x_{n}\right)=m
$$

Exercice 5 Prove that every proper map \mathbf{f} has a minimizing sequence.
Remark 5 As consequences of the Tonelli's theorems, if \mathbf{f} is a map from the topological space $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup\{+\infty\}$ is proper and lsc, one has :

- if \mathbf{f} is coercive, every minimizing sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ of \mathbf{f} has a cluster point $\underline{x} \in \mathbf{X}$ where \underline{x} is the minimum point of $\mathbf{f}: \mathbf{f}(\underline{x})=m$;
- if \mathbf{f} is sequentially coercive, every minimizing sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ of \mathbf{f} has a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbf{N}}$ which converges to a point $\underline{x} \in \mathbf{X}$ where \underline{x} is the minimum point of $\mathbf{f}: \mathbf{f}(\underline{x})=m$.

1.7 Convexity

In this part of the note, \mathbf{X} is a real linear space with the norm $\left\|\|_{\mathbf{X}}\right.$. One denotes by \mathbf{X}^{*}, the topological dual space of \mathbf{X}, that is \mathbf{X}^{*} is the real linear space of the continuous linear forms on the normed space $\left(\mathbf{X},\| \|_{\mathbf{X}}\right)$. One denotes the bilinear pairing in the duality between \mathbf{X} and \mathbf{X}^{*} by $<,>$ then :

$$
\forall x^{*} \in \mathbf{X}^{*} \forall x \in \mathbf{X}, \quad x^{*}(x)=<x^{*}, x>.
$$

If we set for every $x^{*} \in \mathbf{X}^{*}$,

$$
\left\|x^{*}\right\|_{\mathbf{X}^{*}}=\sup _{\|x\|_{\mathbf{X}}=1}<x^{*}, x>
$$

then $\left(\mathbf{X}^{*},\| \|_{\mathbf{X}^{*}}\right)$ is a normed linear space.

1.7.1 Convex sets

Definition 15 : A subset \mathbf{C} of \mathbf{X} is said to be convex if :

$$
\forall t \in[0,1] \forall x \in \mathbf{C} \forall y \in \mathbf{C} \quad t x+(1-t) y \in \mathbf{C}
$$

Definition 16 Let x and y belong to \mathbf{X}, a subset of \mathbf{X} denoted by $[x, y]$ is called the geometrical segment with extremal points x and y and it is given by :

$$
[x, y]=\{t x+(1-t) y \mid t \in[0,1]\} .
$$

A subset \mathbf{C} of \mathbf{X} is convex if and only if every geometrical segment with extremal points in \mathbf{C} is included in \mathbf{C}.

We now have the following :
Proposition 6 subset \mathbf{C} of \mathbf{X} is convex if and only if :

$$
\forall x_{1}, \ldots, x_{p} \in \mathbf{C} \quad \forall \alpha_{1}, \ldots, \alpha_{p} \in \mathbf{R}_{+} \mid \sum_{i=1}^{p} \alpha_{i}=1 \Rightarrow \sum_{i=1}^{p} \alpha_{i} x_{i} \in \mathbf{C}
$$

Proof : The proof is given by induction. Suppose that \mathbf{C} is a convex subset . Then the case $p=2$ is obvious . Suppose that the hypothesis is true for an integer p greater than 2 , we prove that it is also true foe $p+1$. Now, let $x_{1}, \ldots x_{p+1}$ be points of \mathbf{C}. Let $\alpha_{1}, \ldots, \alpha_{p+1}$ any positive real numbers such that $\sum_{i=1}^{i=p+1} \alpha_{i}=1$. If $\alpha_{p+1}=0$, we are in the case of p points. So, by
induction hypothesis, we are done. If $\alpha_{p+1} \neq 0$ then $y=\frac{1}{1-\alpha_{p+1}} \sum_{i=1}^{p} \alpha_{i} x_{i}$ belong \mathbf{C} then

$$
\sum_{i=1}^{p+1} \alpha_{i} x_{i}=\left(1-\alpha_{p+1}\right) y+\alpha_{p+1} x_{p+1} \in \mathbf{C}
$$

Exemples :

- The linear space \mathbf{X}, every sublinear space of \mathbf{X} and every affine subspace of \mathbf{X} are convex .
- Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ be a linear map such that \mathbf{f} is not identically zero and $\alpha \in \mathbf{R}$, the subset denoted by $H_{\mathbf{f} \alpha}=\{x \in \mathbf{X} \mid \mathbf{f}(x)=\alpha\}$, called a hyperplane is convex.
- Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ be a linear map such that \mathbf{f} is not identically zero and $\alpha \in \mathbf{R}$, the following subsets $D_{\mathbf{f} \alpha}^{+}=\{x \in \mathbf{X} \mid \mathbf{f}(x) \geq \alpha\}$ and $D_{\mathbf{f} \alpha}^{-}=\{x \in \mathbf{X} \mid \mathbf{f}(x) \leq \alpha\}$ called closed half spaces are convex .
- Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ be a linear map such that \mathbf{f} is not identically zero and $\alpha \in \mathbf{R}$, the following subsets $D_{\mathbf{f} \alpha}^{*+}=\{x \in \mathbf{X} \mid \mathbf{f}(x)>\alpha\}$ and $D_{\mathbf{f} \alpha}^{*-}=\{x \in \mathbf{X} \mid \mathbf{f}(x)<\alpha\}$ called open half spaces are convex.

Exercice 6 Let \mathbf{X} be a real linear space endowed with the norm $\left\|\|_{\mathbf{X}}\right.$. Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ be a linear map such that \mathbf{f} is not identically zero and $\alpha \in \mathbf{R}$.

- Prove that \mathbf{f} is continuous if and only if $H_{\mathbf{f} \alpha}$ is a closed subset.
- Prove that if \mathbf{f} is continuous then $D_{\mathbf{f} \alpha}^{+}$and $D_{\mathbf{f} \alpha}^{-}$are closed subsets.
- Prove that if \mathbf{f} is continuous then $D_{\mathbf{f} \alpha}^{*+}$ and $D_{\mathbf{f} \alpha}^{*-}$ are open subsets.

The convex subsets have the following proprties :

- If $\left(\mathbf{C}_{i}\right)_{i \in \mathbf{I}}$ is a family of convex subsets of \mathbf{X} then $\bigcap_{i \in \mathbf{I}} \mathbf{C}_{i}$ is convex .
- If $\left(\mathbf{C}_{i}\right)_{1 \leq i \leq n}$ is a finite family of convex subsets and if $\left(\lambda_{i}\right)_{1 \leq i \leq n}$ are real numbers then $\sum_{i=1}^{n} \lambda_{i} \mathbf{C}_{i}$ is a convex subset .
- The closure of a convex subset is convex .

1.7.2 The Convex Functions

Definition 17 A function \mathbf{f} defined on a subset \mathbf{C} of \mathbf{X} which takes its values in $\mathbf{R} \cup\{+\infty\}$, is called convex if \mathbf{C} is convex and if

$$
\forall t \in[0,1] \forall x \in \mathbf{C} \forall y \in \mathbf{C}, \quad \mathbf{f}(t x+(1-t) y) \leq t \mathbf{f}(x)+(1-t) \mathbf{f}(y)
$$

Remark 6 If \mathbf{f} is a convex function from the convex subset \mathbf{C} of \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, one defines the convex extention of \mathbf{f} as the function $\mathbf{f}_{c o}$ from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ such that

- $\forall x \in \mathbf{C} \mathbf{f}_{c o}(x)=\mathbf{f}(x)$,
- $\forall x \notin \mathbf{C} \mathbf{f}_{c o}(x)=+\infty$.

The function $\mathbf{f}_{c o}$ is convex on \mathbf{X} if and only if \mathbf{f} is convex on \mathbf{C}.
The function $\mathbf{f}_{c o}$ and \mathbf{f} are proper at the same time .
This extension does not change the minimization problem. Then if \mathbf{f} is proper, it has a minimum at a point $\underline{x} \in \mathbf{C}$ if and only if $\mathbf{f}_{c o}$ has a minimum on \mathbf{X} at a point \underline{x}.

We shall consider in what follows the functions defined on X and which takes its values in $\mathbf{R} \cup\{+\infty\}$.

Definition 18 A function \mathbf{f} defined on a subset \mathbf{C} of \mathbf{X} which takes its values in $\mathbf{R} \cup\{+\infty\}$, is said to be stricly convex if \mathbf{C} is convex and if
$\forall t \in] 0,1[\forall x \in \mathbf{C} \forall y \in \mathbf{C}$ and $x \neq y, \mathbf{f}(t x+(1-t) y)<t \mathbf{f}(x)+(1-t) \mathbf{f}(y)$.
A stricly convex function is a convex function .
Proposition 7 A function \mathbf{f} from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ is convex if and only if epi (f) is a convex subset of $\mathbf{X} \times \mathbf{R}$.

Proof : Suppose that \mathbf{f} is convex .
Let $\left(x, \gamma_{1}\right) \in \mathbf{e p i}(\mathbf{f}),\left(y, \gamma_{2}\right) \in \mathbf{e p i}(\mathbf{f})$, let $t \in[0,1]$, One has :

$$
\mathbf{f}(t x+(1-t) y) \leq t \mathbf{f}(x)+(1-t) \mathbf{f}(y) \leq t \gamma_{1}+(1-t) \gamma_{2}
$$

Thus

$$
t\left(y, \gamma_{1}\right)+(1-t)\left(y, \gamma_{2}\right)=\left(t x+(1-t) y, t \gamma_{1}+(1-t) \gamma_{2}\right) \in \mathbf{e p i}(\mathbf{f})
$$

So, epi (\mathbf{f}) is convex .
Conversely we suppose epi (f) to be convex .
Let $x \in \operatorname{dom}(\mathbf{f})$ and $y \in \operatorname{dom}(\mathbf{f})$, then $(x, \mathbf{f}(x)) \in \mathbf{e p i}(\mathbf{f})$ and $(y, \mathbf{f}(y)) \in$ epi (\mathbf{f}) thus if $t \in[0,1]$ then

$$
t(x, \mathbf{f}(x))+(1-t)(y, \mathbf{f}(y)) \in \mathbf{e p i}(\mathbf{f}),
$$

therefore

$$
\mathbf{f}(t x+(1-t) y) \leq t \mathbf{f}(x)+(1-t) \mathbf{f}(y)
$$

So, the function \mathbf{f} is convex.

Remark 7 If \mathbf{f} is convex then the sections $\mathbf{S}_{\alpha}(\mathbf{f})$ are convex .

Exemples :

- If \mathbf{f} and \mathbf{g} are convex functions from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, if $\lambda \in \mathbf{R}_{+}$and if $\mu \in \mathbf{R}_{+}$then $\lambda \mathbf{f}+\mu \mathbf{g}$ is convex.
- If \mathbf{f} is convex and \mathbf{g} is strictly convex from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ then $\mathbf{f}+\mathbf{g}$ is strictly convex .
- If \mathbf{f} and \mathbf{g} are strictly convex functions from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, if $\lambda \in \mathbf{R}_{+}^{*}$ and if $\mu \in \mathbf{R}_{+}^{*}$ then $\lambda \mathbf{f}+\mu \mathbf{g}$ is strictly convex .
- If $\left(\mathbf{f}_{i}\right)_{i \in \mathbf{I}}$ is a family of convex functions from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ then $\sup _{i} \mathbf{f}_{i}$ is convex.
$i \in \mathbf{I}$

1.7.3 Continuity of the convex functions

Proposition 8 If \mathbf{f} is a convex function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ which is bounded above on a neighbourhood of a point a belonging to its domain, then \mathbf{f} is continuous at the point a and, moreover, \mathbf{f} is locally lipschitz in the interior of its domain.

Proof: Define the function \mathbf{g} by :

$$
\mathbf{g}(y)=\mathbf{f}(a+y)-\mathbf{f}(a) .
$$

Then 0 is in the domain of $\mathbf{g}, \mathbf{g}(0)=0$ and \mathbf{g} is bounded above in a neighbourhood of 0 . The function \mathbf{f} is continuous at the point a if and only if \mathbf{g} is continuous at 0 . Let $M>0$ and $r>0$ such that:

$$
\forall y \in \mathbf{X} \mid\|y\|_{\mathbf{X}} \leq r \Rightarrow \mathbf{g}(y) \leq M
$$

Let $r>0$, if $x \in \mathbf{X} \backslash\{0\}$ and if $\|x\|_{\mathbf{X}}<r$ then because, \mathbf{g} is convex, we have $\mathbf{g}(x)=\mathbf{g}\left(\left(1-\frac{\|x\|_{\mathbf{X}}}{r}\right) 0+\frac{\|x\|_{\mathbf{X}}}{r} \frac{r}{\|x\|_{\mathbf{X}}} x\right) \leq\left(1-\frac{\|x\|_{\mathbf{X}}}{r}\right) \mathbf{g}(0)+\frac{\|x\|_{\mathbf{X}}}{r} \mathbf{g}\left(\frac{r}{\|x\|_{\mathbf{X}}} x\right)$.

As $\left\|\frac{r}{\|x\|_{\mathbf{X}}} x\right\|_{\mathbf{X}}=r$, one has :

$$
\mathbf{g}(x) \leq \frac{\|x\|_{\mathbf{X}}}{r} M .
$$

In addition, one has :

$$
0=\frac{r}{r+\|x\|_{\mathbf{X}}} x+\left(1-\frac{r}{r+\|x\|_{\mathbf{X}}}\right)\left(-\frac{r}{\|x\|_{\mathbf{X}}} x\right)
$$

then

$$
0 \leq \frac{r}{r+\|x\|_{\mathbf{X}}} \mathbf{g}(x)+\left(1-\frac{r}{r+\|x\|_{\mathbf{X}}}\right) \mathbf{g}\left(-\frac{r}{\|x\|_{\mathbf{X}}} x\right)
$$

thus

$$
-\frac{\|x\|_{\mathbf{X}}}{r} \mathbf{g}\left(-\frac{r}{\|x\|_{\mathbf{X}}} x\right) \leq \mathbf{g}(x)
$$

therefore

$$
-\frac{\|x\|_{\mathbf{X}}}{r} M \leq \mathbf{g}(x) .
$$

At the end, we have

$$
|\mathbf{g}(x)| \leq \frac{\|x\|_{\mathbf{X}}}{r} M .
$$

Let $\epsilon>0$, we set $\eta=\min \left(\frac{r}{M} \epsilon, r\right)$, if $x \in \mathbf{X}$ and $\|x\|_{\mathbf{X}}<\eta$ then we have

$$
|\mathbf{g}(x)|<\epsilon .
$$

Now we prove that \mathbf{g} is continuous in the interior of its domain . It is enough to prove that \mathbf{g} is bounded above a neighbourhood of every point of $\overbrace{\operatorname{dom}(\mathrm{g})}^{0}$.
Let x belong to $\operatorname{dom}(\mathbf{g})$. The function of the segment $[0,1]$ to \mathbf{X} which associates t with $(1+t) x$ is continuous, then there exists $\left.t_{0} \in\right] 0,1[$ such that

$$
\forall t \in\left[0, t_{0}\right] \Rightarrow(1+t) x \in \overbrace{\operatorname{dom}(\mathbf{g})}^{0} .
$$

We set $x_{0}=\left(1+t_{0}\right) x$ and $r_{1}=\frac{t_{0}}{1+t_{0}} r$. Let $y \in \mathbf{X}$ be such that $\|y-x\|_{\mathbf{X}}<$ r_{1}, then we have : $\left\|\frac{1+t_{0}}{t_{0}}(y-x)\right\|_{\mathbf{X}}<r$. However, $y=\frac{t_{0}}{1+t_{0}}\left(\frac{1+t_{0}}{t_{0}}(y-x)\right)+$ $\frac{1}{1+t_{0}}\left(\left(1+t_{0}\right) x\right)$ then $y=\frac{t_{0}}{1+t_{0}}\left(\frac{1+t_{0}}{t_{0}}(y-x)\right)+\frac{1}{1+t_{0}} x_{0}$ thus $\mathbf{g}(y) \leq \frac{t_{0}}{1+t_{0}} \mathbf{g}\left(\frac{1+t_{0}}{t_{0}}(y-x)\right)+$ $\frac{1}{1+t_{0}} \mathbf{g}\left(x_{0}\right)$ d'où $\mathbf{g}(y) \leq \frac{t_{0}}{1+t_{0}} M+\frac{1}{1+t_{0}} \mathbf{g}\left(x_{0}\right)$.
We set $M_{1}=\max \left(M, \mathbf{g}\left(x_{0}\right)\right)$.
Then one has :

$$
\forall y \in \mathbf{X} \mid\|y-x\|_{\mathbf{X}}<r_{1} \Rightarrow \mathbf{g}(y) \leq M_{1}
$$

Therefore \mathbf{g} is continuous at the point x. To complete the proof we show that \mathbf{g} is locally lipschitz on $\overbrace{\operatorname{dom}(\mathbf{g})}$. It is enough to prove it at the point 0 . Let $\delta>0$ such that $\delta<r$ and let $u \in B(0, \delta), v \in B(0, \delta)$.
Let $n \in \mathbf{N}$ such that $n>\frac{\|u-v\|_{\mathbf{x}}}{r-\delta}$, we set $\forall i \in\{1, \ldots, n\} x_{i+1}=x_{i}+\frac{1}{n}(v-u)$ with $x_{1}=u$. Then $x_{n+1}=v$ and $\forall i \in\{1, \ldots, n-1\}$, one has : $x_{i+1} \in$ $B\left(x_{i}, r-\delta\right)$ thus $x_{i+1} \in B(0, r)$. The first part of the proof give us :

$$
\left|\mathbf{g}\left(x_{i+1}\right)-\mathbf{g}\left(x_{i}\right)\right| \leq \frac{M}{r-\delta}\left\|x_{i+1}-x_{i}\right\|_{\mathbf{X}}
$$

then

$$
\left|\mathbf{g}\left(x_{i+1}\right)-\mathbf{g}\left(x_{i}\right)\right| \leq \frac{M}{r-\delta} \frac{1}{n}\|v-u\|_{\mathbf{X}}
$$

thus
$|\mathbf{g}(v)-\mathbf{g}(u)|=\left|\mathbf{g}\left(x_{n}\right)-\mathbf{g}\left(x_{1}\right)\right| \leq \sum_{i=1}^{n-1}\left|\left(\mathbf{g}\left(x_{i+1}\right)-\mathbf{g}\left(x_{i}\right)\right)\right| \leq \frac{M}{r-\delta}\|v-u\|_{\mathbf{X}}$.

1.7.4 Lsc convex functions

Proposition 9 A function \mathbf{f} from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ is convex and $\mathbf{l s c}$ if and only if it is weakly lsc.

Proof : It is enough to remark that epi (\mathbf{f}) is closed convex if and only if epi (\mathbf{f}) is weakly closed convex .

Exemples :

- A continuous convex function is a weakly lsc convex function . In particular the function $\left\|\|_{\mathbf{X}}\right.$ is a weakly lsc convex function on \mathbf{X}; every continuous linear form on \mathbf{X} is weakly lsc convex function and every continuous affine form on \mathbf{X} is weakly lsc convex function.
- Let a be a positive bilinear form on \mathbf{X} then the map \mathbf{q} defined by $\mathbf{q}(x)=\mathbf{a}(x, x)$ is convex . Let $x \in \mathbf{X}, y \in \mathbf{X}$ and $t \in[0,1]$, one has :

$$
\mathbf{q}(t x+(1-t) y)=\mathbf{a}((t x+(1-t) y),(t x+(1-t) y))
$$

thus

$$
\mathbf{q}(t x+(1-t) y)=t^{2} \mathbf{a}(x, x)+t(1-t)[\mathbf{a}(x, y)+\mathbf{a}(y, x)]+(1-t)^{2} \mathbf{a}(y, y)
$$

Because \mathbf{a} is positive, developing $\mathbf{a}(x-y, x-y) \geq 0$, one obtains $\mathbf{a}(x, y)+\mathbf{a}(y, x) \leq \mathbf{a}(x, x)+\mathbf{a}(y, y)$. Finally one has :

$$
\mathbf{q}(t x+(1-t) y) \leq t \mathbf{a}(x, x)+(1-t) \mathbf{a}(y, y) \leq t \mathbf{q}(x)+(1-t) \mathbf{q}(y)
$$

Thus, \mathbf{q} is convex .
If \mathbf{a} is positive definite, one verifies by the same method that \mathbf{q} is strictly convex . In particular a is positive definite if it satisfies the following coercivity condition :

$$
\exists \alpha>0 \mid \forall x \in \mathbf{X} \quad \mathbf{a}(x, x) \geq \alpha\|x\|_{\mathbf{X}}^{2}
$$

If \mathbf{a} is positive continuous bilinear then \mathbf{a} is convex lsc .
One sets :

$$
\mathcal{E}(\mathbf{f})=\left\{\left(x^{*}, \alpha\right) \in \mathbf{X}^{*} \mathbf{x} \mathbf{R} \mid \forall x \in \mathbf{X}<x^{*}, x>+\alpha \leq \mathbf{f}(x)\right\}
$$

Proposition 10 If \mathbf{f} is a lsc convex proper function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ then :

$$
\mathbf{f}(x)=\sup _{\left(x^{*}, \alpha\right) \in \mathcal{E}(\mathbf{f})}<x^{*}, x>+\alpha
$$

Proof : We have according to the definition of $\mathcal{E}(\mathbf{f})$:

$$
\mathbf{f}(x) \geq \sup _{\left(x^{*}, \alpha\right) \in \mathcal{E}(\mathbf{f})}<x^{*}, x>+\alpha
$$

Let $x_{0} \in \operatorname{dom}(\mathbf{f})$ and let $\epsilon>0$ then $\left(x_{0}, \mathbf{f}\left(x_{0}\right)-\epsilon\right) \notin \mathbf{e p i}(\mathbf{f})$. Because epi (\mathbf{f}) is closed convex subset of $\mathbf{X x R}$, there exists $x^{*} \in \mathbf{X}^{*}, \alpha \in \mathbf{R}$ and $\gamma \in \mathbf{R}$ such that :

$$
\forall(x, \lambda) \in \mathbf{e p i}(\mathbf{f})<x^{*}, x_{0}>+\alpha\left(\mathbf{f}\left(x_{0}\right)-\epsilon\right)<\gamma \leq<x^{*}, x>+\alpha \lambda
$$

One verifies that α is strictly positive. If $\alpha=0$, when we set $x=x_{0}$ in the two members, we have $<x^{*}, x_{0}><\gamma \leq<x^{*}, x_{0}>$ this is impossible . If we suppose that $\alpha<0$, we take λ such that $\mathbf{f}\left(x_{0}\right) \leq \lambda$, one has

$$
<x^{*}, x_{0}>+\alpha\left(\mathbf{f}\left(x_{0}\right)-\epsilon\right)<\gamma \leq<x^{*}, x_{0}>+\alpha \lambda
$$

and as λ tends to $+\infty$ then :

$$
<x^{*}, x_{0}>+\alpha\left(\mathbf{f}\left(x_{0}\right)-\epsilon\right)<\gamma \leq-\infty
$$

It is impossible . Then we have :

$$
\forall x \in \operatorname{dom}(\mathbf{f}) \quad<\frac{1}{\alpha} x^{*}, x_{0}>+\mathbf{f}\left(x_{0}\right)-\epsilon<\gamma \leq<\frac{1}{\alpha} x^{*}, x>+\mathbf{f}(x)
$$

thus

$$
\forall x \in \operatorname{dom}(\mathbf{f})<\frac{-1}{\alpha} x^{*}, x>+<\frac{1}{\alpha} x^{*}, x_{0}>+\mathbf{f}\left(x_{0}\right)-\epsilon \leq \mathbf{f}(x)
$$

Therefore we have :
$\forall x \in \operatorname{dom}(\mathbf{f})<\frac{-1}{\alpha} x^{*}, x>+<\frac{1}{\alpha} x^{*}, x_{0}>+\mathbf{f}\left(x_{0}\right)-\epsilon \leq \sup _{\left(x^{*}, \alpha\right) \in \mathcal{E}(\mathbf{f})}<x^{*}, x>+\alpha \leq \mathbf{f}(x)$.
Finally,

$$
\mathbf{f}\left(x_{0}\right)-\epsilon \leq \sup _{\left(x^{*}, \alpha\right) \in \mathcal{E}(\mathbf{f})}<x^{*}, x_{0}>+\alpha \leq \mathbf{f}\left(x_{0}\right)
$$

Since $\epsilon>0$ is arbitrary, we conclude that :

$$
\sup _{\left(x^{*}, \alpha\right) \in \mathcal{E}(\mathbf{f})}<x^{*}, x_{0}>+\alpha=\mathbf{f}\left(x_{0}\right)
$$

1.7.5 Minimization of convex functions

We have the following proposition :

Proposition 11 If \mathbf{f} is a strictly proper convex function from \mathbf{X} to $\mathbf{R} \cup$ $\{+\infty\}$ then if it has a minimum at a point, this point is unique.

Proof : We suppose that $a \in \mathbf{X}$ and $b \in \mathbf{X}$ are such that $a \neq b$ and

$$
\forall x \in \mathbf{X} \mathbf{f}(a)=\mathbf{f}(b) \leq \mathbf{f}(x)
$$

then

$$
\mathbf{f}(a) \leq \mathbf{f}\left(\frac{1}{2} a+\frac{1}{2} b\right)<\frac{1}{2} \mathbf{f}(a)+\frac{1}{2} \mathbf{f}(b)=\mathbf{f}(a) .
$$

It is impossible .
We have below a theorem which is very useful .

Theorem 5 If \mathbf{X} is a reflexive Banach space, if \mathbf{f} is a lsc proper convex function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ and if

$$
\lim _{\|x\| \mapsto+\infty} \mathbf{f}(x)=+\infty
$$

then \mathbf{f} has a minimum at a point of \mathbf{X}.

Proof : The sections of \mathbf{f} are closed, convex and bounded; thus they are weakly compact. Since \mathbf{f} is proper and weakly lsc, we apply the Tonelli theorem .

Usual particular cases : Let \mathbf{H} a real Hilbert space endowed with its scalar product $<,>_{\mathbf{H}}$ and with the associated norm $\left\|\|_{\mathbf{H}}\right.$. It is well known that \mathbf{H} is a reflexive Banach space : the Riez's theorem permits us to establish an isometric isomorphism between \mathbf{H} and its topological dual \mathbf{H}^{*}.

- Projection on a convex closed subset

Let \mathbf{C} be a non void convex closed subset of \mathbf{X}. Let $x \in \mathbf{X}$ and let \mathbf{F}, the function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ which is defined as follows :

$$
\text { if } y \in \mathbf{C} \text { then } \mathbf{F}(y)=\|y-x\|_{\mathbf{X}}
$$

and

$$
\text { if } y \notin \mathbf{C} \text { then } \quad \mathbf{F}(y)=+\infty
$$

. The function \mathbf{F} is convex lsc and it satisfies :

$$
\lim _{\|x\| \mapsto+\infty} \mathbf{F}(x)=+\infty
$$

Thus there exists $\underline{y} \in \mathbf{C}$ such that

$$
\mathbf{F}(\underline{y})=\min _{y \in \mathbf{C}} \mathbf{F}(y)
$$

- Quadratic optimization Let a be a bilinear form on \mathbf{X} which is continuous and coercive. These properties mean :
continuity : $\exists M>0|\forall x \in \mathbf{X} \forall y \in \mathbf{X} \quad| a(x, y) \mid \leq M\|x\|_{\mathbf{X}}\|y\|_{\mathbf{X}}$,

$$
\text { coercivity: } \exists \alpha>0 \mid \forall x \in \mathbf{X} \quad \alpha\|x\|_{\mathbf{X}}^{2} \leq a(x, x)
$$

Let ℓ be a continuous linear form on \mathbf{X}, there exists $L>0$ such that

$$
\forall x \in \mathbf{X}|\ell(x)| \leq L\|x\|_{\mathbf{X}}
$$

and let $k \in \mathbf{R}$. One defines on \mathbf{X}, the function denoted \mathbf{J} by :

$$
\forall x \in \mathbf{X} \mathbf{J}(x)=\frac{1}{2} a(x, x)-\ell(x, x)+k .
$$

The function \mathbf{J} is convex lsc proper and verifies :

$$
\lim _{\|x\| \mapsto+\infty} \mathbf{J}(x)=+\infty
$$

because

$$
\forall x \in \mathbf{X} \quad \mathbf{J}(x) \geq \alpha\|x\|_{\mathbf{X}}^{2}-L\|x\|_{\mathbf{X}}+k
$$

Then there exists $\underline{x} \in \mathbf{X}$ such that

$$
\mathbf{J}(\underline{x})=\min _{x \in \mathbf{X}} \mathbf{J}(x) .
$$

1.8 Duality

In this section, \mathbf{X} is a real linear space with the norm $\left\|\|_{\mathbf{X}}\right.$. One denotes \mathbf{X}^{*}, the topological dual space of \mathbf{X}, it means the real linear space of continuous linear forms on the normed space ($\mathbf{X},\| \|_{\mathbf{X}}$). One denotes the bilinear pairing by $<,>$ then :

$$
\forall x^{*} \in \mathbf{X}^{*} \forall x \in \mathbf{X} \quad x^{*}(x)=<x^{*}, x>.
$$

If we set for every $x^{*} \in \mathbf{X}^{*}$,

$$
\left\|x^{*}\right\|_{\mathbf{X}^{*}}=\sup _{\|x\|_{\mathbf{X}}=1}<x^{*}, x>
$$

then $\left(\mathbf{X}^{*},\| \| \|_{\mathbf{X}^{*}}\right)$ is a normed linear space .

Definition 19 conjugate or polar function

Let \mathbf{f} from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, the conjugate function or the polar function of \mathbf{f} denoted by \mathbf{f}^{*} is the function from \mathbf{X}^{*} to $\mathbf{R} \cup\{-\infty,+\infty\}$ which is defined by :

$$
\forall x^{*} \in \mathbf{X}^{*} \quad \mathbf{f}^{*}\left(x^{*}\right)=\sup _{x \in \mathbf{X}}\left(<x^{*}, x>-\mathbf{f}(x)\right) .
$$

One has:

$$
\forall x^{*} \in \mathbf{X}^{*} \mathbf{f}^{*}\left(x^{*}\right)=\sup _{x \in \operatorname{dom}(\mathbf{f})}\left(<x^{*}, x>-\mathbf{f}(x)\right) .
$$

Remark 8 The function \mathbf{f}^{*} from \mathbf{X}^{*} to $\mathbf{R} \cup\{-\infty,+\infty\}$ is convex and lsc

Proof: It enough to remark that the function \mathbf{f}_{x}^{*}, which is defined by

$$
\forall x^{*} \in \mathbf{X}^{*} \quad \mathbf{f}_{x}^{*}\left(x^{*}\right)=<x^{*}, x>-\mathbf{f}(x)
$$

is lsc, convex and moreover $\mathbf{f}^{*}\left(x^{*}\right)=\sup _{x \in \mathbf{X}} \mathbf{f}_{x}^{*}\left(x^{*}\right)$.
Then we have :

$$
\mathbf{f}^{*}(0)=-\inf _{x \in \operatorname{dom}(\mathbf{f})} \mathbf{f}(x) .
$$

Proposition 12 If \mathbf{f} is an application from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ convex and proper then \mathbf{f}^{*} is convex, lsc and proper.

Proof : We have to prove that \mathbf{f}^{*} is proper . There exists $\left(x_{0}^{*}, \alpha\right) \in \mathbf{X}^{*} \mathbf{x} \mathbf{R}$ such that:

$$
\forall x \in \mathbf{X}<x_{0}^{*}, x>-\alpha \leq \mathbf{f}(x)
$$

then

$$
\forall x \in \mathbf{X}<x_{0}^{*}, x>-\mathbf{f}(x) \leq \alpha
$$

thus $x_{0}^{*} \in \operatorname{dom}\left(\mathbf{f}^{*}\right)$.

Exercice $\mathbf{7}$ - If \mathbf{f} and \mathbf{g} are functions from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ such that $\mathbf{f} \leq \mathbf{g}$, prove that $\mathbf{f}^{*} \geq \mathbf{g}^{*}$.

- Let \mathbf{f} be a function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$. Let $\lambda \in \mathbf{R} \backslash\{0\}$, and suppose that $\forall x \in \mathbf{X} \quad \mathbf{f}_{\lambda}(x)=\mathbf{f}(\lambda x)$.
Prove that $\mathbf{f}_{\lambda}^{*}\left(x^{*}\right)=\mathbf{f}^{*}\left(\frac{1}{\lambda} x^{*}\right)$.
Prove that $(\mathbf{f}+\lambda)^{*}=\mathbf{f}^{*}-\lambda$.
- Let \mathbf{f} be a function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$. Let $a \in \mathbf{X}$, one denotes $\tau_{a} \mathbf{f}$, the function defined by $\forall x \in \mathbf{X} \quad \tau_{a} \mathbf{f}(x)=\mathbf{f}(x+a)$.
Prove that $\forall x^{*} \quad \tau_{a} \mathbf{f}^{*}\left(x^{*}\right)=\mathbf{f}^{*}\left(x^{*}\right)-<x^{*}, a>$.

We have :

Proposition 13 Young Inequality

If \mathbf{f} is a function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ then :

$$
\forall x^{*} \in \mathbf{X}^{*} \forall x \in \mathbf{X} \quad<x^{*}, x>\leq \mathbf{f}^{*}\left(x^{*}\right)+\mathbf{f}(x)
$$

1.8.1 Bidual

Definition 20 If \mathbf{f} is a function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, the bipolar of \mathbf{f} is the map denoted by $\mathbf{f}^{* *}$ from \mathbf{X} to $\mathbf{R} \cup\{-\infty,+\infty\}$ and which is defined by :

$$
\forall x \in \mathbf{X} \quad \mathbf{f}^{* *}(x)=\left(\mathbf{f}^{*}\right)^{*}(x)=\sup _{x^{*} \in \mathbf{X}^{*}}\left(<x^{*}, x>-\mathbf{f}^{*}\left(x^{*}\right)\right)
$$

By the Young's inequality, we have that :

$$
\forall x \in \mathbf{X} \quad \mathbf{f}^{* *}(x) \leq \mathbf{f}(x)
$$

In addition $\mathbf{f}^{* *}$ is convex and lsc .

Theorem 6 If \mathbf{f} is an application from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, convex, lsc and proper then

$$
\mathbf{f}^{* *}=\mathbf{f}
$$

Proof : It is enough to prove that $\forall x \in \mathbf{X} \mathbf{f}^{* *}(x) \geq \mathbf{f}(x)$. Suppose that there exists $x_{0} \in \mathbf{X}$ such that $\mathbf{f}^{* *}\left(x_{0}\right)<\mathbf{f}\left(x_{0}\right)$.
Then $\left(x_{0}, \mathbf{f}^{* *}\left(x_{0}\right)\right) \notin \mathbf{e p i}(\mathbf{f})$, there exists $\left(x^{*}, \alpha\right) \in \mathbf{X}^{*} \mathbf{x} \mathbf{R}$ which verifies :

$$
\mathbf{f}^{* *}\left(x_{0}\right) \ll x^{*}, x_{0}>+\alpha \leq \mathbf{f}\left(x_{0}\right)
$$

and

$$
\forall x \in \mathbf{X} \quad<x^{*}, x>+\alpha \leq \mathbf{f}(x)
$$

The second inequality :

$$
\forall x \in \mathbf{X} \quad<x^{*}, x>-\mathbf{f}(x) \leq-\alpha
$$

let

$$
\mathbf{f}^{*}\left(x^{*}\right) \leq-\alpha .
$$

The inequality gives :

$$
<x^{*}, x_{0}>-\mathbf{f}^{*}\left(x^{*}\right) \ll x^{*}, x_{0}>+\alpha,
$$

then

$$
-\alpha<\mathbf{f}^{*}\left(x^{*}\right) .
$$

It is impossible .

1.9 Applications to some problems of calculus of variations

Let Ω a non void open subset of \mathbf{R}^{N}. On \mathbf{R}^{N}, we use the Lebesgue measure

Definition 21 A function \mathbf{F} from $\Omega \times \mathbf{R}^{p}$ to $\mathbf{R} \cup\{-\infty,+\infty\}$ is said to be of Caratheodory if it satisfies :

- for every $x \in \Omega$, the function $u \mapsto \mathbf{F}(x, u)$ is continuous,
- for every $u \in \mathbf{R}^{p}$, the function $x \mapsto \mathbf{F}(x, u)$ is measurable .

Proposition 14 Suppose a function \mathbf{F} from $\Omega \times \mathbf{R}^{p}$ to $\mathbf{R} \cup\{-\infty,+\infty\}$ is of Caratheodory, if $\mathbf{u} \Omega \rightarrow \mathbf{R}^{p}$ is measurable then the map

$$
x \mapsto \mathbf{F}(x, \mathbf{u}(x))
$$

is measurable .
Proof : It is enough to remark that a measurable function is the limit almost everywhere of a sequence of simple functions. However if u is a simple function then the function $x \mapsto \mathbf{F}(x, \mathbf{u}(x))$ is obviosly measurable.

To obtain integrability in the spaces of type \mathbf{L}^{p} for $p \geq 1$ some kind of growth controls on \mathbf{F} are used. One gives here an exemple of this type of estimations.

Proposition 15 If $p_{1} \geq 1$ and $p_{2} \geq 1$, if $a>0$ and if $\mathbf{b} \in \mathbf{L}^{p_{2}}(\Omega)$ then if \mathbf{F} is of Caratheodory and verifies

$$
\forall x \in \Omega \forall \xi \in \mathbf{R}^{p} \quad|\mathbf{F}(x, \xi)| \leq \mathbf{b}(x)+a\|\xi\|_{\mathbf{R}^{p}}
$$

then the map Φ of $\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)$ to $\mathbf{L}^{p_{2}}(\Omega, \mathbf{R})$ which associates \mathbf{u} to $\Phi(\mathbf{u}) x \rightarrow$ $\Phi(\mathbf{u})(x)=\mathbf{F}(x, \mathbf{u}(x))$ is a continuous map and transforms the bounded subsets to bounded subsets.

1.9. APPLICATIONS TO SOME PROBLEMS OF CALCULUS OF VARIATIONS27

Proof : Let $\mathbf{u} \in \mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)$ the map $\Phi(\mathbf{u}) \quad x \rightarrow \mathbf{F}(x, \mathbf{u}(x))$ is measurable. And we have :

$$
|\mathbf{F}(x, \mathbf{u}(x))| \leq \mathbf{b}(x)+a\|\mathbf{u}(x)\|_{\mathbf{R}^{p}}^{\frac{p_{1}}{p_{2}}} .
$$

The second part of the inequality belong $\mathbf{L}^{p_{2}}(\Omega, \mathbf{R})$ then by the dominated convergence theorem of Lebesgue the map $\Phi(\mathbf{u}) x \rightarrow \mathbf{F}(x, \mathbf{u}(x))$ belong to $\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)$.
In the other hand we have

$$
\|\Phi(\mathbf{u})\|_{\mathbf{L}^{p_{2}}\left(\Omega, \mathbf{R}^{p}\right)} \leq\|\mathbf{b}\|_{\mathbf{L}^{p_{2}}(\Omega, \mathbf{R})}+a\|\mathbf{u}\|_{\mathbf{L}^{p_{2}}(\Omega, \mathbf{R})}^{\frac{p_{1}}{p_{2}}}
$$

Let $\left(\mathbf{u}_{n}\right)_{n \in \mathbf{N}}$ a sequence of functions of $\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)$ which converges to $\mathbf{u} \in$ $\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)$. It has a subsequence $\left(\mathbf{u}_{n_{k}}\right)_{k \in \mathbf{N}}$ converges almost everywhere to \mathbf{u} and such that :

$$
\forall i \in \mathbf{N} \quad\left\|\mathbf{u}_{n_{k+1}}-\mathbf{u}_{n_{k}}\right\|_{\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)}<\frac{1}{2^{i}} .
$$

Then

$$
\forall x \in \Omega \quad \mathbf{K}(x)=\left\|\mathbf{u}_{n_{1}}(x)\right\|_{\mathbf{R}^{*}}+\sum_{i=1}^{+\infty}\left\|\mathbf{u}_{n_{i+1}}(x)-\mathbf{u}_{n_{i}}(x)\right\|_{\mathbf{R}^{*}}
$$

The function \mathbf{K} is measurable positive and we have :

$$
\|\mathbf{K}\|_{\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)} \leq\left\|\mathbf{u}_{n_{1}}\right\|_{\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)}+\sum_{i=1}^{+\infty}\left\|\mathbf{u}_{n_{i+1}}-\mathbf{u}_{n_{i}}\right\|_{\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)}
$$

The function \mathbf{K} is then in $\mathbf{L}^{p_{1}}\left(\Omega, \mathbf{R}^{p}\right)$. Because

$$
\forall i \in \mathbf{N}^{*} \quad\left|u_{n_{i}}\right| \leq \mathbf{K}
$$

then

$$
\forall i \in \mathbf{N}^{*}\left|\Phi\left(u_{n_{i}}\right)\right| \leq \mathbf{b}+(\mathbf{K})^{\frac{p_{1}}{p_{2}}} \in \mathbf{L}^{p_{2}}(\Omega, \mathbf{R})
$$

By the Lebesgue's dominated convergence theorem, the sequence $\left(\Phi\left(\mathbf{u}_{n_{k}}\right)\right)_{k \in \mathbf{N}}$ converges in $\mathbf{L}^{p_{2}}(\Omega, \mathbf{R})$ to $\Phi(\mathbf{u})$. Finally Φ is continuous .

Chapter 2

Optimality Conditions

In this chapter, we give some methods, when it is possible, to determine the equations or the inequalities satisfied by the solutions of the minimization problems.

In this chapter, \mathbf{X} is a real linear space with the norm $\left\|\|_{\mathbf{X}}\right.$. One denotes \mathbf{X}^{*}, the topological dual space \mathbf{X}, it means the linear space of the continuous forms on the normed space $\left(\mathbf{X},\| \|_{\mathbf{X}}\right)$. One denote the duality pairing by $<,>$ then :

$$
\forall x^{*} \in \mathbf{X}^{*} \forall x \in \mathbf{X} \quad x^{*}(x)=<x^{*}, x>
$$

If we set, for every $x^{*} \in \mathbf{X}^{*}$,

$$
\left\|x^{*}\right\|_{\mathbf{X}^{*}}=\sup _{\|x\|_{\mathbf{X}}=1}<x^{*}, x>
$$

then $\left(\mathbf{X}^{*},\| \|_{\mathbf{X}^{*}}\right)$ is a linear normed space. If $\left(\mathbf{X},\| \|_{\mathbf{X}}\right)$ is a Banach space then $\left(\mathbf{X}^{*},\| \|_{\mathbf{X}^{*}}\right)$ is also a Banach space .

If \mathbf{f}, a function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$. One denotes by $\left(P_{\min }\right)$ the following problem :

$$
\text { Find } \underline{x} \in \mathbf{X} \text {, a solution of } \min _{x \in \mathbf{X}} \mathbf{f}(x) \text {. }
$$

One says that \underline{x} is solution of the problem $\left(P_{\min }\right)$ if \mathbf{f} has a minimum on \mathbf{X} at the point \underline{x}, then :

$$
\forall x \in \mathbf{X} \quad \mathbf{f}(\underline{x}) \leq \mathbf{f}(x) .
$$

2.1 Different concepts of derivatives

Let $\left(\mathbf{Y},\| \|_{\mathbf{Y}}\right)$ be a linear normed space over \mathbf{R}. One denotes by $\mathcal{L}(\mathbf{X}, \mathbf{Y})$ the space of linear continuous functions from \mathbf{X} to \mathbf{Y}.

2.1.1 Derivatives following a direction

Definition 22 Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{Y}$; let $x \in \mathbf{X}$ and let $h \in \mathbf{X}$, one says that \mathbf{f} has a derivative at the point x in the direction h if

$$
\lim _{t \rightarrow 0_{+}} \frac{\mathbf{f}(x+t h)-\mathbf{f}(x)}{t} \text { exists. }
$$

In this case, we name this limit, the derivative of \mathbf{f} at the point x following the direction h and we set :

$$
\mathbf{f}^{\prime}(x ; h)=\lim _{t \mapsto 0_{+}} \frac{\mathbf{f}(x+t h)-\mathbf{f}(x)}{t}
$$

Remark 9 If $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$, we have the same definition if we take $x \in \operatorname{dom}(\mathbf{f})$ and let $h \in \mathbf{X}$.

If $x \in \operatorname{dom}(\mathbf{f})$, One has : $\mathbf{f}^{\prime}\left(x ; 0_{\mathbf{X}}\right)=0$
If we set $\mathbf{g}_{x, h}(t)=\mathbf{f}(x+t h)$, if $\mathbf{g}_{x, h}$ is defined on a segment $[0, \delta]$ for a real number $\delta>0$ then \mathbf{f} has a derivative at the point x in the direction h if and only if $\mathbf{g}_{x, h}$ has a derivative at the right at 0 . moreover we have :

$$
\mathbf{f}^{\prime}(x ; h)=\left(\mathbf{g}_{x, h}^{\prime}\right)_{d}(0)
$$

Remark 10 If $\mathbf{f}^{\prime}(x ; h)$ is defined then :

$$
\forall \lambda \geq 0 \quad \mathbf{f}^{\prime}(x ; \lambda h)=\lambda \mathbf{f}^{\prime}(x ; h) .
$$

Exemple : Let a be a bilinear continuous form on \mathbf{X}, let $x^{*} \in \mathbf{X}^{*}$ and $k \in \mathbf{R}$, if we set :

$$
\mathbf{J}(x)=\frac{1}{2} a(x, x)-<x^{*}, x>+k
$$

we obtain

$$
\begin{aligned}
\mathbf{J}(x+t h)-\mathbf{J}(x)= & \frac{1}{2}\left[a(x, x)+t a(x, h)+t a(h, x)+t^{2} a(h, h)\right] \\
& -<x^{*}, x>-t<x^{*}, h>
\end{aligned}
$$

Then

$$
\frac{\mathbf{J}(x+t h)-\mathbf{J}(x)}{t}=\frac{1}{2}\left[a(x, h)+a(h, x)-2<x^{*}, h>\right]+t a(h, h) .
$$

Thus

$$
\forall x \in \mathbf{X} \forall h \in \mathbf{X} \quad \mathbf{J}^{\prime}(x ; h)=\frac{1}{2}\left[a(x, h)+a(h, x)-2<x^{*}, h>\right] .
$$

In the particular case where a is symmetric, that is if :

$$
\forall x \in \mathbf{X} \forall y \in \mathbf{X}, \quad a(x, y)=a(y, x)
$$

We have :

$$
\forall x \in \mathbf{X} \forall h \in \mathbf{X} \quad \mathbf{J}^{\prime}(x ; h)=a(x, h)-<x^{*}, h>
$$

Exemple : Let \mathbf{H} be a real Hilbert space with its associated scalar product $<,>_{\mathbf{H}}$ and the corresponding norm $\left\|\|_{\mathbf{H}}\right.$. If :

$$
\forall x \in \mathbf{H}, \quad \mathbf{J}(x)=\|x\|_{\mathbf{H}}
$$

We have :

$$
\mathbf{g}_{x, h}(t)=\left(\|x+t h\|_{\mathbf{H}}^{2}\right)^{\frac{1}{2}}=\left(<x+t h, x+t h>_{\mathbf{H}}\right)^{\frac{1}{2}}
$$

Thus :

$$
\begin{gathered}
\forall x \in \mathbf{H} \backslash\{0\} \forall h \in \mathbf{H} \mathbf{J}^{\prime}(x ; h)=\left(\mathbf{g}_{x, h}^{\prime}\right)_{d}(0)=\frac{<x, h>_{\mathbf{H}}}{\|x\|_{\mathbf{H}}} . \\
\forall h \in \mathbf{H} \mathbf{J}^{\prime}(0 \mathbf{x} ; h)=\left(\mathbf{g}_{0_{\mathbf{x}}, h}^{\prime}\right)_{d}(0)=\|h\|_{\mathbf{H}}
\end{gathered}
$$

Exemple : Let \mathbf{f} be a continuously differentiable map from \mathbf{R} to \mathbf{R}. Let \mathbf{K} be a compact subset of \mathbf{R}^{N}. One denotes by $\mathbf{X}=\mathbf{C}(\mathbf{K}, \mathbf{R})$, the linear space of continuous functions from \mathbf{K} to \mathbf{R} and if $u \in \mathbf{X}$, we set

$$
\|u\|_{\mathbf{X}}=\max _{x \in \mathbf{K}}|u(x)|
$$

One defines the map $\Phi \mathbf{X} \rightarrow \mathbf{X}$ which associates $u \in \mathbf{X}$ to its image $\Phi(u)=\mathbf{f o} u$. We determine the derivative of Φ in any direction as follows . Let $u \in \mathbf{X}, h \in \mathbf{X}$ and $t \in[0,1]$, there exists $\theta(x, t) \in[0,1]$ such that :

$$
\mathbf{f}(u(x)+t h(x))-\mathbf{f}(u(x))=t \mathbf{f}^{\prime}(u(x)+\theta(x, t) t h(x)) h(x) .
$$

The subset

$$
\mathbf{K}_{\mathbf{1}}=u(\mathbf{K})+[-1,1]
$$

is compact in \mathbf{R}. The map \mathbf{f}^{\prime} is thus uniformly continuous on $\mathbf{K}_{\mathbf{1}}$. Let $\epsilon>0$

$$
\exists \eta>0\left|\forall p \in \mathbf{K}_{\mathbf{1}} \forall q \in \mathbf{K}_{\mathbf{1}} \quad\right| p-q|<\eta \Rightarrow| \mathbf{f}^{\prime}(p)-\mathbf{f}^{\prime}(q) \mid<\epsilon
$$

We set $\eta_{1}=\min (\eta, 1)$, if $h \in \mathbf{X}$ is such that

$$
\forall x \in \mathbf{K}|h(x)|<\eta_{1}
$$

this implies that

$$
\|h\|_{\mathbf{X}}<\eta_{1}
$$

then for every x belonging to \mathbf{K}, we set

$$
\Delta(x)=\left|\frac{\mathbf{f}(u(x)+t h(x))-\mathbf{f}(u(x))}{t}-h \mathbf{f}^{\prime}(u(x))\right|
$$

then

$$
\Delta(x)=\left|\mathbf{f}^{\prime}(u(x)+\theta(x, t) t h(x)) h(x)-\mathbf{f}^{\prime}(u(x)) h(x)\right|
$$

hence, we obtain that

$$
\forall x \in \mathbf{K},\left|\frac{\mathbf{f}(u(x)+t h(x))-\mathbf{f}(u(x))}{t}-\mathbf{f}^{\prime}(u(x))\right|<\epsilon|h(x)|
$$

Finally,

$$
\left\|\frac{\Phi(u+t h)-\Phi(u)}{t}-h \mathbf{f}^{\prime} \mathrm{o} u\right\|_{\mathbf{X}}<\epsilon\|h\|_{\mathbf{X}}
$$

Then

$$
\Phi^{\prime}(u ; h)=h \mathbf{f}^{\prime} \mathrm{o} u
$$

Exercice 8 1. Compute the derivative of the absolute value function on \mathbf{R} in every direction.
2. Let $x \in \mathbf{R}$, one sets $x^{+}=x$ si $x \geq 0, x^{+}=0$ si $x<0$. Determine the derivatives following the directions of the function from \mathbf{R} to \mathbf{R} which associates x to x^{+}.

Exercice 9 Let \mathbf{f} be a continuous map having continuous partial derivatives from $\mathbf{R} \times \mathbf{R}^{N}$ to \mathbf{R}. Let \mathbf{K} be a compact subset of \mathbf{R}^{N}. Denote by $\mathbf{X}=\mathbf{C}^{1}(\mathbf{K}, \mathbf{R})$, the space of continuous functions having continuous partial
derivatives from \mathbf{K} to \mathbf{R} and $\mathbf{Y}=\mathbf{C}(\mathbf{K}, \mathbf{R})$, the linear space of continuous functions from \mathbf{K} to \mathbf{R}. If $u \in \mathbf{X}$, we define

$$
\|u\|_{\mathbf{X}}=\max _{x \in \mathbf{K}}|u(x)|+\sum_{i=1}^{N} \max _{x \in \mathbf{K}}\left|\frac{\partial u}{\partial x_{i}}(x)\right|
$$

. If $v \in \mathbf{Y}$, we define

$$
\|v\|_{\mathbf{Y}}=\max _{x \in \mathbf{K}}|v(x)|
$$

Define the map $\Psi \mathbf{X} \rightarrow \mathbf{Y}$ which associates $u \in \mathbf{X}$ to $\Psi(u)$ by

$$
\Psi(u)(x)=\mathbf{f}(u(x), \nabla u(x)) \quad \forall x \in \mathbf{K} .
$$

Determine the directional derivatives of Ψ.

2.1.2 Gâteaux Derivatives

Definition 23 If $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$, if $x \in \operatorname{dom}(\mathbf{f})$, one says that \mathbf{f} is Gâteaux differentiable at the point $x \in \mathbf{X}$ if it admits a derivative following every direction $h \in \mathbf{X}$ and if there exists $\mathbf{L}_{x} \in \mathbf{X}^{*}$ such that :

$$
\forall h \in \mathbf{X} \quad \mathbf{f}^{\prime}(x ; h)=<\mathbf{L}_{x} ; h>
$$

The linear continuous form \mathbf{L}_{x} is called the Gâteaux derivative of \mathbf{f} at the point x; it is also called the gradient of \mathbf{f} at the point x and is denoted by $\nabla \mathbf{f}(x)$. Thus :

$$
\mathbf{L}_{x}=\nabla \mathbf{f}(x)
$$

Remark 11 When \mathbf{X} is a Hilbert space, the Riez theorem permits the identification of $\nabla \mathbf{f}(x)$ with an element of \mathbf{X}.

Exemple : Let \mathbf{f} be a continuous map having continuous partial derivatives from \mathbf{R}^{N} to \mathbf{R}. Let \mathbf{K} be a compact subset of \mathbf{R}^{N}. One denotes by $\mathbf{X}=\mathbf{C}^{1}(\mathbf{K}, \mathbf{R})$, the linear space of continuous functions having continuous partial derivatives from \mathbf{K} to \mathbf{R}. If $u \in \mathbf{X}$, one sets

$$
\|u\|_{\mathbf{X}}=\max _{x \in \mathbf{K}}|u(x)|+\sum_{i=1}^{N} \max _{x \in \mathbf{K}}\left|\frac{\partial u}{\partial x_{i}}(x)\right|
$$

Define the map $\mathbf{J} \mathbf{X} \rightarrow \mathbf{R}$ which associates $u \in \mathbf{X}$ to $\mathbf{J}(u)$ by

$$
\mathbf{J}(u)=\int_{\mathbf{K}} \mathbf{f}(\nabla u(x)) \mathrm{dx}
$$

Step by step computation as in the preceeding subsection gives :

$$
\mathbf{J}^{\prime}(u, h)=\int_{\mathbf{K}} \sum_{i=1}^{N} \frac{\partial \mathbf{f}}{\partial x_{i}}(\nabla u(x)) \frac{\partial h}{\partial x_{i}} \mathrm{~d} \mathrm{x}
$$

The map $h \rightarrow \mathbf{J}^{\prime}(u, h)$ is a linear form on \mathbf{X} and there exits a constant C such that :

$$
\left|\mathbf{J}^{\prime}(u, h)\right| \leq C\|h\|_{\mathbf{X}}
$$

Finally, \mathbf{J} is Gâteaux differentiable at every point of \mathbf{X}.
Definition 24 If \mathbf{f} is Gâteaux differentiable at every point of \mathbf{X}, we say that \mathbf{f} is Gâteaux differentiable .

2.1.3 Relationship between Gâteaux differentiability and Fréchet differentiability

We recall the concept of differentiability or Fréchet differentiability.
Definition 25 A map $\mathbf{f} \mathbf{X} \rightarrow \mathbf{Y}$ is said to be differentiable or Fréchet differentiable at the point $x \in \mathbf{X}$ if there exists $\mathbf{L}_{x} \in \mathcal{L}(\mathbf{X}, \mathbf{Y})$ such that

$$
\lim _{h \mapsto 0 \mathbf{X}} \frac{\left\|\mathbf{f}(x+h)-\mathbf{f}(x)-\mathbf{L}_{x}(h)\right\|_{\mathbf{Y}}}{\|h\|_{\mathbf{X}}}=0
$$

The linear continuous map \mathbf{L}_{x} is called the derivative of \mathbf{f} at the point x, we also call \mathbf{L}_{x} the Fréchet derivative of \mathbf{f} at the point x.

This definition is equivalent to the following property :
There exists $\mathbf{L}_{x} \in \mathcal{L}(\mathbf{X}, \mathbf{Y})$ and $\epsilon_{x} \mathbf{X} \rightarrow \mathbf{Y}$ such that :

- $\lim _{h \mapsto 0_{\mathbf{X}}} \epsilon_{x}(h)=0_{\mathbf{Y}}$,
- $\forall h \in \mathbf{X}, \mathbf{f}(x+h)=\mathbf{f}(x)+\mathbf{L}_{x}(h)+\|h\|_{\mathbf{X}} \epsilon_{x}(h)$.

If $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$, If $x \in \overbrace{\operatorname{dom}(\mathbf{f})}^{o}$, we say that \mathbf{f} is differentiable at a point $x \in \mathbf{X}$ if there exists $\mathbf{L}_{x} \in \mathbf{X}^{*}$ such that :

$$
\lim _{h \mapsto 0_{\mathbf{X}}} \frac{\left|\mathbf{f}(x+h)-\mathbf{f}(x)-\mathbf{L}_{x}(h)\right|}{\|h\|_{\mathbf{X}}}=0
$$

The linear continuous form \mathbf{L}_{x} is called the derivative of \mathbf{f} at the point x, \mathbf{L}_{x} is also called the Fréchet derivative of \mathbf{f} at the point x.

We may characterise the differentiability of \mathbf{f} at a point $x \in \overbrace{\operatorname{dom}(\mathbf{f})}^{o}$ by the following property : there exists $\mathbf{L}_{x} \in \mathcal{L}(\mathbf{X}, \mathbf{Y}), r>0$ and $\epsilon_{x} \mathbf{B}\left(0_{\mathbf{X}}, r\right) \rightarrow$ R such that:

- $\lim _{h \mapsto 0_{\mathbf{x}}} \epsilon_{x}(h)=0$.
- $\forall h \in \mathbf{B}\left(0_{\mathbf{X}}, r\right) \quad \mathbf{f}(x+h)=\mathbf{f}(x)+\mathbf{L}_{x}(h)+\|h\|_{\mathbf{X}} \epsilon_{x}(h)$.

Notation : We set : $\mathbf{f}^{\prime}(x)=\mathbf{L}_{x}$.
The following proposition is obvious .
Proposition 16 If \mathbf{f} is differentiable at the point x then \mathbf{f} is Gâteaux differentiable at the point x. Moreover, $\quad \nabla \mathbf{f}(x)=\mathbf{f}^{\prime}(x)$.

We have the converse in the following case :
Proposition 17 If $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$, if $x \in \overbrace{\operatorname{dom}(\mathbf{f})}^{o}$, suppose that \mathbf{f} is Gâteaux differentiable in a neighbourhood \mathbf{V} of x and if $\nabla \mathbf{f} \mathbf{V} \rightarrow \mathbf{X}^{*}$ is continuous then \mathbf{f} is Fréchet differentiable at the point x, in addition:

$$
\mathbf{f}^{\prime}(x)=\nabla \mathbf{f}(x)
$$

Proof: If $\epsilon>0$, there exists $\eta>0$ such that $\mathbf{B}(x, \eta) \subset \mathbf{V}$ and :

$$
\forall \xi \in \mathbf{B}\left(0_{\mathbf{X}}, \eta\right) \quad\|\nabla \mathbf{f}(x+\xi)-\nabla \mathbf{f}(x)\|_{\mathbf{X}^{*}}<\epsilon
$$

Let $h \in \mathbf{B}(x, \eta)$, we denote by $\mathbf{g}[0,1] \rightarrow \mathbf{R}$, the map which associate $t \in[0,1]$ to $\mathbf{g}(t)=\mathbf{f}(x+t h)$. The function \mathbf{g} is differentiable in $[0,1]$ and

$$
\forall t \in[0,1] \quad \mathbf{g}^{\prime}(t)=<\nabla \mathbf{f}(x+t h), h>
$$

By the mean value theorem, there exits $\theta \in[0,1]$ such that :

$$
\mathbf{f}(x+h)-\mathbf{f}(x)=\mathbf{g}(1)-\mathbf{g}(0)=<\nabla \mathbf{f}(x+\theta h), h>.
$$

One deduces that :

$$
\mathbf{f}(x+h)-\mathbf{f}(x)-<\nabla \mathbf{f}(x), h>=<\nabla \mathbf{f}(x+\theta h)-\nabla \mathbf{f}(x), h>,
$$

so that

$$
|\mathbf{f}(x+h)-\mathbf{f}(x)-<\nabla \mathbf{f}(x), h>| \leq\|\nabla \mathbf{f}(x+\theta h)-\nabla \mathbf{f}(x)\|_{\mathbf{X}^{*}}\|h\|_{\mathbf{X}},
$$

thus,

$$
|\mathbf{f}(x+h)-\mathbf{f}(x)-<\nabla \mathbf{f}(x), h>| \leq \epsilon\|h\|_{\mathbf{X}}
$$

The function \mathbf{f} is then differentiable at the point x and we have :

$$
\mathbf{f}^{\prime}(x)=\nabla \mathbf{f}(x)
$$

Proposition 18 Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a convex function. If \mathbf{f} is Gâteaux différentiable on \mathbf{X} then \mathbf{f} is a convex function if and only if :

$$
\forall x \in \mathbf{X} \forall y \in \mathbf{X} \quad \mathbf{f}(x)+<\nabla \mathbf{f}(x), y-x>\leq \mathbf{f}(y)
$$

(Convexity Inequality).

Proof : It is given in the proof of some following propositions .

We characterise the convexity of a function by the properties of the Gâteaux derivatives .
Let \mathbf{C} be a non void convex closed subset of \mathbf{X} and let \mathbf{f} be a convex function from \mathbf{C} to \mathbf{R}.

Proposition 19 If \mathbf{f} has a Gâteaux derivative on \mathbf{C} then \mathbf{f} is convex if and only if :

$$
\forall y \in \mathbf{C} \quad \forall x \in \mathbf{C}, \quad<\nabla \mathbf{f}(y)-\nabla \mathbf{f}(x), y-x>\geq 0
$$

Remark 12 If the inequality in proposition 19 holds, we say that $\nabla \mathbf{f}$ is monotone.

Proof : We suppose that \mathbf{f} is convex then one may apply the convexity inequality for x and y belonging to \mathbf{C}, thus :

$$
\mathbf{f}(x)+<\nabla \mathbf{f}(x), y-x>\leq \mathbf{f}(y)
$$

and

$$
\mathbf{f}(y)+<\nabla \mathbf{f}(y), x-y>\leq \mathbf{f}(x)
$$

Adding these two inequalities, we obtain

$$
<\nabla \mathbf{f}(x)-\nabla \mathbf{f}(y), y-x>\leq 0
$$

which implies

$$
<\nabla \mathbf{f}(y)-\nabla \mathbf{f}(x), y-x>\geq 0
$$

We prove now the converse .
Let $x \in \mathbf{C}, y \in \mathbf{C}$ and $t \in[0,1]$, we set :

$$
\varphi(t)=\mathbf{f}((1-t) x+t y)
$$

The function φ is continuously differentiable :

$$
\varphi^{\prime}(t)=<\nabla \mathbf{f}((1-t) x+t y), y-x>.
$$

As $\nabla \mathbf{f}$ is monotone then φ^{\prime} is inceasing on $[0,1]$ thus φ is convex on $[0,1]$. Hence, we have that

$$
\varphi(t)=\varphi((1-t) 0+t 1) \leq(1-t) \varphi(0)+t \varphi(1)
$$

which implies

$$
\mathbf{f}((1-t) x+t y) \leq(1-t) \mathbf{f}(x)+t \mathbf{f}(y) .
$$

Thus \mathbf{f} is convex .

2.1.4 Subdifferential

Definition 26 Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$, if $x \in \operatorname{dom}(\mathbf{f})$, then \mathbf{f} is subdifferentiable at the point x if there exits a linear continuous form $x^{*} \in \mathbf{X}^{*}$ such that :

$$
\forall y \in \mathbf{X} \quad \mathbf{f}(x)+<x^{*}, y-x>\leq \mathbf{f}(y)
$$

We denote by $\partial \mathbf{f}(x)$ the set of the linear continuous forms $x^{*} \in \mathbf{X}^{*}$ which satisfy the above property. The subset $\partial \mathbf{f}(x)$ is called the subdifferential of f at the point x.

Remark 13 The subset $\partial \mathbf{f}(x)$ is convex and closed in \mathbf{X}^{*}
Proposition 20 Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a convex function. If \mathbf{f} is Gâteaux differentiable at the point $x \in \operatorname{dom}(\mathbf{f})$ then $\partial \mathbf{f}(x)=\{\nabla \mathbf{f}(x)\}$.

Proof : Let $y \in \operatorname{dom}(\mathbf{f})$ and $t \in] 0,1]$, then by convexity of \mathbf{f} we have :

$$
\mathbf{f}((1-t) x+t y) \leq(1-t) \mathbf{f}(x)+t \mathbf{f}(y)
$$

this implies

$$
\frac{1}{t}[\mathbf{f}(x+t(y-x))-\mathbf{f}(x)] \leq \mathbf{f}(y)-\mathbf{f}(x)
$$

As t tends to $0+$, we obtain :

$$
<\nabla \mathbf{f}(x), y-x>\leq \mathbf{f}(y)-\mathbf{f}(x)
$$

thus,

$$
\forall y \in \mathbf{X} \mathbf{f}(x)+<\nabla \mathbf{f}(x), y-x>\leq \mathbf{f}(y) .
$$

Let

$$
\nabla \mathbf{f}(x) \in \partial \mathbf{f}(x) .
$$

Let $x^{*} \in \partial \mathbf{f}(x)$, let $h \in \mathbf{X}$ if $\left.\left.t \in\right] 0,1\right]$, we have :

$$
\mathbf{f}(x+t h) \geq \mathbf{f}(x)+<x^{*}, t h>
$$

this implies

$$
\frac{1}{t}[\mathbf{f}(x+t h)-\mathbf{f}(x)] \geq<x^{*}, h>
$$

As t tends to $0+$, we obtain :

$$
\forall h \in \mathbf{X}<\nabla \mathbf{f}(x), h>\geq<x^{*}, h>
$$

If we replace h by $-h$ in the preceeding inequality, we obtain :

$$
\forall h \in \mathbf{X}<\nabla \mathbf{f}(x), h>\leq<x^{*}, h>
$$

Thus,

$$
\forall h \in \mathbf{X}<\nabla \mathbf{f}(x), h>=<x^{*}, h>,
$$

hence,

$$
\partial \mathbf{f}(x)=\{\nabla \mathbf{f}(x)\}
$$

The converse of proposition 20 is given as follows :
Proposition 21 Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a convex application. If \mathbf{f} is continuous at a point $x \in \operatorname{dom}(\mathbf{f})$ and if $\partial \mathbf{f}(x)$ is a singleton then \mathbf{f} is Gâteaux différentiable at the point x.

Some computational properties of the usual derivitives also hold for subdifferentials.

Proposition 22 Let \mathbf{f} and \mathbf{g} be convex functions from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$, if $\underline{x} \in \operatorname{dom}(\mathbf{f}) \cap \operatorname{dom}(\mathbf{g}):$

- If $\lambda>0$ then

$$
\partial(\lambda \mathbf{f})=\lambda \partial(\mathbf{f})
$$

$$
\partial(\mathbf{f})(\underline{x})+\partial(\mathbf{f})(\underline{x}) \subset \partial(\mathbf{f}+\mathbf{g})(\underline{x}) .
$$

- If \mathbf{f} and \mathbf{g} are lsc, proper and and if \mathbf{f} is continuous at the point \underline{x} then :

$$
\partial(\mathbf{f}+\mathbf{g})(\underline{x})=\partial(\mathbf{f})(\underline{x})+\partial(\mathbf{g})(\underline{x})
$$

Proof : The first property is obvious . We prove now the inclusion .

$$
\partial(\mathbf{f}+\mathbf{g})(\underline{x}) \subset \partial(\mathbf{f})(\underline{x})+\partial(\mathbf{f})(\underline{x}) .
$$

Let $x^{*} \in \partial(\mathbf{f}+\mathbf{g})(\underline{x})$ then

$$
\forall y \in \mathbf{X} \mathbf{f}(\underline{x})+\mathbf{g}(\underline{x})+<x^{*}, y-\underline{x}>\leq \mathbf{f}(y)+\mathbf{g}(y) .
$$

Set :

$$
\mathbf{C}_{\mathbf{1}}=\left\{(y, \lambda) \in \mathbf{X} \times \mathbf{R} \mid \mathbf{f}(y)-\mathbf{f}(\underline{x})-<x^{*}, y-\underline{x}>\leq \lambda\right\}
$$

and

$$
\mathbf{C}_{\mathbf{2}}=\{(y, \lambda) \in \mathbf{X} \times \mathbf{R} \mid \lambda \leq \mathbf{g}(\underline{x})-\mathbf{g}(y)\} .
$$

The preceeding inequality shows that the common points of $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ are the boundary points only. In addition the function \mathbf{F} which is defined by :

$$
\forall y \in \mathbf{X} \mathbf{F}(y)=\mathbf{f}(y)-\mathbf{f}(\underline{x})-<x^{*}, y-\underline{x}>.
$$

has $\mathbf{C}_{\mathbf{1}}$ as its epigraph, also, \mathbf{F} is continuous at the point \underline{x} thus the interior of $\mathbf{C}_{\mathbf{1}}$ is empty . As $\mathbf{C}_{\mathbf{2}}$ is convex, there exists $\left(u^{*}, \alpha\right) \in \mathbf{X}^{*} \mathbf{x} \mathbf{R} \backslash\{(0 \mathbf{X}, 0)\}$ such that :
$\forall y \in \mathbf{X} \mathbf{g}(\underline{x})-\mathbf{g}(y) \leq<u^{*}, y>+\alpha \leq \mathbf{f}(y)-\mathbf{f}(\underline{x})-<x^{*}, y-\underline{x}>$.
Thus for $y=\underline{x}$, we obtain $<u^{*}, \underline{x}>+\alpha=0$ and this implies $\alpha=<u^{*},-\underline{x}>$. On the one hand, we have :

$$
\forall y \in \mathbf{X} \mathbf{g}(\underline{x})-\mathbf{g}(y) \leq<u^{*}, y-\underline{x}>
$$

That is

$$
\forall y \in \mathbf{X} \mathbf{g}(\underline{x})+<-u^{*}, y-\underline{x}>\leq \mathbf{g}(y)
$$

thus $-u^{*} \in \partial(\mathbf{g})(\underline{x})$.
In addition

$$
\forall y \in \mathbf{X}<u^{*}, y-\underline{x}>\leq \mathbf{f}(y)-\mathbf{f}(\underline{x})-<x^{*}, y-\underline{x}>
$$

this implies

$$
\forall y \in \mathbf{X} \mathbf{f}(\underline{x})+<x^{*}+u^{*}, y-\underline{x}>\leq \mathbf{f}(y)-\mathbf{f}(\underline{x})
$$

thus, $x^{*}+u^{*} \in \partial(\mathbf{f})(\underline{x})$.
Hence $x^{*}=\left(x^{*}+u^{*}\right)+\left(-u^{*}\right)$ belongs to

$$
\partial(\mathbf{f})(\underline{x})+\partial(\mathbf{g})(\underline{x}) .
$$

2.2 Euler Equations

With the help of the concept of differentiability, it is possible for us to write the the relation satisfied by a solution \underline{x} of the problem :

$$
\min _{x \in \mathbf{X}} \mathbf{f}(x)
$$

2.2.1 Optimality conditions

Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$ be a function. Suppose that the problem $\min _{x \in \mathbf{X}} \mathbf{f}(x)$ has at least one solution $\underline{x} \in \operatorname{dom}(\mathbf{f})$.

Proposition 23 If \mathbf{f} has a derivative in the direction $h \in \mathbf{X}$ at the point \underline{x} then :

$$
\mathbf{f}^{\prime}(\underline{x}, h) \geq 0
$$

Proof : We have :

$$
\forall t>0 \quad \mathbf{f}(\underline{x}+t h) \geq \mathbf{f}(\underline{x})
$$

this implies

$$
\mathbf{f}^{\prime}(\underline{x}, h)=\lim _{t \rightarrow 0+} \frac{\mathbf{f}(\underline{x}+t h)-\mathbf{f}(\underline{x})}{t} \geq 0
$$

Proposition 24 If \mathbf{f} admits a Gâteaux derivative at the point \underline{x} and if $\underline{x} \in \overbrace{\operatorname{dom}(\mathbf{f})}^{0}$ then :

$$
\nabla \mathbf{f}(\underline{x})=0 .
$$

Proof : This is obvious by proposition 23 .

We now examine important properties of convex functions. Let \mathbf{C} be a non void closed convex subset of \mathbf{X} and \mathbf{f} a convex function of \mathbf{C} to \mathbf{R}.

Proposition 25 If \mathbf{f} has a continuous Gâteaux derivative at the point $\underline{x} \in$ \mathbf{C} then the following properties are equivalent :

$$
\underline{x} \text { is the solution of the problem } \min _{x \in \mathbf{C}} \mathbf{f}(x)
$$

-

$$
\forall y \in \mathbf{C}<\nabla \mathbf{f}(\underline{x}), y-\underline{x}>\geq 0
$$

-

$$
\forall y \in \mathbf{C}<\nabla \mathbf{f}(y), y-\underline{x}>\geq 0 .
$$

Proof: We suppose that \underline{x} is solution of the problem $\min _{x \in \mathbf{C}} \mathbf{f}(x)$.
Let $y \in \mathbf{C}$ and $t \in] 0,1]$, then

$$
\mathbf{f}((1-t) \underline{x}+t y) \geq \mathbf{f}(\underline{x})
$$

this gives

$$
\frac{\mathbf{f}(\underline{x}+t(y-\underline{x}))-\mathbf{f}(\underline{x})}{t} \geq 0
$$

thus, taking the limit as t tends to $0+$ gives

$$
<\nabla \mathbf{f}(\underline{x}), y-\underline{x}>\geq 0
$$

Now, we suppose that $\forall y \in \mathbf{C}<\nabla \mathbf{f}(\underline{x}), y-\underline{x}>\geq 0$
But the function \mathbf{f} is convex and its Gâteaux derivative is monotone thus

$$
\forall y \in \mathbf{C} \forall z \in \mathbf{C}<\nabla \mathbf{f}(y)-\nabla \mathbf{f}(z), y-z>\geq 0
$$

If we put $z=\underline{x}$, we obtain :

$$
\forall y \in \mathbf{C} \forall z \in \mathbf{C}<\nabla \mathbf{f}(y)-\nabla \mathbf{f}(\underline{x}), y-\underline{x}>\geq 0
$$

Since

$$
<\nabla \mathbf{f}(\underline{x}), y-\underline{x}>\geq 0 .
$$

We easily obtain :

$$
<\nabla \mathbf{f}(y), y-\underline{x}>\geq 0
$$

Now suppose that :

$$
\forall y \in \mathbf{C}<\nabla \mathbf{f}(y), y-\underline{x}>\geq 0
$$

Let $y \in \mathbf{C}$, and $t \in[0,1]$, define

$$
\varphi(t)=\mathbf{f}((1-t) \underline{x}+t y) .
$$

The function φ is differentiable and

$$
\varphi^{\prime}(t)=<\nabla \mathbf{f}((1-t) \underline{x}+t y), y-\underline{x}>,
$$

thus

$$
\forall t \in[0,1] \quad \varphi^{\prime}(t) \geq 0,
$$

then $\varphi(1) \geq \varphi(0)$ that is $\mathbf{f}(y) \geq \mathbf{f}(\underline{x})$. Hence, \underline{x} is solution of the problem $\min _{x \in \mathbf{C}} \mathbf{f}(x)$.

Proposition 26 If \mathbf{f} is a convex function from \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$ then \mathbf{f} has a minimum at the point $\underline{x} \in \mathbf{X}$ if and only if :

$$
0_{\mathbf{X}^{*}} \in \partial \mathbf{f}(\underline{x}) .
$$

2.2.2 Ekeland Variational Principle

Let \mathbf{f} be a function from a Banach space \mathbf{X} to $\mathbf{R} \cup\{+\infty\}$

Ekeland Variational Principle

Theorem 7 Suppose that \mathbf{f} is proper, bounded below and lsc such that there exits $\epsilon>0$ and $x_{\epsilon} \in \mathbf{X}$ verifying $\mathbf{f}\left(x_{\epsilon}\right) \leq \inf _{x \in \mathbf{X}} \mathbf{f}(x)+\epsilon$. Then there exists $y_{\epsilon} \in \mathbf{X}$ such that :
-

$$
\mathbf{f}\left(y_{\epsilon}\right) \leq \mathbf{f}\left(x_{\epsilon}\right) .
$$

$$
\left\|x_{\epsilon}-y_{\epsilon}\right\|_{\mathbf{X}} \leq 1
$$

-

$$
\forall x \in \mathbf{X} \mid x \neq y_{\epsilon} \Rightarrow \mathbf{f}(x)>\mathbf{f}\left(y_{\epsilon}\right)-\epsilon\left\|x-y_{\epsilon}\right\|_{\mathbf{X}} .
$$

Proof : Observe that the function $x \mapsto \mathbf{f}(x)-\epsilon\left\|x-y_{\epsilon}\right\|_{\mathbf{X}}$ has a strict minimum at the point y_{ϵ}. We construct a sequence $\left(z_{n}\right)_{n \in \mathbf{N}}$ to approximate y_{ϵ}. Put $z_{0}=x_{\epsilon}$, suppose that we have defined z_{1} to z_{n}; then we set :

$$
\mathbf{S}_{n}=\left\{u \in \mathbf{X} \mid \mathbf{f}(u) \leq \mathbf{f}\left(z_{n}\right)-\epsilon\left\|u-z_{n}\right\|_{\mathbf{X}}\right\} .
$$

Observe that $z_{n} \in \mathbf{S}_{n}$ thus, $\mathbf{S}_{n} \neq \emptyset$. As $\mathbf{f}\left(z_{n}\right)>\inf _{u \in \mathbf{S}_{n}} \mathbf{f}(u)$ we obtain

$$
\inf _{u \in \mathbf{S}_{n}} \mathbf{f}(u)<\frac{1}{2} \inf _{u \in \mathbf{S}_{n}} \mathbf{f}(u)+\mathbf{f}\left(z_{n}\right)
$$

thus there exists $z_{n+1} \in \mathbf{S}_{n}$ such that:

$$
\mathbf{f}\left(z_{n+1}\right) \leq \frac{1}{2} \inf _{u \in \mathbf{S}_{n}} \mathbf{f}(u)+\frac{1}{2} \mathbf{f}\left(z_{n}\right)
$$

this gives

$$
\mathbf{f}\left(z_{n+1}\right)-\inf _{u \in \mathbf{S}_{n}} \mathbf{f}(u) \leq \frac{1}{2}\left[\mathbf{f}\left(z_{n}\right)-\inf _{u \in \mathbf{S}_{n}} \mathbf{f}(u)\right]
$$

We prove that the sequence $\left(z_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence . The sequence $\left(\mathbf{f}\left(z_{n}\right)\right)_{n \in \mathbf{N}}$ is decreasing, as \mathbf{f} is bounded below, it converges. If m and n are integers such that $m>n$, we have :

$$
\epsilon\left\|z_{m}-z_{n}\right\|_{\mathbf{X}} \leq \mathbf{f}\left(z_{n}\right)-\mathbf{f}\left(z_{m}\right)
$$

Thus, the sequence $\left(z_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence, so there exists $z \in \mathbf{X}$ such that $z=\lim _{n \mapsto+\infty} z_{n}$. Since the function \mathbf{f} is lsc, we obtain:

$$
\mathbf{f}(z) \leq \liminf _{n \mapsto+\infty} \mathbf{f}\left(z_{n}\right)
$$

Then

$$
\mathbf{f}(z) \leq \liminf _{n \mapsto+\infty} \mathbf{f}\left(z_{n}\right) \leq \liminf _{n \mapsto+\infty} \inf _{u \in \mathbf{S}_{n}} \mathbf{f}(u)
$$

As the sequence $\left(\mathbf{f}\left(z_{n}\right)\right)_{n \in \mathbf{N}}$ is decreasing, we have $\mathbf{f}(z) \leq \mathbf{f}\left(z_{0}\right)=\mathbf{f}\left(x_{\epsilon}\right)$ then

$$
\epsilon\left\|x_{\epsilon}-z\right\|_{\mathbf{X}}=\epsilon\left\|z_{0}-z\right\|_{\mathbf{X}}
$$

thus,

$$
\epsilon\left\|x_{\epsilon}-z\right\|_{\mathbf{X}} \leq \mathbf{f}\left(x_{\epsilon}\right)-\mathbf{f}(z) \leq \mathbf{f}\left(x_{\epsilon}\right)-\inf _{x \in \mathbf{S}_{n}} \mathbf{f}(x)
$$

therefore,

$$
\epsilon\left\|x_{\epsilon}-z\right\|_{\mathbf{X}}<\epsilon
$$

hence,

$$
\left\|x_{\epsilon}-z\right\|_{\mathbf{X}}<1
$$

Finally, to verify the last part of the theorem, we assume that z does not satisfy it . Then there exists $v \neq z$ such that

$$
\mathbf{f}(v) \leq \mathbf{f}(z)-\epsilon\|v-z\|_{\mathbf{X}}
$$

thus

$$
\mathbf{f}(v)<\mathbf{f}(z)
$$

We also have that :

$$
\forall n \in \mathbf{N} \mathbf{f}(v) \leq \mathbf{f}\left(z_{n}\right)-\epsilon\left\|v-z_{n}\right\|_{\mathbf{X}}
$$

then

$$
v \in \mathbf{S}_{n} \forall n \in \mathbf{N}
$$

thus

$$
\mathbf{f}(z) \leq \mathbf{f}(v)
$$

This is impossible.
To conclude it is enough to take $y_{\epsilon}=z$. This completes the proof.

From this theorem, we obtain the following obvious proposition :
Corollary 1 If \mathbf{X} is a Banach space and if $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R} \cup\{+\infty\}$ is lsc, proper and bounded below then

$$
\forall \epsilon>0 \exists x_{\epsilon} \in \mathbf{X} \mid \forall x \in \mathbf{X} x \neq x_{\epsilon} \mathbf{f}(x)>\mathbf{f}\left(x_{\epsilon}\right)-\left\|x-x_{\epsilon}\right\|_{\mathbf{X}}
$$

We also have the following corollary :
Corollary 2 If \mathbf{X} is a Banach space and if $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ is lsc, Gâteaux differentiable and such that there exists $\epsilon>0$ and $x_{\epsilon} \in \mathbf{X}$ satisfying $\mathbf{f}\left(x_{\epsilon}\right) \leq$ $\inf _{x \in \mathbf{X}} \mathbf{f}(x)+\epsilon$. Then there exists $y_{\epsilon} \in \mathbf{X}$ such that:

$$
\begin{gathered}
\mathbf{f}\left(y_{\epsilon}\right) \leq \mathbf{f}\left(x_{\epsilon}\right) . \\
\left\|x_{\epsilon}-y_{\epsilon}\right\|_{\mathbf{X}} \leq \sqrt{\epsilon} . \\
\left\|\mathbf{f}^{\prime}\left(y_{\epsilon}\right)\right\|_{\mathbf{X}^{*}} \leq \sqrt{\epsilon} .
\end{gathered}
$$

Proof : As in the proof of Ekeland variational Principle with the following equivalent norm

$$
\left\|\left\|_{1}=\frac{1}{\sqrt{\epsilon}}\right\|\right\|_{\mathbf{X}}
$$

One consequence of this result is :

Corollary 3 If \mathbf{X} is a Banach space and if $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ is lsc, Gâteaux differentiable, then there exits a sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ of elements belonging to \mathbf{X} such that :

$$
\inf _{x \in \mathbf{X}} \mathbf{f}(x)=\lim _{n \rightarrow+\infty} \mathbf{f}\left(x_{n}\right) .
$$

-

$$
\lim _{n \rightarrow+\infty} \nabla \mathbf{f}\left(x_{n}\right)=0 \mathbf{x}^{*} .
$$

Remark 14 This result is a generalization of the Euler equation .

Palais Smale condition

Definition 27 If \mathbf{X} is a Banach space and if $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ is of class \mathbf{C}^{1}.
One says that \mathbf{f} satisfies the Palais Smale conditions at the level $c \in \mathbf{R}$, i.e., \mathbf{f} satisfies $(\mathbf{P S})_{\mathbf{c}}$, if for every sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ of elements in \mathbf{X} such that :

$$
\lim _{n \rightarrow+\infty} \mathbf{f}\left(x_{n}\right)=c
$$

-

$$
\lim _{n \rightarrow+\infty} \nabla \mathbf{f}\left(x_{n}\right)=0 \mathbf{X}^{*} .
$$

then $\left(x_{n}\right)_{n \in \mathbf{N}}$ converges to an element of \mathbf{X}.
When \mathbf{f} satisfies $(\mathbf{P S})_{\mathbf{c}}$ for all $c \in \mathbf{R}$, we say that \mathbf{f} satisfies Palais Smale conditions and we write \mathbf{f} satisfies (PS).

Proposition 27 If \mathbf{X} is a Banach space, if $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ is of class \mathbf{C}^{1}, bounded below and satisfies the Palais Smale condition, then \mathbf{f} has a minimum on X.

Remark 15 The Palais Smale conditions are often used in the proof of the existence of critical points .

2.2.3 Optimality conditions with constraints

Optimality conditions with equality constraints

Let \mathbf{X} be a reflexive Banach space with the norm $\left\|\|_{\mathbf{X}}\right.$. Let $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$ and $\mathbf{g}_{1}, \ldots, \mathbf{g}_{p} \mathbf{X} \rightarrow \mathbf{R}$. Define the map \mathbf{g} from \mathbf{X} to \mathbf{R}^{p} by $\mathbf{g}(x)=$ $\left(\mathbf{g}_{1}(x), \ldots, \mathbf{g}_{p}(x)\right), \forall x \in \mathbf{X}$.
Put $\mathbf{S}_{\mathbf{g}}=\left\{x \in \mathbf{X} \mid \mathbf{g}(x)=0_{\mathbf{R}^{p}}\right\}$.
We consider the following problem $\mathcal{P}_{\text {min }}$:

$$
\min _{x \in \mathbf{S}_{\mathbf{g}}} \mathbf{f}(x) .
$$

Proposition 28 If \mathbf{f} and $\mathbf{g}_{1}, \ldots, \mathbf{g}_{p}$ are continuously differentiable, if \underline{x} is solution of the problem $\mathcal{P}_{\min }$ and if $\mathbf{g}^{\prime}(\underline{x})$ is onto, then there exists real numbers $\lambda_{1}, \ldots, \lambda_{p}$ such that:

$$
\mathbf{f}^{\prime}(\underline{x})+\sum_{i=1}^{p} \lambda_{i} \mathbf{g}_{i}^{\prime}(\underline{x})=0 \mathbf{X}^{*} .
$$

Proof: The linear function $\mathbf{g}^{\prime}(\underline{x})$ is continuous and onto from \mathbf{X} to \mathbf{R}^{p}. If we set $\mathbf{X}_{1}=\operatorname{Ker}\left(\mathbf{g}^{\prime}(\underline{x})\right)$ then \mathbf{X}_{1} is a closed linear subspace of \mathbf{X} with codimension p, with the norm $\left\|\|_{\mathbf{X}_{1}}\right.$ which is restriction of $\| \|_{\mathbf{X}}$ on \mathbf{X}_{1}, thus, \mathbf{X}_{1} is a Banach space. If \mathbf{X}_{2} is the orthogonal complement of \mathbf{X}_{1} with the norm $\left\|\|_{\mathbf{X}_{2}}\right.$, then $\left(\mathbf{X},\| \|_{\mathbf{X}}\right)$ can be identified as the product space $\mathbf{X}_{1} \times \mathbf{X}_{2}$ with the product norm. If $x \in \mathbf{X}$, and $x=\left(x_{1}, x_{2}\right)$ where $x_{1} \in \mathbf{X}_{1}$ and $x_{2} \in \mathbf{X}_{2}$.
The hypothesis of the theorem are equivalent to : \mathbf{f} and $\mathbf{g}_{1}, \ldots, \mathbf{g}_{p}$ are continuously differentiable and the continuous linear application $\frac{\partial \mathbf{g}}{\partial x_{2}}(\underline{x})$ is an isomorphism from \mathbf{X}_{2} to \mathbf{R}^{p}.

The tangent linear space to $\mathbf{S}_{\mathbf{g}}$ at the point \underline{x} is given by:
$\mathbf{T}_{\underline{x}}=\left\{h \in \mathbf{X} \mid \exists \delta>0\right.$ and $\left.\gamma_{\delta}\right]-\delta,-\delta\left[\rightarrow \mathbf{S}_{\mathbf{g}}\right.$ differentiable and $\left.\gamma_{\delta}^{\prime}(0)=h\right\}$.
Put:

$$
\mathbf{E}_{\underline{x}}=\left\{h \in \mathbf{X} \mid \mathbf{g}^{\prime}(\underline{x}) \cdot h=0_{\mathbf{R}^{p}}\right\} .
$$

Let $h \in \mathbf{T}_{\underline{x}}$, there exits $\delta>0$ and a function

$$
\left.\gamma_{\delta}\right]-\delta,-\delta\left[\rightarrow \mathbf{S}_{\mathbf{g}}\right.
$$

differentiable such that

$$
\gamma_{\delta}^{\prime}(0)=h .
$$

We have

$$
\forall t \in]-\delta,-\delta\left[\quad \mathbf{g}\left(\gamma_{\delta}(t)\right)=0_{\mathbf{R}^{p}}\right.
$$

thus,

$$
\forall t \in]-\delta, \quad-\delta\left[\quad \mathbf{g}^{\prime}\left(\gamma_{\delta}(t)\right) \cdot \gamma_{\delta}^{\prime}(t)=0_{\mathbf{R}^{p}}\right.
$$

In particular, for $t=0$, we have

$$
\mathbf{g}^{\prime}\left(\gamma_{\delta}(0)\right) \cdot \gamma_{\delta}^{\prime}(0)=0_{\mathbf{R}^{p}}
$$

hence,

$$
\mathbf{g}^{\prime}(\underline{x}) \cdot h=0
$$

thus $h \in \mathbf{E}_{\underline{x}}$.
Let $h \in \mathbf{E}_{\underline{x}}$, suppose that $h=\left(h_{1}, h_{2}\right)$ where $h_{1} \in \mathbf{X}_{1}$ and $h_{2} \in \mathbf{X}_{2}$; then:

$$
\frac{\partial \mathbf{g}}{\partial x_{1}}(\underline{x}) h_{1}+\frac{\partial \mathbf{g}}{\partial x_{2}}(\underline{x}) h_{2}=0_{\mathbf{R}^{p}} .
$$

By implicit function theorem, there exists an open set \mathbf{U} which contains \underline{x}_{1}, an open set \mathbf{W} containing \underline{x} and a function $\phi \mathbf{U} \rightarrow \mathbf{X}_{2}$ continuously differentiable such that :

$$
\left(x_{1}, x_{2}\right) \in \mathbf{W} \cap \mathbf{S}_{\mathbf{g}} \Leftrightarrow x_{1} \in \mathbf{U} \text { and } x_{2}=\phi\left(x_{1}\right)
$$

We have :

$$
\forall x_{1} \in \mathbf{U} \mathbf{g}\left(x_{1}, \phi\left(x_{1}\right)\right)=0_{\mathbf{R}^{*}}
$$

Differentiating this relation gives :

$$
\forall x_{1} \in \mathbf{U} \frac{\partial \mathbf{g}}{\partial x_{1}}\left(x_{1}, \phi\left(x_{1}\right)\right)+\frac{\partial \mathbf{g}}{\partial x_{2}}\left(x_{1}, \phi\left(x_{1}\right)\right) \phi^{\prime}\left(x_{1}\right)=0_{\mathbf{X}_{1}^{*}}
$$

Replacing x_{1} by \underline{x}_{1}, and as $\underline{x}_{2}=\phi\left(\underline{x}_{1}\right)$, we obtain :

$$
\frac{\partial \mathbf{g}}{\partial x_{1}}(\underline{x})+\frac{\partial \mathbf{g}}{\partial x_{2}}(\underline{x}) \phi^{\prime}\left(\underline{x}_{1}\right)=0_{\mathbf{X}_{1}^{*}}
$$

thus:

$$
\phi^{\prime}\left(\underline{x}_{1}\right)=-\left[\frac{\partial \mathbf{g}}{\partial x_{2}}(\underline{x})\right]^{-1} \frac{\partial \mathbf{g}}{\partial x_{1}}(\underline{x}) .
$$

Let \mathbf{F} be the function defined by

$$
\mathbf{F}\left(x_{1}\right)=\mathbf{f}\left(x_{1}, \phi\left(x_{1}\right)\right) \forall x_{1} \in \mathbf{U}
$$

we have :

$$
\mathbf{F}\left(x_{1}\right) \geq \mathbf{F}\left(\underline{x}_{1}\right) \forall x_{1} \in \mathbf{U},
$$

thus the fréchet derivative

$$
\mathbf{F}^{\prime}\left(\underline{x}_{1}\right)=0 \mathbf{x}_{1}^{*}
$$

that is

$$
\frac{\partial \mathbf{f}}{\partial x_{1}}(\underline{x})+\frac{\partial \mathbf{f}}{\partial x_{2}}(\underline{x}) \phi^{\prime}\left(\underline{x}_{1}\right)=0_{\mathbf{X}_{1}^{*}} .
$$

So for

$$
h=\left(h_{1}, h_{2}\right) \in \mathbf{X}_{1} \times \mathbf{X}_{2},
$$

such that

$$
\mathbf{g}^{\prime} . h=0_{\mathbf{R}^{p}}
$$

that is

$$
\frac{\partial \mathbf{g}}{\partial x_{1}}(\underline{x}) h_{1}+\frac{\partial \mathbf{g}}{\partial x_{2}}(\underline{x}) h_{2}=0_{\mathbf{R}^{p}},
$$

we have

$$
h_{2}=-\left[\frac{\partial \mathbf{g}}{\partial x_{2}}(\underline{x})\right]^{-1} \frac{\partial \mathbf{g}}{\partial x_{1}}(\underline{x}) h_{1},
$$

But :

$$
\mathbf{f}^{\prime}(\underline{x}) \cdot h=\frac{\partial \mathbf{f}}{\partial x_{1}}(\underline{x}) h_{1}+\frac{\partial \mathbf{f}}{\partial x_{2}}(\underline{x}) h_{2} .
$$

Substituting for h_{2} gives

$$
\mathbf{f}^{\prime}(\underline{x}) \cdot h=\frac{\partial \mathbf{f}}{\partial x_{1}}(\underline{x}) h_{1}-\frac{\partial \mathbf{f}}{\partial x_{2}}(\underline{x})\left[\frac{\partial \mathbf{g}}{\partial x_{2}}(\underline{x})\right]^{-1} \frac{\partial \mathbf{g}}{\partial x_{1}}(\underline{x}) h_{1} .
$$

thus,

$$
\mathbf{f}^{\prime}(\underline{x}) \cdot h=0 \mathbf{X}^{*} .
$$

Finally, we have :

$$
\forall h \in \mathbf{X} \text { if } \forall i \in\{1, \ldots, p\} \mathbf{g}_{i}^{\prime}(\underline{x}) . h=0 \Rightarrow \mathbf{f}^{\prime}(\underline{x}) . h=0_{\mathbf{X}^{*}} .
$$

To conclude we use the following proposition :
Proposition 29 If $x_{1}^{*}, \ldots, x_{p}^{*}$ and x^{*} are linear continuous forms on \mathbf{X} such that :

$$
\forall h \in \mathbf{X} \quad \text { if } \forall i \in\{1, \ldots, p\}<x_{1}^{*}, h>=0 \Rightarrow<x^{*}, h>=0 .
$$

Then there exist real numbers $\lambda_{1}, \ldots, \lambda_{p}$ such that:

$$
x^{*}=\sum_{i=1}^{p} \lambda_{i} x_{i}^{*} .
$$

Proof : It is obvious from the following lemma :
Lemma 1 If $x_{1}^{*}, \ldots, x_{p}^{*}$ and x^{*} are continuous linear forms on \mathbf{X} such that

$$
\forall h \in \mathbf{X} \quad \text { if } \forall i \in\{1, \ldots, p\}<x_{i}^{*}, h>\geq 0 \Rightarrow<x^{*}, h>\geq 0
$$

Then there exist real positive numbers μ_{1}, \ldots, μ_{p} such that :

$$
x^{*}=\sum_{i=1}^{p} \mu_{i} x_{i}^{*}
$$

Proof : One may suppose that $\left\{x_{1}^{*}, \ldots, x_{p}^{*}\right\}$ is linearly independant . Put:

$$
\mathcal{C}=\left\{u^{*} \in \mathbf{X}^{*} \quad u^{*}=\sum_{i=1}^{p} \mu_{i} x_{i}^{*}\right\}
$$

The subset \mathcal{C} is convex and closed. We suppose that $x^{*} \notin \mathcal{C}$, there exists $(h, \alpha) \in \mathbf{X} \times \mathbf{R}$ such that :

- $<x^{*}, h \gg \alpha$.
- $\forall u^{*} \in \mathcal{C}<u^{*}, h>\leq \alpha$.

We have $\alpha \geq 0$ thus, $<x^{*}, h \gg 0$. If there exists $i_{0} \in\{1, \ldots, p\}$ such that $<x_{i_{0}}^{*}, h \gg 0$. As

$$
\forall \mu_{1} \geq 0, \ldots, \forall \mu_{p} \geq 0 \quad \sum_{i=1}^{i=p} \mu_{i}<x_{i}^{*}, h>\leq \alpha
$$

As $\mu_{i_{0}}$ tends to $+\infty$, the preceeding property is false. Thus,

$$
\forall i \in\{1, \ldots, p\} \quad<x_{i}^{*}, h>\leq 0 .
$$

then $<x^{*},-h>\geq 0$ this implies $<x^{*}, h>\leq 0$ and this is impossible . Thus $x^{*} \in \mathcal{C}$.

Optimality conditions with inequality constraints
Let $\left\{\mathbf{g}_{1}, \ldots, \mathbf{g}_{p}\right\}$ be functions from \mathbf{X} to \mathbf{R} and $\mathbf{f} \mathbf{X} \rightarrow \mathbf{R}$. Set $\mathbf{S}_{\mathbf{g}}^{-}=$ $\left\{x \in \mathbf{X} \mid \forall i \in\{1, \ldots, p\} \quad \mathbf{g}_{i}(x) \leq 0\right\}$ We consider the following problem $\mathcal{P}_{\text {min }}$

$$
\min _{x \in \mathbf{S}_{\mathbf{g}}^{-}} \mathbf{f}(x) .
$$

. As in the proof of the preceeding theorem, we obtain :

Proposition 30 If \mathbf{f} and $\mathbf{g}_{1}, \ldots, \mathbf{g}_{p}$ are continuously differentiable, if \underline{x} is a solution of the problem $\mathcal{P}_{\text {min }}$ and if $\mathbf{g}^{\prime}(\underline{x})$ is onto, then there exists real positive numbers μ_{1}, \ldots, μ_{p} such that:

$$
\mathbf{f}(\underline{x})+\sum_{i=1}^{p} \mu_{i} \mathbf{g}_{i}^{\prime}(\underline{x})=0 \mathbf{X}^{*} .
$$

and

$$
\forall i \in\{1, \ldots, p\} \quad \mu_{i} \mathbf{g}_{i}(\underline{x})=0 \mathbf{X}^{*}
$$

2.2.4 Applications

2.2.5 Some examples in Hilbert spaces

Let \mathbf{H} be a Hilbert space over the set of real numbers with the scalar product $<,>_{\mathbf{H}}$ and the associated norm $\left\|\|_{\mathbf{H}}\right.$.

Projection Theorem

Theorem 8 If \mathbf{C} is a convex closed subset of \mathbf{H}, then for every x belonging to \mathbf{H} there exits one and only one element of \mathbf{C} denoted by $\mathbf{P}_{\mathbf{C}}(x)$ such that

$$
\left\|x-\mathbf{P}_{\mathbf{C}}(x)\right\|_{\mathbf{H}}=\min _{y \in \mathbf{C}}\|x-y\|_{\mathbf{H}}
$$

In addition $\mathbf{P}_{\mathbf{C}}(x)$ is the unique element $z \in \mathbf{C}$ such that

$$
\forall y \in \mathbf{C}<x-z, y-z>_{\mathbf{H}} \leq 0 .
$$

Proof : We set

$$
\forall y \in \mathbf{H} \quad \mathbf{J}(y)=\frac{1}{2}\|x-y\|_{\mathbf{H}}^{2} .
$$

this gives :

$$
\forall y \in \mathbf{H} \mathbf{J}(y)=\frac{1}{2}<y, y>_{\mathbf{H}}-<x, y>_{\mathbf{H}}+<x, x>_{\mathbf{H}} .
$$

The problem $\min _{y \in \mathbf{C}} \mathbf{J}(y)$ is a quadratic optimization problem and the function \mathbf{J} is convex and coercive. Thus, this problem has one and only one solution $\mathbf{P}_{\mathbf{C}}(x) \in \mathbf{C}$. The function \mathbf{J} is differentiable and

$$
\forall h \in \mathbf{H}<\mathbf{J}^{\prime}(y), h>_{\mathbf{H}}=<y, h>_{\mathbf{H}}-<x, h>_{\mathbf{H}} .
$$

Thus $z \in \mathbf{H}$ is solution of $\min _{y \in \mathbf{C}} \mathbf{J}(y)$ if and only if:

$$
z \in \mathbf{C} \text { and } \forall y \in \mathbf{C}<\mathbf{J}^{\prime}(z), y-z>_{\mathbf{H}}=<z-x, y-z>_{\mathbf{H}} \geq 0
$$

then

$$
\forall y \in \mathbf{C}<x-z, y-z>_{\mathbf{H}} \leq 0
$$

Exercice :

Let \mathbf{C} be a non void convex closed subset of \mathbf{H}.

- Show that

$$
\forall x \in \mathbf{H} \forall y \in \mathbf{H} \quad\left\|\mathbf{P}_{\mathbf{C}}(x)-\mathbf{P}_{\mathbf{C}}(y)\right\|_{\mathbf{H}} \leq\|x-y\|_{\mathbf{H}} .
$$

- Show that if \mathbf{C} is a closed linear subspace of \mathbf{H} then :
$z=\mathbf{P}_{\mathbf{C}}(x)$ if and only if $z \in \mathbf{C}$ and $\forall y \in \mathbf{C}<x-z, y>_{\mathbf{H}}=0$.
- Show that if \mathbf{C} is a closed linear subspace of \mathbf{H} then $\mathbf{P}_{\mathbf{C}}$ is linear and continuous and moreover,

$$
\forall x \in \mathbf{H} \quad\|x\|_{\mathbf{H}}^{2}=\left\|\mathbf{P}_{\mathbf{C}}(x)\right\|_{\mathbf{H}}^{2}+\left\|x-\mathbf{P}_{\mathbf{C}}(x)\right\|_{\mathbf{H}}^{2} .
$$

- Prove that if \mathbf{C} is a closed linear subspace \mathbf{H} and if

$$
\mathbf{C}^{\perp}=\left\{x \in \mathbf{H} \mid \forall y \in \mathbf{C} \quad<x, y>_{\mathbf{H}}=0\right\}
$$

then

$$
\mathbf{H}=\mathbf{C} \oplus \mathbf{C}^{\perp} .
$$

Stampacchia Theorem : the symmetric case

Lett a be a bilinear form on \mathbf{H} which is continuous, coercive and symmetric . We have:

- the continuity of \mathbf{a} is equivalent to

$$
\exists M>0|\forall x \in \mathbf{X} \forall y \in \mathbf{X} \quad| \mathbf{a}(x, y) \mid \leq M\|x\|_{\mathbf{X}}\|y\|_{\mathbf{X}}
$$

- the coercivity of \mathbf{a} is equivalent to

$$
\exists \alpha>0 \mid \forall x \in \mathbf{X} \quad \alpha\|x\|_{\mathbf{X}}^{2} \leq a(x, x)
$$

- a is symmetric if and only if

$$
\forall x \in \mathbf{H} \forall y \in \mathbf{H} \mathbf{a}(x, y)=\mathbf{a}(y, x)
$$

Let ℓ be a linear continuous form on \mathbf{H}. There exists $L>0$ such that

$$
\forall x \in \mathbf{H}|\ell(x)| \leq M\|x\|_{\mathbf{H}}
$$

We define on \mathbf{H}, the function denoted by \mathbf{J} by :

$$
\mathbf{J}(x)=\frac{1}{2} \mathbf{a}(x, x)-\ell(x, x) \forall x \in \mathbf{H}
$$

Theorem 9 If \mathbf{C} is a non void closed convex subset of the Hilbert space \mathbf{H} , if \mathbf{a} is a bilinear form on \mathbf{H} which is symmetric, continuous and coercive; and if ℓ is a linear continuous form on \mathbf{H} then the problem :

$$
\text { Findu } \in \mathbf{C} \text { such that } \forall v \in \mathbf{C} \mathbf{a}(u, v-u) \geq \ell(v-u)
$$

has one and only one solution .
Proof : Let \mathbf{J} be the proper convex continuous and coercive function which is defined by :

$$
\mathbf{J}(v)=\frac{1}{2} \mathbf{a}(v, v)-\ell(v)
$$

The problem

$$
\min _{x \in \mathbf{C}} \mathbf{J}(x)
$$

is a quadratic optimization problem which has one and only one solution $u \in \mathbf{C}$ and which is characterized by :

$$
\forall v \in \mathbf{C} \quad \mathbf{J}^{\prime}(u) \cdot(v-u) \geq 0
$$

or

$$
\forall v \in \mathbf{C} \quad \mathbf{a}(u, v-u)-\ell(v-u) \geq 0
$$

thus $u \in \mathbf{C}$ verifies:

$$
\forall v \in \mathbf{C} \quad \mathbf{a}(u, v-u) \geq \ell(v-u)
$$

Remark 16 The problem may be interpreted like a projection problem when we endow \mathbf{H} with the scalar product defined by \mathbf{a}.
The theorem is also true if \mathbf{a} is not symmetric.

Lax Milgram Theorem

Theorem 10 If \mathbf{H} is a Hilbert space, if \mathbf{a} is a bilinear form on \mathbf{H} which is symmetric, continuous and coercive and if ℓ is a linear form on \mathbf{H} which is continuous then the problem :

$$
\text { Find } u \in \mathbf{H} \text { such that } \forall v \in \mathbf{H} \mathbf{a}(u, v)=\ell(v)
$$

admits one and only one solution .

Proof : It is enough to prove the equivalence of the problem \mathcal{P}_{1}

$$
\text { Find } u \in \mathbf{H} \text { such that } \forall v \in \mathbf{H} \mathbf{a}(u, v)=\ell(v)
$$

with the problem \mathcal{P}_{2}

$$
\text { Find } u \in \mathbf{H} \text { such that } \forall v \in \mathbf{H} \mathbf{a}(u, v-u) \geq \ell(v-u) .
$$

We suppose that $u \in \mathbf{H}$ is a solution of \mathcal{P}_{1} :
Let $v \in \mathbf{H}$, we have

$$
\mathbf{a}(u, v-u)=\mathbf{a}(u, v)-\mathbf{a}(u, u)=\ell(v)-\ell(u)
$$

then

$$
\mathbf{a}(u, v-u)=\ell(v-u)
$$

thus u is the solution of \mathcal{P}_{2}.
Conversely, let $u \in \mathbf{H}$ be a solution of \mathcal{P}_{2} :
Let $v \in \mathbf{H}$ then $w=u+v$ belong \mathbf{H}. Replacing v with w in \mathcal{P}_{2} gives:

$$
\mathbf{a}(u, v) \geq \ell(v)
$$

If we replace v by $-v$ in this relation, we obtain :

$$
\mathbf{a}(u, v) \leq \ell(v)
$$

So

$$
\mathbf{a}(u, v)=\ell(v)
$$

Thus u is a solution of \mathcal{P}_{1}.

An example of application in solving partial differential equation

Let Ω be a non void open domain of \mathbf{R}^{N}. Let $\mathbf{f} \in \mathbf{L}^{2}(\Omega)$, we want to solve the problem :
Find $\mathbf{u} \in \mathbf{H}_{0}^{1}(\Omega)$ such that

$$
-\Delta \mathbf{u}=\mathbf{f} \text { in } \Omega
$$

This problem is equivalent to the minimization problem which is defined by the function \mathbf{J} where:

$$
\mathbf{J}(\mathbf{v})=\frac{1}{2} \int_{\Omega}\langle\nabla \mathbf{v}, \nabla \mathbf{v}\rangle_{\mathbf{R}^{N}} d x-\int_{\Omega} \mathbf{f} \mathbf{v} d x \mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega)
$$

and the minimization problem

$$
\min _{\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega)} \mathbf{J}(\mathbf{v}) .
$$

This problem is a quadratic optimization problem, it has one and only one solution.

2.2.6 An example in a Banach space

Let $p>1$ and $q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$. Let $\mathbf{f} \in \mathbf{L}^{q}(\Omega)$, where Ω a non void bounded domain of \mathbf{R}^{N}. We want to solve the problem :

Find $\mathbf{u} \in \mathbf{W}_{0}^{1 p}(\Omega)$ such that

$$
-\operatorname{div}\left(\|\nabla \mathbf{u}\|_{\mathbf{R}^{N}}^{p-2} \nabla \mathbf{u}\right)=\mathbf{f} \text { in } \Omega .
$$

This problem is equivalent to the minimization problem which is defined by the function \mathbf{J} where:

$$
\mathbf{J}(\mathbf{v})=\frac{1}{p} \int_{\Omega}\|\nabla \mathbf{v}\|_{\mathbf{R}^{N}}^{p} d x-\int_{\Omega} \mathbf{f} \mathbf{v} d x \mathbf{v} \in \mathbf{W}_{0}^{1 p}(\Omega)
$$

and the minimization problem

$$
\min _{\mathbf{v} \in \mathbf{W}_{0}^{1 p}(\Omega)} \mathbf{J}(\mathbf{v}) .
$$

The function \mathbf{J} is strictly convex, lsc, proper and coercive on the Sobolev space $\mathbf{W}_{0}^{1 p}$ which is a reflexive Banach space. The minimizing problem has one and only one solution .

2.2.7 An eigenvalue problem

Let Ω be a non void bounded domain of \mathbf{R}^{N}.
We want to find a function $\mathbf{u} \in \mathbf{H}_{0}^{1}(\Omega) \backslash\{0\}$ such that there exists a real number λ with

$$
-\Delta \mathbf{u}=\lambda \mathbf{u} \text { on } \Omega .
$$

This problem is an optimization problem with equality constraints
\mathbf{J} and \mathbf{g} are defined as follows:

$$
\begin{aligned}
& \mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) \quad \mathbf{J}(\mathbf{v})=\frac{1}{2} \int_{\Omega}\|\nabla \mathbf{v}\|_{\mathbf{R}^{N}}^{2} d x \\
& \mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) \mathbf{g}(\mathbf{v})=\frac{1}{2} \int_{\Omega}|\mathbf{v}|^{2} d x-\frac{1}{2} .
\end{aligned}
$$

We remark that if $\left\{\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega): \mathbf{g}(\mathbf{v})=0\right\} \neq \emptyset$ then

$$
\forall h \in \mathbf{H}_{0}^{1}(\Omega) \quad \mathbf{g}^{\prime}(\mathbf{v}) . h=\int_{\Omega} \mathbf{v} h d x
$$

and $\mathbf{g}^{\prime}(\mathbf{v})$ is a continuous onto linear form on $\mathbf{H}_{0}^{1}(\Omega)$. The function \mathbf{J} is differentiable and :

$$
\forall h \in \mathbf{H}_{0}^{1}(\Omega) \quad \mathbf{J}^{\prime}(\mathbf{v}) . h=\int_{\Omega}<\nabla \mathbf{v}, \nabla h>_{\mathbf{R}^{N}} d x
$$

Thus, if the minimization problem has a solution \mathbf{u}, there exists $\lambda \in \mathbf{R}$ such that $\forall h \in \mathbf{H}_{0}^{1}(\Omega) \quad \mathbf{J}^{\prime}(\mathbf{u}) . h=\lambda \mathbf{g}^{\prime}(\mathbf{u}) . h$, then

$$
\forall h \in \mathbf{H}_{0}^{1}(\Omega) \quad \int_{\Omega}<\nabla \mathbf{u}, \nabla h>_{\mathbf{R}^{N}} d x=\lambda \int_{\Omega} \mathbf{u} h d x
$$

We deduce that $\mathbf{u} \in \mathbf{H}_{0}^{1}(\Omega)$ and $-\Delta \mathbf{u}=\lambda \mathbf{u}$.
Moreover, if $\lambda>0$, it is enough to take $h=\mathbf{u}$. Now, we prove the existence of \mathbf{u}. The function \mathbf{J} is bounded below by 0 thus, it has a finite infimum. There exists a minimizing sequence $\left(\mathbf{u}_{n}\right)_{n \in \mathbf{N}}$ of elements of $\mathbf{H}_{0}^{1}(\Omega)$ such that $\forall n \in \mathbf{N} \quad\left\|\mathbf{u}_{n}\right\|_{\mathbf{L}^{2}(\Omega)}=1$.
The sequence $\left(\mathbf{u}_{n}\right)_{n \in \mathbf{N}}$ is bounded in $\mathbf{H}_{0}^{1}(\Omega)$ thus it has a subsequence $\left(\mathbf{u}_{n_{k}}\right)_{k \in \mathbf{N}}$ which converges weekly in $\mathbf{H}_{0}^{1}(\Omega)$ to an element \mathbf{u}. The space $\mathbf{H}_{0}^{1}(\Omega)$ is included with compact inclusion in $\mathbf{L}^{2}(\Omega)$, then the sequence $\left(\mathbf{u}_{n_{k}}\right)_{k \in \mathbf{N}}$
converges in $\mathbf{L}^{2}(\Omega)$ to \mathbf{u}. Thus, $\mathbf{g}(\mathbf{v})=0$ and $\|\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)}=1, \mathbf{u} \neq 0$. In addition, \mathbf{J} is weakly lsc, so

$$
\mathbf{J}(\mathbf{u}) \leq \liminf _{k \rightarrow+\infty} \mathbf{J}\left(\mathbf{u}_{n_{k}}\right)=\inf _{\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) \mathbf{g}(\mathbf{v})=0} \mathbf{J}(\mathbf{v}) .
$$

The minimization problem has one solution .

2.3 A very short bibliography

V. Barbu, Mathematical Methods in Optimization of Differential Systems, 1994, Kluwer Academic Publishers
H. Brezis, Analyse fonctionnelle et applications, 1989, Masson
K.-C. Chang, Methods in nonlinear analysis, 2005, Springer
G. Dal Maso, An Introduction to Γ-Convergence, 1993, Burkhauser

Ng. Djitte, Functions space and elliptic partial differential equations, 2006, Cours Diploma ICTP
I. Ekeland; R. Temam, Convex Analysis and Variational Problems, 1999, SIAM
R. T. Rockafellar, Convex Analysis, 1970, Princeton University Press
K. Yosida, Functional Analysis, 1980, Springer

