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Chapter 1

Direct Methods

1.1 An easy example

Let a and b be real numbers such that a < b and let f [a , b] → R be
differentiable. The problem min

x∈[a , b]
f (x) has at least one solution x ∈ [a , b]

by the Wierstrass’s theorem. Moreover, the point x satisfies the following :

∀ x ∈ [a , b] (x − x) f
′
(x) ≥ 0 .

This relation is called the Euler equation of the problem min
x∈[a , b]

f (x).

To prove this relation, we consider the three cases:

• If x = a then f
′
(a) = f

′
d (a) ≥ 0 .

• If x = b then f
′
(b) = f

′
g (b) ≤ 0 .

• If x ∈ ]a , b[, we have f
′
(x) = f

′
d (x) ≥ 0 and f

′
(x) = f

′
g (x) ≤ 0 thus

f
′
(x) = 0.

The compactness of [a , b] permits us to prove the existence of a minimum
and the derivation leads to the relation verified by the point x where f
reaches its minimum. In this relation one should note that the properties
are different depending on whether x is an interior point or a boundary
point.
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1.2 Minimum and maximum

1.2.1 Minimum

Definitions

Let X is a non void (non empty) set and f a map from X to R ∪ {+∞}.

Definition 1 Let x ∈ X, the function f has a minimum over X at the point
x ∈ X, if we have :

∀x ∈ X f (x) ≤ f (x) .

One notes :
f (x) = min

x∈X
f (x) .

Definition 2 Let x ∈ X, we say that f has a strict minimum over X at the
point x ∈ X, if we have :

∀x ∈ X f (x) < f (x) .

1.2.2 Maximum

Definitions

Let X a non void set and let f be a map from X to R ∪ {+∞}.

Definition 3 Let x ∈ X, we say that f has a maximum over X at the point
x ∈ X, if we have :

∀x ∈ X f (x) ≤ f (x) .

One notes:
f (x) = max

x∈X
f (x) .

Definition 4 Let x ∈ X, we say that f has a strict maximum over X at the
point x ∈ X, if we have :

∀x ∈ X f (x) < f (x) .

Remark 1 :

• The map f has a maximum at the point x if and only if the map −f
has a minimum at the point x.

• The map f has a strict maximum at the point x if and only if the map
−f has a strict minimum at the point x.
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Remark 1 shows that the problem of finding the maximum
may be posed as a minimization problem. We, therefore, restrict
ourselves to the study of the problem of finding a minimum in this
note only .

1.3 Lower semi continuity and upper semi conti-
nuity

Let T be a topology on X. We denote the set of all neighbourhoods of a by
V (a).

1.3.1 Lower semi continuity

Definition 5 A function f of the topological space (X , T ) which takes its
values in R ∪ {+∞} is lower semi continuous (lsc) at the point a ∈ X, if
one has :

∀λ ∈ R | λ < f (a) ∃V ∈ V (a) | ∀x ∈ V ⇒ f (x) > λ .

Exercice 1 Show that if f (a) ∈ R then f is lsc at the point a if and only
if :

∀ε > 0 ∃V ∈ V (a) | ∀x ∈ V ⇒ f (x) > f (a) − ε .

Deduce that if f is continuous at a point a ∈ X then f is lsc at the point a.

Exercice 2 Let f be a map from the topological space (X , T ) which takes
its values in R ∪ {+∞}.
Show that :

f (a) ≥ sup
V ∈V(a)

inf
y∈V

f (y) .

Deduce that f is lsc at a point a ∈ X if and only if :

f (a) = sup
V ∈V(a)

inf
y∈V

f (y) .

Exercice 3 Let f and g are maps from the topological space (X , T ) which
take there values in R∪{+∞} lsc, show if α and β are real positive numbers
then αf + βg is lsc.

Definition 6 A function f from the topological space (X , T ) which takes
its values in R ∪ {+∞} is lower semi continuous, if it is lsc at every point
of X.
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Remark 2 A continuous function is lsc.

We have the following properties :

Proposition 1 A function f from the topological space (X , T ) which takes
its values in R ∪ {+∞} is lsc, if and only if :

∀λ ∈ R, f−1 (]λ , +∞]) ∈ T .

Proof :
Suppose that f is lsc. One sets :

O = f−1 (]λ , +∞]) .

Let a ∈ O, then f (a) > λ. Since the function f is lsc,there exists V ∈ V (a)
such that :

∀x ∈ V ⇒ f (x) > λ .

This implies that V ⊂ O , thus O ∈ T .
Next, we prove the reverse. Let a ∈ X and let λ ∈ R such that f (a) > λ
then

O = f−1 (]λ , +∞]) ∈ V (a) .

Thus f is lsc.

Definition 7 If f is a map from X to R ∪ {+∞}, the subset of X x R
defined by :

epi (f) = { (x , λ) ∈ X xR | f (x) ≤ λ} .

is called the epigraph of f .

The following proposition gives a characterisation of the lower semi con-
tinuity of a function by the properties of its epigrah.

Proposition 2 A function f defined from the topological space (X , T )
which takes its values in R ∪ {+∞} is lsc if and only if epi (f) is closed in
X xR.

Proof : Suppose that f is lsc. Let (a , λ0) ∈ X xR such that
(a , λ0) /∈ epi (f) then f (a) > λ0. Let ε > 0 be such that λ0 + ε < f (a).
There exists V ∈ V (a) such that

∀x ∈ V f (x) > λ0 + ε .
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Therefore ( V x ]λ0 − ε ; λ0 + ε[ )
⋂

epi (f) is void (empty) ; but V x ]λ0 − ε ; λ0 + ε[
is a neighbourhood of (a , λ0) thus, epi (f) is closed.
Conversely, suppose that epi (f) is closed in X xR. Let a ∈ X and λ ∈ R
such that f (a) > λ, then (f (a) , λ) /∈ epi (f) thus, there exists V ∈ V (a)
and ε > 0 such that ( V x ]λ− ε ; λ + ε[ )

⋂
epi (f) is void. Let x ∈ V ,

(x , λ) /∈ epi (f) .

therefore f (x) > λ. Then f is lsc.

For a family of lsc functions , we have :

Proposition 3 If (fi)i∈I is a family of lsc functions from the topological
space (X , T ) which take its values in R∪{+∞} then sup

i∈I
fi is a lsc function.

Proof : It is enough to remark that :

epi (f) =
⋂
i∈I

epi (fi) .

Proposition 4 If a function f from a topological space (X , T ) to R ∪
{+∞} is lsc at a point a ∈ X, if (xn)n∈N is a sequence in X such that
lim

n7→+∞
xn = a, then lim inf

n7→+∞
f (xn) ≥ f (a)

Proof : Let λ < f (a), there exists V ∈ V (a) such that :

∀x ∈ V f (x) > λ ;

and since lim
n7→+∞

xn = a, there exists N ∈ N such that

∀n ∈ N, n ≥ N ⇒ xn ∈ V .

Thus if n ∈ N is such that n ≥ N then

inf
p≥n

f (xp) ≥ λ ,

therefore
sup
n∈N

inf
p≥n

f (xp) ≥ λ .

Conequently,

lim inf
n7→+∞

f (xn) = sup
n∈N

inf
p≥n

f (xp) ≥ f (a) .
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Exercice 4 Prove that if (X , d) is a metric space, a function f is lsc if
and only if for all sequences (xn)n∈N such that lim

n7→+∞
xn = a implies

lim
n7→+∞

f (xn) ≥ f (a).

Definition 8 Let λ ∈ R, a subset of X denoted by Sλ (f) where :

Sλ (f) = {x ∈ X | f (x) ≤ λ}

is called a section of f .

Remark 3 If f is lsc then Sλ (f) is closed.

1.3.2 Upper semi continuity

Definition 9 A function f from a topological space (X , T ) which takes its
values in R ∪ {−∞} is upper semi continuous (usc) at the point a ∈ X, if
one has :

∀λ ∈ R | f (a) < λ ∃V ∈ V (a) | ∀x ∈ V ⇒ f (x) < λ .

Remark 4 The map f is usc if and only if −f is lsc.

1.4 Wierstrass’s theorem

Definition 10 If f is a function from X to R ∪ {+∞}, the domain of f
is the subset denoted by dom (f) and defined by :

dom (f) = {x ∈ X | f (x) < +∞} .

If dom (f) is non void, one says that f is proper.

Theorem 1 (Wierstrass)
If (X , T ) is a compact topological space and if f is a proper map and lsc
from (X , T ) which takes its values in R ∪ {+∞} then there exists x ∈ X
such that

∀x ∈ X f (x) ≤ f (x) .

Proof : Let m = inf
x∈X

f (x).

Suppose that m = −∞. There exists a sequence (xn)n∈N of elements of X
such that

∀n ∈ N f (xn) < −n .
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Let λ ∈ R, then there exists N ∈ N such that

∀ n ∈ N | n ≥ N ⇒ f (xn) < λ

The sequence (xn)n∈N has a cluster point x ∈ X. The function f is lsc at x
then there exists V ∈ V (x) such that

∀x ∈ V f (x) > λ

There exists also p ∈ N such that p > N and xp ∈ V then f (xp) > λ and
f (xp) < λ . It is impossible. Thus m ∈ R.
Let x ∈ X be the cluster point of the minimizing sequence (xn)n∈N. Suppose
that f (x) > m. Then there exists δ > 0 such that f (x) > m + δ. But the
function f is lsc at x, thus there exists V ∈ V (x) such that

∀x ∈ V f (x) > m + δ

There exists also N ∈ N such that

∀ n ∈ N | n ≥ N ⇒ m ≤ f (xn) < m + δ

There exists p ∈ N such that p > N and xp ∈ V then f (xp) > m + δ
and f (xp) < m + δ . It is impossible. Thus m = f (x).

1.4.1 Sequentially compact set

Let (X , T ) a topological space.

Definition 11 A subset K of X is said to be sequentially compact if
every sequence of elements of K has a subsequence which converges to an
element of K.

Following the proof of the Wierstrass’s theorem we have:

Theorem 2 If (X , T ) is a sequentially compact topological space and if
f is a proper map and lsc from (X , T ) which takes its values in R∪{+∞}
then there exists x ∈ X such that

∀x ∈ X f (x) ≤ f (x) .
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1.5 Coercivity property

1.5.1 Coercivity

Definition 12 A function f from the topological space (X , T ) which takes
its values in R ∪ {+∞} is said coercive if the closure of every section

Sλ (f) = {x ∈ X | f (x) ≤ λ}

is compact in X.

Definition 13 A map f from the topological space (X , T ) to R ∪ {+∞}
is said to be sequentially coercive if the closure of every section

Sλ (f) = {x ∈ X | f (x) ≤ λ}

is sequentially compact in X.

If (X , ‖ ‖X) is a reflexive Banach space, one defines, in general, the
coercivity of f by the property :

lim
‖x‖X 7→+∞

f (x) = +∞ .

In fact we have :

Proposition 5 If (X , ‖ ‖X) is a reflexive Banach space then the map f is
weakly sequentially coercive if and only if :

lim
‖x‖x 7→+∞

f (x) = +∞ .

Proof : One supposes that f is weakly sequentially coercive . If f does
not tend to +∞ when ‖x‖x 7→ +∞, there exists a sequence (xn)n∈N such
that : lim

n7→+∞
‖xn‖x = +∞ and (f (xn))n∈N is bounded. Let λ ∈ R such

that :
∀n ∈ N, |f (xn)| ≤ λ .

As Sλ (f) is weakly sequentially compact, the sequence (xn)n∈N has a sub-
sequence (xnk

)k∈N which converges weakly to an element x of Sλ (f). Then
(xnk

)k∈N is bounded . This is impossible .
Now, we prove the converse. Let λ ∈ R and (xn)n∈N a sequence of elements
of Sλ (f) then (xn)n∈N is a bounded sequence ; then it has a weakly conver-
gent subsequence (xnk

)k∈N in the closure of Sλ (f). Thus f is sequentially
coercive.
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Theorem 3 (Tonelli’s Theorem) Let f from (X , T ) to R ∪ {+∞}, be
a proper, coercive, lsc function. Then f has a minimum in X.

Proof : Let a ∈ X be such that f (a) < +∞, the subset Sf(a) (f) is relatively
compact ( that is, the closure is compact), but f is lsc, since Sf(a) (f) is
closed, it is compact. Thus by Wierstrass’s theorem, there exists x ∈
Sf(a) (f) such that :

∀x ∈ Sf(a) (f) f (x) ≤ f (x) .

As a result :
∀x ∈ X f (x) ≤ f (x) .

The following theorem is easy to prove :

Theorem 4 (Tonelli’s Theorem) A map f from the topological space
(X , T ) to R∪{+∞}, proper, lsc and sequentially coercive has at least
a minimum in X.

1.6 Minimizing sequences

Let f be a map from X to R ∪ {+∞} such that

m = inf
x∈X

f (x) .

Definition 14 We say that a sequence (xn)n∈ N is a minimizing se-
quence of f , if it verifies :

lim
n7→+∞

f (xn) = m .

Exercice 5 Prove that every proper map f has a minimizing sequence.

Remark 5 As consequences of the Tonelli’s theorems, if f is a map from
the topological space (X , T ) to R ∪ {+∞} is proper and lsc, one has :

• if f is coercive, every minimizing sequence (xn)n∈N of f has a cluster
point x ∈ X where x is the minimum point of f : f (x) = m;

• if f is sequentially coercive, every minimizing sequence (xn)n∈N of f
has a subsequence (xnk

)k∈N which converges to a point x ∈ X where
x is the minimum point of f : f (x) = m.
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1.7 Convexity

In this part of the note, X is a real linear space with the norm ‖ ‖X. One
denotes by X∗, the topological dual space of X, that is X∗ is the real linear
space of the continuous linear forms on the normed space (X , ‖ ‖X). One
denotes the bilinear pairing in the duality between X and X∗ by < , > then
:

∀x∗ ∈ X∗ ∀x ∈ X, x∗ (x) =< x∗ , x > .

If we set for every x∗ ∈ X∗,

‖x∗‖X∗ = sup
‖x‖X=1

< x∗ , x > ,

then (X∗ , ‖ ‖X∗) is a normed linear space.

1.7.1 Convex sets

Definition 15 : A subset C of X is said to be convex if :

∀t ∈ [0 , 1] ∀x ∈ C ∀y ∈ C tx+(1− t)y ∈ C .

Definition 16 Let x and y belong to X, a subset of X denoted by [x , y] is
called the geometrical segment with extremal points x and y and it is given
by :

[x , y] = { tx+(1− t)y | t ∈ [0 , 1]} .

A subset C of X is convex if and only if every geometrical segment with
extremal points in C is included in C.

We now have the following :

Proposition 6 A subset C of X is convex if and only if :

∀ x1,...,xp ∈ C ∀ α1,...,αp ∈ R+ |
p∑

i=1

αi = 1 ⇒
p∑

i=1

αi xi ∈ C .

Proof : The proof is given by induction . Suppose that C is a convex
subset . Then the case p = 2 is obvious . Suppose that the hypothesis is
true for an integer p greater than 2, we prove that it is also true foe p + 1 .
Now, let x1,...,xp+1 be points of C. Let α1,...,αp+1 any positive real numbers

such that
i=p+1∑

i=1

αi = 1. If αp+1 = 0, we are in the case of p points. So, by
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induction hypothesis, we are done. If αp+1 6= 0 then y = 1
1−αp+1

p∑
i=1

αi xi

belong C then

p+1∑
i=1

αi xi = (1− αp+1) y + αp+1xp+1 ∈ C .

Exemples :

• The linear space X, every sublinear space of X and every affine sub-
space of X are convex .

• Let f X → R be a linear map such that f is not identically zero and
α ∈ R, the subset denoted by
Hf α = {x ∈ X | f (x) = α}, called a hyperplane is convex .

• Let f X → R be a linear map such that f is not identically zero
and α ∈ R, the following subsets D+

f α = {x ∈ X | f (x) ≥ α} and
D−

f α = {x ∈ X | f (x) ≤ α} called closed half spaces are convex .

• Let f X → R be a linear map such that f is not identically zero
and α ∈ R, the following subsets D∗+

f α = {x ∈ X | f (x) > α} and
D∗ −

f α = {x ∈ X | f (x) < α} called open half spaces are convex .

Exercice 6 Let X be a real linear space endowed with the norm ‖ ‖X. Let
f X → R be a linear map such that f is not identically zero and α ∈ R.

• Prove that f is continuous if and only if Hf α is a closed subset .

• Prove that if f is continuous then D+
f α and D−

f α are closed subsets .

• Prove that if f is continuous then D∗+
f α and D∗ −

f α are open subsets .

The convex subsets have the following proprties :

• If (Ci)i∈I is a family of convex subsets of X then
⋂
i∈I

Ci is convex .

• If (Ci)1≤i≤n is a finite family of convex subsets and if (λi)1≤i≤n are

real numbers then
n∑

i=1

λiCi is a convex subset .

• The closure of a convex subset is convex .
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1.7.2 The Convex Functions

Definition 17 A function f defined on a subset C of X which takes its
values in R ∪ {+∞}, is called convex if C is convex and if

∀t ∈ [0 , 1] ∀x ∈ C ∀y ∈ C, f (t x+(1− t) y) ≤ t f (x) + (1− t) f (y) .

Remark 6 If f is a convex function from the convex subset C of X to
R ∪ {+∞}, one defines the convex extention of f as the function fco
from X to R ∪ {+∞} such that

• ∀x ∈ C fco (x) = f (x) ,

• ∀x /∈ C fco (x) = +∞ .

The function fco is convex on X if and only if f is convex on C.
The function fco and f are proper at the same time .
This extension does not change the minimization problem. Then if f is
proper, it has a minimum at a point x ∈ C if and only if fco has a minimum
on X at a point x.

We shall consider in what follows the functions defined on X
and which takes its values in R ∪ {+∞} .

Definition 18 A function f defined on a subset C of X which takes its
values in R ∪ {+∞}, is said to be stricly convex if C is convex and if

∀t ∈ ]0 , 1[ ∀x ∈ C ∀y ∈ C and x 6= y, f (t x+(1− t) y) < tf (x)+(1− t) f (y) .

A stricly convex function is a convex function .

Proposition 7 A function f from X to R∪ {+∞} is convex if and only if
epi (f) is a convex subset of X xR.

Proof : Suppose that f is convex .
Let (x , γ1) ∈ epi (f) , (y , γ2) ∈ epi (f), let t ∈ [0 , 1], One has :

f (tx + (1− t) y) ≤ tf (x) + (1− t) f (y) ≤ tγ1 + (1− t) γ2 .

Thus

t (y , γ1) + (1− t) (y , γ2) = (tx + (1− t) y , tγ1 + (1− t) γ2) ∈ epi (f) .
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So, epi (f) is convex .
Conversely we suppose epi (f) to be convex .
Let x ∈ dom (f) and y ∈ dom (f), then (x , f (x)) ∈ epi (f) and (y , f (y)) ∈
epi (f) thus if t ∈ [0 , 1] then

t (x , f (x)) + (1− t) (y , f (y)) ∈ epi (f) ,

therefore
f (t x+(1− t) y) ≤ t f (x) + (1− t) f (y) .

So, the function f is convex.

Remark 7 If f is convex then the sections Sα (f) are convex .

Exemples :

• If f and g are convex functions from X to R ∪ {+∞}, if λ ∈ R+ and
if µ ∈ R+ then λf + µg is convex.

• If f is convex and g is strictly convex from X to R∪{+∞} then f +g
is strictly convex .

• If f and g are strictly convex functions from X to R∪{+∞}, if λ ∈ R∗
+

and if µ ∈ R∗
+ then λf + µg is strictly convex .

• If (fi)i∈I is a family of convex functions from X to R ∪ {+∞} then
sup
i∈I

fi is convex .

1.7.3 Continuity of the convex functions

Proposition 8 If f is a convex function from X to R ∪ {+∞} which is
bounded above on a neighbourhood of a point a belonging to its domain, then
f is continuous at the point a and, moreover, f is locally lipschitz in the
interior of its domain .

Proof : Define the function g by :

g (y) = f (a + y)− f (a) .

Then 0 is in the domain of g, g (0) = 0 and g is bounded above in a
neighbourhood of 0. The function f is continuous at the point a if and only
if g is continuous at 0. Let M > 0 and r > 0 such that:

∀y ∈ X | ‖y‖X ≤ r ⇒ g (y) ≤ M .
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Let r > 0, if x ∈ X\{0} and if ‖x‖X < r then because, g is convex, we have
:

g (x) = g

((
1− ‖x‖X

r

)
0 +

‖x‖X
r

r

‖x‖X
x

)
≤
(

1− ‖x‖X
r

)
g (0)+

‖x‖X
r

g

(
r

‖x‖X
x

)
.

As
∥∥∥ r
‖x‖X

x
∥∥∥
X

= r, one has :

g (x) ≤ ‖x‖X
r

M .

In addition, one has :

0 =
r

r + ‖x‖X
x +

(
1− r

r + ‖x‖X

)(
− r

‖x‖X
x

)

then

0 ≤ r

r + ‖x‖X
g (x) +

(
1− r

r + ‖x‖X

)
g

(
− r

‖x‖X
x

)
thus

−‖x‖X
r

g

(
− r

‖x‖X
x

)
≤ g (x)

therefore
−‖x‖X

r
M ≤ g (x) .

At the end, we have

|g (x)| ≤ ‖x‖X
r

M .

Let ε > 0, we set η = min
(

r
M ε , r

)
, if x ∈ X and ‖x‖X < η then we have

:
|g (x)| < ε .

Now we prove that g is continuous in the interior of its domain . It is
enough to prove that g is bounded above a neighbourhood of every point of

0︷ ︸︸ ︷
dom (g) .
Let x belong to dom (g). The function of the segment [0 , 1] to X which
associates t with (1 + t) x is continuous, then there exists t0 ∈ ]0 , 1[ such
that

∀t ∈ [0 , t0] ⇒ (1 + t) x ∈
0︷ ︸︸ ︷

dom (g) .
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We set x0 = (1 + t0) x and r1 = t0
1+t0

r. Let y ∈ X be such that ‖y − x‖X <

r1, then we have :
∥∥∥1+t0

t0
(y − x)

∥∥∥
X

< r. However, y = t0
1+t0

(
1+t0

t0
(y − x)

)
+

1
1+t0

((1 + t0) x) then y = t0
1+t0

(
1+t0

t0
(y − x)

)
+ 1

1+t0
x0 thus g (y) ≤ t0

1+t0
g
(

1+t0
t0

(y − x)
)
+

1
1+t0

g (x0) d’où g (y) ≤ t0
1+t0

M + 1
1+t0

g (x0) .
We set M1 = max (M , g (x0)).
Then one has :

∀y ∈ X | ‖y − x‖X < r1 ⇒ g (y) ≤ M1 .

Therefore g is continuous at the point x. To complete the proof we show

that g is locally lipschitz on

0︷ ︸︸ ︷
dom (g). It is enough to prove it at the point

0 . Let δ > 0 such that δ < r and let u ∈ B (0,δ), v ∈ B (0,δ).
Let n ∈ N such that n >

‖u−v‖X
r−δ , we set ∀i ∈ {1,...,n} xi+1 = xi + 1

n (v − u)
with x1 = u. Then xn+1 = v and ∀i ∈ {1,...,n− 1}, one has : xi+1 ∈
B (xi,r − δ) thus xi+1 ∈ B (0,r). The first part of the proof give us :

|g (xi+1)− g (xi)| ≤
M

r − δ
‖xi+1 − xi‖X .

then
|g (xi+1)− g (xi)| ≤

M

r − δ

1
n
‖v − u‖X .

thus

|g (v)− g (u)| = |g (xn)− g (x1)| ≤
n−1∑
i=1

|(g (xi+1)− g (xi))| ≤
M

r − δ
‖v − u‖X .

1.7.4 Lsc convex functions

Proposition 9 A function f from X to R∪{+∞} is convex and lsc if and
only if it is weakly lsc.

Proof : It is enough to remark that epi (f) is closed convex if and only if
epi (f) is weakly closed convex .

Exemples :

• A continuous convex function is a weakly lsc convex function . In
particular the function ‖ ‖X is a weakly lsc convex function on X;
every continuous linear form on X is weakly lsc convex function and
every continuous affine form on X is weakly lsc convex function.
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• Let a be a positive bilinear form on X then the map q defined by
q (x) = a (x , x) is convex . Let x ∈ X, y ∈ X and t ∈ [0 , 1], one has :

q (t x+(1− t) y) = a ((t x+(1− t) y) , (t x+(1− t) y)) .

thus

q (t x+(1− t) y) = t2a (x , x)+t (1− t) [a (x , y) + a (y , x)]+(1− t)2 a (y , y) .

Because a is positive, developing a (x− y , x− y) ≥ 0, one obtains
a (x , y) + a (y , x) ≤ a (x , x) + a (y , y). Finally one has :

q (t x+(1− t) y) ≤ ta (x , x)+(1− t)a (y , y) ≤ tq (x)+(1− t)q (y) .

Thus, q is convex .
If a is positive definite, one verifies by the same method that q is
strictly convex . In particular a is positive definite if it satisfies the
following coercivity condition :

∃α > 0 | ∀x ∈ X a (x , x) ≥ α ‖x‖2
X .

If a is positive continuous bilinear then a is convex lsc .

One sets :

E (f) = {(x∗ , α) ∈ X∗xR | ∀x ∈ X < x∗ , x > +α ≤ f (x)} .

Proposition 10 If f is a lsc convex proper function from X to R ∪ {+∞}
then :

f (x) = sup
(x∗ , α)∈ E(f)

< x∗ , x > +α .

Proof : We have according to the definition of E (f) :

f (x) ≥ sup
(x∗ , α)∈ E(f)

< x∗ , x > +α .

Let x0 ∈ dom (f) and let ε > 0 then (x0 , f (x0)− ε ) /∈ epi (f). Because
epi (f) is closed convex subset of XxR, there exists x∗ ∈ X∗, α ∈ R and
γ ∈ R such that :

∀ (x , λ) ∈ epi (f) < x∗ , x0 > +α (f (x0)− ε) < γ ≤< x∗ , x > +αλ .
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One verifies that α is strictly positive. If α = 0, when we set x = x0 in the
two members, we have < x∗ , x0 > < γ ≤< x∗ , x0 > this is impossible . If
we suppose that α < 0, we take λ such that f (x0) ≤ λ, one has

< x∗ , x0 > + α (f (x0) − ε) < γ ≤< x∗ , x0 > + αλ

and as λ tends to +∞ then :

< x∗ , x0 > +α (f (x0)− ε) < γ ≤ −∞ .

It is impossible . Then we have :

∀x ∈ dom (f) <
1
α

x∗ , x0 > +f (x0)− ε < γ ≤<
1
α

x∗ , x > +f (x) ,

thus

∀x ∈ dom (f) <
−1
α

x∗ , x > + <
1
α

x∗ , x0 > +f (x0)− ε ≤ f (x) .

Therefore we have :

∀x ∈ dom (f) <
−1
α

x∗,x > + <
1
α

x∗,x0 > +f (x0)−ε ≤ sup
(x∗ , α)∈ E(f)

< x∗,x > +α ≤ f (x) .

Finally ,

f (x0)− ε ≤ sup
(x∗ , α)∈ E(f)

< x∗ , x0 > +α ≤ f (x0) .

Since ε > 0 is arbitrary, we conclude that :

sup
(x∗ , α)∈ E(f)

< x∗ , x0 > +α = f (x0) .

1.7.5 Minimization of convex functions

We have the following proposition :

Proposition 11 If f is a strictly proper convex function from X to R ∪
{+∞} then if it has a minimum at a point, this point is unique .

Proof : We suppose that a ∈ X and b ∈ X are such that a 6= b and

∀x ∈ X f (a) = f (b) ≤ f (x) ,
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then

f (a) ≤ f
(

1
2
a +

1
2
b

)
<

1
2
f (a) +

1
2
f (b) = f (a) .

It is impossible .

We have below a theorem which is very useful .

Theorem 5 If X is a reflexive Banach space, if f is a lsc proper convex
function from X to R ∪ {+∞} and if

lim
‖x‖7→+∞

f (x) = +∞

then f has a minimum at a point of X.

Proof : The sections of f are closed, convex and bounded;thus they are
weakly compact . Since f is proper and weakly lsc, we apply the Tonelli
theorem .

Usual particular cases : Let H a real Hilbert space endowed with its
scalar product < , >H and with the associated norm ‖ ‖H. It is well known
that H is a reflexive Banach space : the Riez’s theorem permits us to
establish an isometric isomorphism between H and its topological dual H∗.

• Projection on a convex closed subset
Let C be a non void convex closed subset of X. Let x ∈ X and let F,
the function from X to R ∪ {+∞} which is defined as follows :

if y ∈ C then F (y) = ‖y − x‖X

and
if y /∈ C then F (y) = +∞

. The function F is convex lsc and it satisfies :

lim
‖x‖7→+∞

F (x) = +∞ .

Thus there exists y ∈ C such that

F
(
y
)

= min
y∈C

F (y) .
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• Quadratic optimization Let a be a bilinear form on X which is
continuous and coercive. These properties mean :

continuity : ∃M > 0 | ∀x ∈ X∀y ∈ X |a (x , y)| ≤ M ‖x‖X ‖y‖X ,

coercivity : ∃α > 0 | ∀x ∈ X α ‖x‖2
X ≤ a (x , x) .

Let ` be a continuous linear form on X, there exists L > 0 such that

∀x ∈ X |` (x)| ≤ L ‖x‖X

and let k ∈ R . One defines on X, the function denoted J by :

∀x ∈ X J (x) =
1
2
a (x , x) − ` (x , x) + k .

The function J is convex lsc proper and verifies :

lim
‖x‖7→+∞

J (x) = +∞ .

because
∀x ∈ X J (x) ≥ α ‖x‖2

X − L ‖x‖X + k .

Then there exists x ∈ X such that

J (x) = min
x∈X

J (x) .

1.8 Duality

In this section, X is a real linear space with the norm ‖ ‖X. One denotes
X∗, the topological dual space of X, it means the real linear space of contin-
uous linear forms on the normed space (X , ‖ ‖X). One denotes the bilinear
pairing by < , > then :

∀x∗ ∈ X∗ ∀x ∈ X x∗ (x) =< x∗ , x > .

If we set for every x∗ ∈ X∗,

‖x∗‖X∗ = sup
‖x‖X=1

< x∗ , x >

then (X∗ , ‖ ‖X∗) is a normed linear space .
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Definition 19 conjugate or polar function
Let f from X to R∪{+∞}, the conjugate function or the polar func-
tion of f denoted by f∗ is the function from X∗ to R ∪ {−∞ , +∞} which
is defined by :

∀x∗ ∈ X∗ f∗ (x∗) = sup
x∈X

(< x∗ , x > −f (x)) .

One has :

∀x∗ ∈ X∗ f∗ (x∗) = sup
x∈dom(f)

(< x∗ , x > −f (x)) .

Remark 8 The function f∗ from X∗ to R∪{−∞ , +∞} is convex and lsc
.

Proof : It enough to remark that the function f∗x , which is defined by

∀x∗ ∈ X∗ f∗x (x∗) =< x∗ , x > −f (x)

is lsc, convex and moreover f∗ (x∗) = sup
x∈X

f∗x (x∗).

Then we have :
f∗ (0) = − inf

x∈dom(f)
f (x) .

Proposition 12 If f is an application from X to R ∪ {+∞} convex and
proper then f∗ is convex, lsc and proper .

Proof : We have to prove that f∗ is proper . There exists (x∗0 , α) ∈ X∗xR
such that :

∀x ∈ X < x∗0 , x > −α ≤ f (x)

then
∀x ∈ X < x∗0 , x > −f (x) ≤ α

thus x∗0 ∈ dom (f∗).

Exercice 7 • If f and g are functions from X to R ∪ {+∞} such that
f ≤ g, prove that f∗ ≥ g∗.

• Let f be a function from X to R∪{+∞}. Let λ ∈ R\ {0}, and suppose
that ∀x ∈ X fλ (x) = f (λ x).
Prove that f∗λ (x∗) = f∗

(
1
λx∗

)
.

Prove that (f + λ)∗ = f∗ − λ.
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• Let f be a function from X to R∪{+∞}. Let a ∈ X, one denotes τaf ,
the function defined by ∀x ∈ X τaf (x) = f (x + a).
Prove that ∀x∗ τaf∗ (x∗) = f∗ (x∗)− < x∗ ,a >.

We have :

Proposition 13 Young Inequality
If f is a function from X to R ∪ {+∞} then :

∀x∗ ∈ X∗ ∀x ∈ X < x∗ ,x > ≤ f∗ (x∗) + f (x) .

1.8.1 Bidual

Definition 20 If f is a function from X to R ∪ {+∞}, the bipolar of f
is the map denoted by f∗∗ from X to R∪ {−∞ , +∞} and which is defined
by :

∀x ∈ X f∗∗ (x) = (f∗)∗ (x) = sup
x∗∈X∗

(< x∗ , x > −f∗ (x∗)) .

By the Young’s inequality , we have that :

∀x ∈ X f∗∗ (x) ≤ f (x) .

In addition f∗∗ is convex and lsc .

Theorem 6 If f is an application from X to R ∪ {+∞}, convex, lsc and
proper then

f∗∗ = f .

Proof : It is enough to prove that ∀x ∈ X f∗∗ (x) ≥ f (x). Suppose that
there exists x0 ∈ X such that f∗∗ (x0) < f (x0).
Then (x0 , f∗∗ (x0)) /∈ epi (f), there exists (x∗ , α) ∈ X∗xR which verifies :

f∗∗ (x0) < < x∗ , x0 > +α ≤ f (x0)

and
∀x ∈ X < x∗ , x > +α ≤ f (x) .

The second inequality :

∀x ∈ X < x∗ , x > −f (x) ≤ −α ,
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let
f∗ (x∗) ≤ −α .

The inequality gives :

< x∗ , x0 > −f∗ (x∗) < < x∗ , x0 > +α ,

then
−α < f∗ (x∗) .

It is impossible .

1.9 Applications to some problems of calculus of
variations

Let Ω a non void open subset of RN . On RN , we use the Lebesgue measure
.

Definition 21 A function F from ΩxRp to R ∪ {−∞ , +∞} is said to be
of Caratheodory if it satisfies :

• for every x ∈ Ω, the function u 7→ F (x , u) is continuous,

• for every u ∈ Rp, the function x 7→ F (x,u) is measurable .

Proposition 14 Suppose a function F from ΩxRp to R ∪ {−∞ , +∞} is
of Caratheodory, if u Ω → Rp is measurable then the map

x 7→ F (x,u (x))

is measurable .

Proof : It is enough to remark that a measurable function is the limit
almost everywhere of a sequence of simple functions . However if u is a
simple function then the function x 7→ F (x , u (x)) is obviosly measurable.

To obtain integrability in the spaces of type Lp for p ≥ 1 some kind of
growth controls on F are used . One gives here an exemple of this type of
estimations.

Proposition 15 If p1 ≥ 1 and p2 ≥ 1, if a > 0 and if b ∈ Lp2 (Ω) then if
F is of Caratheodory and verifies

∀x ∈ Ω ∀ξ ∈ Rp |F (x , ξ)| ≤ b (x) + a ‖ξ‖Rp

then the map Φ of Lp1 (Ω , Rp) to Lp2 (Ω , R) which associates u to Φ (u) x →
Φ (u) (x) = F (x,u (x)) is a continuous map and transforms the bounded
subsets to bounded subsets .
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Proof : Let u ∈ Lp1 (Ω , Rp) the map Φ (u) x → F (x,u (x)) is
measurable. And we have :

|F (x , u (x))| ≤ b (x) + a ‖u (x)‖
p1
p2
Rp .

The second part of the inequality belong Lp2 (Ω , R) then by the dom-
inated convergence theorem of Lebesgue the map Φ (u) x → F (x,u (x))
belong to Lp1 (Ω , Rp).
In the other hand we have

‖Φ (u)‖Lp2 (Ω , Rp) ≤ ‖b‖Lp2 (Ω , R) + a ‖u‖
p1
p2

Lp2 (Ω , R) .

Let (un)n∈N a sequence of functions of Lp1 (Ω , Rp) which converges to u ∈
Lp1 (Ω , Rp). It has a subsequence (unk

)k∈N converges almost everywhere
to u and such that :

∀i ∈ N
∥∥unk+1

− unk

∥∥
Lp1 (Ω , Rp)

<
1
2i

.

Then

∀x ∈ Ω K (x) = ‖un1 (x)‖R∗ +
+∞∑
i=1

∥∥uni+1 (x)− uni (x)
∥∥
R∗ .

The function K is measurable positive and we have :

‖K‖Lp1 (Ω , Rp) ≤ ‖un1‖Lp1 (Ω , Rp) +
+∞∑
i=1

∥∥uni+1 − uni

∥∥
Lp1 (Ω , Rp)

.

The function K is then in Lp1 (Ω , Rp). Because

∀i ∈ N∗ |uni | ≤ K ,

then
∀i ∈ N∗ |Φ (uni)| ≤ b + (K)

p1
p2 ∈ Lp2 (Ω , R) .

By the Lebesgue’s dominated convergence theorem , the sequence (Φ (unk
))k∈N

converges in Lp2 (Ω , R) to Φ (u). Finally Φ is continuous .
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Chapter 2

Optimality Conditions

In this chapter, we give some methods, when it is possible, to determine the
equations or the inequalities satisfied by the solutions of the minimization
problems .

In this chapter, X is a real linear space with the norm ‖ ‖X. One denotes
X∗, the topological dual space X, it means the linear space of the continuous
forms on the normed space (X , ‖ ‖X). One denote the duality pairing by
< , > then :

∀x∗ ∈ X∗ ∀x ∈ X x∗ (x) =< x∗ , x > .

If we set, for every x∗ ∈ X∗,

‖x∗‖X∗ = sup
‖x‖X=1

< x∗ , x > .

then (X∗ , ‖ ‖X∗) is a linear normed space . If (X , ‖ ‖X) is a Banach space
then (X∗ , ‖ ‖X∗) is also a Banach space .

If f , a function from X to R∪{+∞}. One denotes by (Pmin) the following
problem :

Find x ∈ X, a solution of min
x∈X

f (x) .

One says that x is solution of the problem (Pmin) if f has a minimum on
X at the point x, then :

∀x ∈ X f (x) ≤ f (x) .

.

29



30 CHAPTER 2. OPTIMALITY CONDITIONS

2.1 Different concepts of derivatives

Let (Y , ‖ ‖Y) be a linear normed space over R. One denotes by L (X , Y)
the space of linear continuous functions from X to Y.

2.1.1 Derivatives following a direction

Definition 22 Let f X → Y; let x ∈ X and let h ∈ X, one says that f
has a derivative at the point x in the direction h if

lim
t7→0+

f (x + th)− f (x)
t

exists.

In this case, we name this limit, the derivative of f at the point x following
the direction h and we set :

f ′ (x;h) = lim
t7→0+

f (x + th)− f (x)
t

.

Remark 9 If f X → R ∪ {+∞}, we have the same definition if we take
x ∈ dom (f) and let h ∈ X.

If x ∈ dom (f), One has : f ′ (x; 0X) = 0
If we set gx , h (t) = f (x + th), if gx , h is defined on a segment [0 , δ] for a
real number δ > 0 then f has a derivative at the point x in the direction h
if and only if gx , h has a derivative at the right at 0. moreover we have :

f ′ (x;h) =
(
g
′
x , h

)
d
(0) .

Remark 10 If f ’ (x;h) is defined then :

∀λ ≥ 0 f ’ (x;λh) = λf ’ (x;h) .

Exemple : Let a be a bilinear continuous form on X, let x∗ ∈ X∗ and
k ∈ R, if we set :

J (x) =
1
2
a (x , x)− < x∗ , x > +k ,

we obtain

J (x + th)− J (x) =
1
2

[
a (x , x) + ta (x , h) + ta (h , x) + t2a (h , h)

]
− < x∗ , x > −t < x∗ , h > .
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Then

J (x + th)− J (x)
t

=
1
2

[a (x , h) + a (h , x)− 2 < x∗ , h >] + t a (h , h) .

Thus

∀x ∈ X ∀h ∈ X J’ (x;h) =
1
2

[a (x , h) + a (h , x)− 2 < x∗ , h >] .

In the particular case where a is symmetric, that is if :

∀x ∈ X ∀y ∈ X, a (x , y) = a (y , x) .

We have :

∀x ∈ X ∀h ∈ X J’ (x;h) = a (x , h) − < x∗ , h > .

Exemple : Let H be a real Hilbert space with its associated scalar
product < , >H and the corresponding norm ‖ ‖H. If :

∀x ∈ H, J (x) = ‖x‖H .

We have :

gx,h (t) =
(
‖x + th‖2

H

) 1
2 = (< x + th , x + th >H)

1
2 .

Thus :

∀x ∈ H \ {0} ∀h ∈ H J’ (x;h) =
(
g
′
x , h

)
d
(0) =

< x , h >H

‖x‖H
.

∀h ∈ H J’ (0X;h) =
(
g
′
0X , h

)
d
(0) = ‖h‖H .

Exemple : Let f be a continuously differentiable map from R to R. Let
K be a compact subset of RN . One denotes by X = C (K , R), the linear
space of continuous functions from K to R and if u ∈ X, we set

‖u‖X = max
x∈K

|u (x)| .

One defines the map Φ X → X which associates u ∈ X to its image
Φ (u) = fo u. We determine the derivative of Φ in any direction as follows .
Let u ∈ X , h ∈ X and t ∈ [0 , 1], there exists θ (x,t) ∈ [0 , 1] such that :

f (u (x) + t h (x)) − f (u (x)) = t f ′ (u (x) + θ (x,t) t h (x)) h (x) .
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The subset
K1 = u (K) + [−1 , 1]

is compact in R . The map f ′ is thus uniformly continuous on K1. Let ε > 0

∃η > 0 | ∀p ∈ K1 ∀q ∈ K1 |p− q| < η ⇒
∣∣f ′ (p)− f ′ (q)

∣∣ < ε .

We set η1 = min (η , 1), if h ∈ X is such that

∀x ∈ K |h (x)| < η1 ,

this implies that
‖h‖X < η1 ,

then for every x belonging to K, we set

∆ (x) =
∣∣∣∣ f (u (x) + t h (x)) − f (u (x))

t
− h f ′ (u (x))

∣∣∣∣ ,

then

∆ (x) =
∣∣ f ′ (u (x) + θ (x,t) t h (x)) h (x) − f ′ (u (x)) h (x)

∣∣ ,

hence, we obtain that

∀x ∈ K,
∣∣∣∣ f (u (x) + t h (x)) − f (u (x))

t
− f ′ (u (x))

∣∣∣∣ < ε |h (x)| .

Finally, ∥∥∥∥Φ (u + th)− Φ (u)
t

− h f ′o u

∥∥∥∥
X

< ε ‖h‖X ,

Then
Φ′ (u ; h) = h f ′o u .

Exercice 8 1. Compute the derivative of the absolute value function on
R in every direction .

2. Let x ∈ R, one sets x+ = x si x ≥ 0 , x+ = 0 si x < 0. Determine the
derivatives following the directions of the function from R to R which
associates x to x+.

Exercice 9 Let f be a continuous map having continuous partial deriva-
tives from RxRN to R. Let K be a compact subset of RN . Denote by
X = C1 (K , R), the space of continuous functions having continuous partial
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derivatives from K to R and Y = C (K , R), the linear space of continuous
functions from K to R. If u ∈ X, we define

‖u‖X = max
x∈K

|u (x)|+
N∑

i=1

max
x∈K

∣∣∣∣ ∂u

∂xi
(x)
∣∣∣∣

. If v ∈ Y, we define
‖v‖Y = max

x∈K
|v (x)| .

Define the map Ψ X → Y which associates u ∈ X to Ψ(u) by

Ψ(u) (x) = f (u (x) ,∇u (x)) ∀x ∈ K .

Determine the directional derivatives of Ψ .

2.1.2 Gâteaux Derivatives

Definition 23 If f X → R ∪ {+∞}, if x ∈ dom (f), one says that f
is Gâteaux differentiable at the point x ∈ X if it admits a derivative
following every direction h ∈ X and if there exists Lx ∈ X∗ such that :

∀h ∈ X f ′ (x ; h) = < Lx ; h > .

The linear continuous form Lx is called the Gâteaux derivative of f at
the point x; it is also called the gradient of f at the point x and is denoted
by ∇f (x). Thus :

Lx = ∇f (x) .

Remark 11 When X is a Hilbert space, the Riez theorem permits the iden-
tification of ∇f (x) with an element of X.

Exemple : Let f be a continuous map having continuous partial deriva-
tives from RN to R. Let K be a compact subset of RN . One denotes by
X = C1 (K , R), the linear space of continuous functions having continuous
partial derivatives from K to R. If u ∈ X, one sets

‖u‖X = max
x∈K

|u (x)|+
N∑

i=1

max
x∈K

∣∣∣∣ ∂u

∂xi
(x)
∣∣∣∣ .

Define the map J X → R which associates u ∈ X to J (u) by

J (u) =
∫
K

f (∇u (x)) dx .
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Step by step computation as in the preceeding subsection gives :

J′ (u , h) =
∫
K

N∑
i=1

∂f
∂xi

(∇u (x))
∂h

∂xi
dx .

The map h → J′ (u , h) is a linear form on X and there exits a constant C
such that : ∣∣J′ (u , h)

∣∣ ≤ C ‖h‖X .

Finally, J is Gâteaux differentiable at every point of X.

Definition 24 If f is Gâteaux differentiable at every point of X, we say
that f is Gâteaux differentiable .

2.1.3 Relationship between Gâteaux differentiability and Fréchet
differentiability

We recall the concept of differentiability or Fréchet differentiability.

Definition 25 A map f X → Y is said to be differentiable or Fréchet
differentiable at the point x ∈ X if there exists Lx ∈ L (X , Y) such that
:

lim
h 7→ 0X

‖f (x + h)− f (x)− Lx (h)‖Y
‖h‖X

= 0 .

The linear continuous map Lx is called the derivative of f at the point
x, we also call Lx the Fréchet derivative of f at the point x.

This definition is equivalent to the following property :
There exists Lx ∈ L (X , Y) and εx X → Y such that :

• lim
h 7→ 0X

εx (h) = 0Y,

• ∀h ∈ X, f (x + h) = f (x) + Lx (h) + ‖h‖X εx (h).

If f X → R ∪ {+∞}, If x ∈
o︷ ︸︸ ︷

dom (f), we say that f is differentiable
at a point x ∈ X if there exists Lx ∈ X∗ such that :

lim
h 7→ 0X

|f (x + h)− f (x)− Lx (h)|
‖h‖X

= 0 .

The linear continuous form Lx is called the derivative of f at the point
x, Lx is also called the Fréchet derivative of f at the point x.



2.1. DIFFERENT CONCEPTS OF DERIVATIVES 35

We may characterise the differentiability of f at a point x ∈
o︷ ︸︸ ︷

dom (f) by
the following property : there exists Lx ∈ L (X , Y), r > 0 and εx B (0X , r) →
R such that :

• lim
h 7→ 0X

εx (h) = 0 .

• ∀h ∈ B (0X , r) f (x + h) = f (x) + Lx (h) + ‖h‖X εx (h) .

Notation : We set : f ′ (x) = Lx.

The following proposition is obvious .

Proposition 16 If f is differentiable at the point x then f is Gâteaux dif-
ferentiable at the point x. Moreover, ∇f (x) = f ′ (x).

We have the converse in the following case :

Proposition 17 If f X → R ∪ {+∞}, if x ∈
o︷ ︸︸ ︷

dom (f), suppose that f is
Gâteaux differentiable in a neighbourhood V of x and if ∇f V → X∗ is
continuous then f is Fréchet differentiable at the point x, in addition :

f ′ (x) = ∇f (x) .

Proof : If ε > 0, there exists η > 0 such that B (x , η) ⊂ V and :

∀ξ ∈ B (0X , η) ‖∇f (x + ξ)−∇f (x)‖X∗ < ε .

Let h ∈ B (x , η), we denote by g [0 , 1] → R, the map which associate
t ∈ [0 , 1] to g (t) = f (x + t h). The function g is differentiable in [0 , 1]
and

∀t ∈ [0 , 1] g′ (t) = < ∇f (x + t h) , h > .

By the mean value theorem, there exits θ ∈ [0 , 1] such that :

f (x + h)− f (x) = g (1)− g (0) = < ∇f (x + θ h) , h > .

One deduces that :

f (x + h)− f (x)− < ∇f (x) , h >= < ∇f (x + θ h)−∇f (x) , h > ,

so that

|f (x + h)− f (x)− < ∇f (x) , h >| ≤ ‖∇f (x + θh)−∇f (x)‖X∗ ‖h‖X ,
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thus,
|f (x + h)− f (x)− < ∇f (x) , h >| ≤ ε ‖h‖X .

The function f is then differentiable at the point x and we have :

f ′ (x) = ∇f (x) .

Proposition 18 Let f X → R ∪ {+∞} be a convex function . If f is
Gâteaux différentiable on X then f is a convex function if and only if :

∀x ∈ X ∀y ∈ X f (x) + < ∇f (x) , y − x > ≤ f (y)

(Convexity Inequality ).

Proof : It is given in the proof of some following propositions .

We characterise the convexity of a function by the properties of the
Gâteaux derivatives .
Let C be a non void convex closed subset of X and let f be a convex function
from C to R.

Proposition 19 If f has a Gâteaux derivative on C then f is convex if and
only if :

∀y ∈ C ∀x ∈ C, < ∇f (y) − ∇f (x) , y − x >≥ 0 .

Remark 12 If the inequality in proposition 19 holds, we say that ∇f is
monotone.

Proof : We suppose that f is convex then one may apply the convexity
inequality for x and y belonging to C, thus :

f (x) + < ∇f (x) , y − x >≤ f (y)

and
f (y) + < ∇f (y) , x− y >≤ f (x) .

Adding these two inequalities, we obtain

< ∇f (x) − ∇f (y) , y − x >≤ 0

which implies
< ∇f (y) − ∇f (x) , y − x >≥ 0
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We prove now the converse .
Let x ∈ C, y ∈ C and t ∈ [0 , 1], we set :

ϕ (t) = f ((1− t) x + t y)

The function ϕ is continuously differentiable :

ϕ′ (t) = < ∇f ((1− t) x + t y) , y − x > .

As ∇f is monotone then ϕ′ is inceasing on [0 , 1] thus ϕ is convex on [0 , 1].
Hence, we have that

ϕ (t) = ϕ ((1− t) 0 + t 1) ≤ (1− t) ϕ (0) + tϕ (1)

which implies

f ((1− t) x + t y) ≤ (1− t) f (x) + t f (y) .

Thus f is convex .

2.1.4 Subdifferential

Definition 26 Let f X → R ∪ {+∞}, if x ∈ dom (f), then f is subdif-
ferentiable at the point x if there exits a linear continuous form x∗ ∈ X∗

such that :
∀y ∈ X f (x) + < x∗ , y − x >≤ f (y) .

We denote by ∂f (x) the set of the linear continuous forms x∗ ∈ X∗ which
satisfy the above property . The subset ∂f (x) is called the subdifferential
of f at the point x.

Remark 13 The subset ∂f (x) is convex and closed in X∗

Proposition 20 Let f X → R ∪ {+∞} be a convex function . If f is
Gâteaux differentiable at the point x ∈ dom (f) then ∂f (x) = {∇f (x)}.

Proof : Let y ∈ dom (f) and t ∈ ]0 , 1], then by convexity of f we have :

f ((1− t) x + t y) ≤ (1− t) f (x) + t f (y) .

this implies

1
t

[f (x + t (y − x)) − f (x)] ≤ f (y) − f (x) .
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As t tends to 0+, we obtain :

< ∇f (x) , y − x >≤ f (y) − f (x) ,

thus,
∀y ∈ X f (x) + < ∇f (x) , y − x > ≤ f (y) .

Let
∇f (x) ∈ ∂f (x) .

Let x∗ ∈ ∂f (x), let h ∈ X if t ∈ ]0 , 1], we have :

f (x + t h) ≥ f (x) + < x∗,t h > .

this implies
1
t

[f (x + t h) − f (x)] ≥ < x∗,h > .

As t tends to 0+, we obtain :

∀h ∈ X < ∇f (x) , h > ≥ < x∗,h > .

If we replace h by −h in the preceeding inequality, we obtain :

∀h ∈ X < ∇f (x) , h > ≤ < x∗ , h > .

Thus,
∀h ∈ X < ∇f (x) , h >=< x∗ , h > ,

hence,
∂f (x) = {∇f (x)}

The converse of proposition 20 is given as follows :

Proposition 21 Let f X → R ∪ {+∞} be a convex application . If f
is continuous at a point x ∈ dom (f) and if ∂f (x) is a singleton then f is
Gâteaux différentiable at the point x.

Some computational properties of the usual derivitives also hold for sub-
differentials .

Proposition 22 Let f and g be convex functions from X to R ∪ {+∞}, if
x ∈ dom (f) ∩ dom (g) :

• If λ > 0 then
∂ (λ f) = λ ∂ (f) .
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•
∂ (f) (x) + ∂ (f) (x) ⊂ ∂ (f + g) (x) .

• If f and g are lsc, proper and and if f is continuous at the point x
then :

∂ (f + g) (x) = ∂ (f) (x) + ∂ (g) (x) .

Proof : The first property is obvious . We prove now the inclusion .

∂ (f + g) (x) ⊂ ∂ (f) (x) + ∂ (f) (x) .

Let x∗ ∈ ∂ (f + g) (x) then

∀y ∈ X f (x) + g (x) + < x∗ , y − x >≤ f (y) + g (y) .

Set :

C1 = {(y,λ) ∈ XxR | f (y) − f (x) − < x∗ , y − x >≤ λ}

and
C2 = {(y,λ) ∈ XxR | λ ≤ g (x) − g (y)} .

The preceeding inequality shows that the common points of C1 and C2

are the boundary points only . In addition the function F which is defined
by :

∀y ∈ X F (y) = f (y) − f (x) − < x∗ , y − x > .

has C1 as its epigraph, also, F is continuous at the point x thus the interior
of C1 is empty . As C2 is convex , there exists (u∗,α) ∈ X∗xR \ {(0X,0)}
such that :

∀y ∈ X g (x) − g (y) ≤< u∗ , y > + α ≤ f (y) − f (x) − < x∗ , y− x > .

Thus for y = x, we obtain < u∗,x > +α = 0 and this implies α =< u∗,−x >.
On the one hand, we have :

∀y ∈ X g (x) − g (y) ≤< u∗ , y − x > .

That is
∀y ∈ X g (x) + < −u∗ , y − x >≤ g (y) .

thus −u∗ ∈ ∂ (g) (x).
In addition

∀y ∈ X < u∗ , y − x >≤ f (y) − f (x) − < x∗ , y − x > ,
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this implies

∀y ∈ X f (x) + < x∗ + u∗ , y − x >≤ f (y) − f (x) ,

thus, x∗ + u∗ ∈ ∂ (f) (x).
Hence x∗ = (x∗ + u∗) + (−u∗) belongs to

∂ (f) (x) + ∂ (g) (x) .

2.2 Euler Equations

With the help of the concept of differentiability, it is possible for us to write
the the relation satisfied by a solution x of the problem :

min
x∈X

f (x)

2.2.1 Optimality conditions

Let f X → R ∪ {+∞} be a function . Suppose that the problem min
x∈X

f (x)

has at least one solution x ∈ dom (f).

Proposition 23 If f has a derivative in the direction h ∈ X at the point x
then :

f ′ (x , h) ≥ 0

Proof : We have :

∀t > 0 f (x + th) ≥ f (x) ,

this implies

f ′ (x , h) = lim
t→0+

f (x + th)− f (x)
t

≥ 0 .

Proposition 24 If f admits a Gâteaux derivative at the point x and if

x ∈
0︷ ︸︸ ︷

dom (f) then :
∇f (x) = 0 .

Proof : This is obvious by proposition 23 .

We now examine important properties of convex functions . Let C be a
non void closed convex subset of X and f a convex function of C to R.



2.2. EULER EQUATIONS 41

Proposition 25 If f has a continuous Gâteaux derivative at the point x ∈
C then the following properties are equivalent :

•
x is the solution of the problem min

x∈C
f (x) .

•
∀y ∈ C < ∇f (x) , y − x >≥ 0 .

•
∀y ∈ C < ∇f (y) , y − x >≥ 0 .

Proof : We suppose that x is solution of the problem min
x∈C

f (x).

Let y ∈ C and t ∈ ]0,1], then

f ((1− t) x + ty) ≥ f (x) ,

this gives
f (x + t (y − x))− f (x)

t
≥ 0 ,

thus, taking the limit as t tends to 0+ gives

< ∇f (x) , y − x >≥ 0 .

Now, we suppose that ∀y ∈ C < ∇f (x) , y − x >≥ 0
But the function f is convex and its Gâteaux derivative is monotone thus

∀y ∈ C ∀z ∈ C < ∇f (y) − ∇f (z) , y − z >≥ 0 .

If we put z = x, we obtain :

∀y ∈ C ∀z ∈ C < ∇f (y) − ∇f (x) , y − x >≥ 0 .

Since
< ∇f (x) , y − x >≥ 0 .

We easily obtain :
< ∇f (y) , y − x >≥ 0 .

Now suppose that :

∀y ∈ C < ∇f (y) , y − x >≥ 0 .
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Let y ∈ C, and t ∈ [0,1], define

ϕ (t) = f ((1− t) x + t y) .

The function ϕ is differentiable and

ϕ′ (t) = < ∇f ((1− t) x + t y) , y − x > ,

thus
∀t ∈ [0,1] ϕ′ (t) ≥ 0 ,

then ϕ (1) ≥ ϕ (0) that is f (y) ≥ f (x). Hence, x is solution of the problem
min
x∈C

f (x).

Proposition 26 If f is a convex function from X to R∪ {+∞} then f has
a minimum at the point x ∈ X if and only if :

0X∗ ∈ ∂f (x) .

2.2.2 Ekeland Variational Principle

Let f be a function from a Banach space X to R ∪ {+∞}

Ekeland Variational Principle

Theorem 7 Suppose that f is proper, bounded below and lsc such that there
exits ε > 0 and xε ∈ X verifying f (xε) ≤ inf

x∈X
f (x) + ε. Then there exists

yε ∈ X such that :

•
f (yε) ≤ f (xε) .

•
‖xε − yε‖X ≤ 1 .

•
∀x ∈ X |x 6= yε ⇒ f (x) > f (yε)− ε ‖x− yε‖X .

Proof : Observe that the function x 7→ f (x) − ε ‖x− yε‖X has a strict
minimum at the point yε. We construct a sequence (zn)n∈N to approximate
yε. Put z0 = xε, suppose that we have defined z1 to zn; then we set :

Sn = {u ∈ X |f (u) ≤ f (zn)− ε ‖u− zn‖X} .
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Observe that zn ∈ Sn thus, Sn 6= ∅. As f (zn) > inf
u∈Sn

f (u) we obtain

inf
u∈Sn

f (u) <
1
2

inf
u∈Sn

f (u) + f (zn) ,

thus there exists zn+1 ∈ Sn such that :

f (zn+1) ≤
1
2

inf
u∈Sn

f (u) +
1
2

f (zn) ,

this gives

f (zn+1) − inf
u∈Sn

f (u) ≤ 1
2

[
f (zn) − inf

u∈Sn

f (u)
]

.

We prove that the sequence (zn)n∈N is a Cauchy sequence . The sequence
(f (zn))n∈N is decreasing, as f is bounded below, it converges . If m and n
are integers such that m > n, we have :

ε ‖zm − zn‖X ≤ f (zn) − f (zm) .

Thus, the sequence (zn)n∈N is a Cauchy sequence, so there exists z ∈ X
such that z = lim

n7→+∞
zn. Since the function f is lsc , we obtain :

f (z) ≤ lim inf
n7→+∞

f (zn) .

Then
f (z) ≤ lim inf

n7→+∞
f (zn) ≤ lim inf

n7→+∞
inf

u∈Sn

f (u) .

As the sequence (f (zn))n∈N is decreasing , we have f (z) ≤ f (z0) = f (xε)
then

ε ‖xε − z‖X = ε ‖z0 − z‖X ,

thus,
ε ‖xε − z‖X ≤ f (xε) − f (z) ≤ f (xε) − inf

x∈Sn

f (x) ,

therefore,
ε ‖xε − z‖X < ε ,

hence,
‖xε − z‖X < 1 .

Finally, to verify the last part of the theorem, we assume that z does not
satisfy it . Then there exists v 6= z such that

f (v) ≤ f (z)− ε ‖v − z‖X ,
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thus
f (v) < f (z) .

We also have that :

∀n ∈ N f (v) ≤ f (zn)− ε ‖v − zn‖X ,

then
v ∈ Sn ∀n ∈ N ,

thus
f (z) ≤ f (v)

This is impossible.
To conclude it is enough to take yε = z. This completes the proof .

From this theorem, we obtain the following obvious proposition :

Corollary 1 If X is a Banach space and if f X → R∪{+∞} is lsc, proper
and bounded below then

∀ε > 0 ∃xε ∈ X | ∀x ∈ X x 6= xε f (x) > f (xε) − ‖x− xε‖X .

We also have the following corollary :

Corollary 2 If X is a Banach space and if f X → R is lsc, Gâteaux
differentiable and such that there exists ε > 0 and xε ∈ X satisfying f (xε) ≤
inf
x∈X

f (x) + ε. Then there exists yε ∈ X such that :

•
f (yε) ≤ f (xε) .

•
‖xε − yε‖X ≤

√
ε .

• ∥∥f ′ (yε)
∥∥
X∗ ≤

√
ε .

Proof : As in the proof of Ekeland variational Principle with the following
equivalent norm

‖ ‖1 =
1√
ε
‖ ‖X .

One consequence of this result is :
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Corollary 3 If X is a Banach space and if f X → R is lsc, Gâteaux
differentiable, then there exits a sequence (xn)n∈N of elements belonging to
X such that :

•
inf
x∈X

f (x) = lim
n→+∞

f (xn) .

•
lim

n→+∞
∇f (xn) = 0X∗ .

Remark 14 This result is a generalization of the Euler equation .

Palais Smale condition

Definition 27 If X is a Banach space and if f X → R is of class C1.
One says that f satisfies the Palais Smale conditions at the level c ∈ R,
i.e., f satisfies (PS)c, if for every sequence (xn)n∈N of elements in X such
that :

•
lim

n→+∞
f (xn) = c .

•
lim

n→+∞
∇f (xn) = 0X∗ .

then (xn)n∈N converges to an element of X.
When f satisfies (PS)c for all c ∈ R, we say that f satisfies Palais Smale
conditions and we write f satisfies (PS).

Proposition 27 If X is a Banach space, if fX → R is of class C1, bounded
below and satisfies the Palais Smale condition, then f has a minimum on
X.

Remark 15 The Palais Smale conditions are often used in the proof of
the existence of critical points .
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2.2.3 Optimality conditions with constraints

Optimality conditions with equality constraints

Let X be a reflexive Banach space with the norm ‖ ‖X. Let f X → R
and g1 ,..., gp X → R. Define the map g from X to Rp by g (x) =
(g1 (x) ,..., gp (x)) , ∀x ∈ X.
Put Sg = {x ∈ X | g (x) = 0Rp}.
We consider the following problem Pmin :

min
x∈Sg

f (x) .

Proposition 28 If f and g1 ,..., gp are continuously differentiable, if x is
solution of the problem Pmin and if g′ (x) is onto, then there exists real
numbers λ1 ,..., λp such that :

f ′ (x) +
p∑

i=1

λi g′i (x) = 0X∗ .

Proof : The linear function g′ (x) is continuous and onto from X to Rp.
If we set X1 = Ker (g′ (x)) then X1 is a closed linear subspace of X with
codimension p, with the norm ‖ ‖X1

which is restriction of ‖ ‖X on X1, thus,
X1 is a Banach space . If X2 is the orthogonal complement of X1 with the
norm ‖ ‖X2

, then (X , ‖ ‖X) can be identified as the product space X1 xX2

with the product norm . If x ∈ X, and x = (x1 , x2) where x1 ∈ X1 and
x2 ∈ X2.
The hypothesis of the theorem are equivalent to : f and g1 ,..., gp are con-
tinuously differentiable and the continuous linear application ∂g

∂x2
(x) is an

isomorphism from X2 to Rp.

The tangent linear space to Sg at the point x is given by:

Tx =
{
h ∈ X | ∃δ > 0 and γδ ]−δ , − δ[ → Sg differentiable and γ′δ (0) = h

}
.

Put :
Ex =

{
h ∈ X | g′ (x) .h = 0Rp

}
.

Let h ∈ Tx, there exits δ > 0 and a function

γδ ]−δ , − δ[ → Sg ,

differentiable such that
γ′δ (0) = h .
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We have
∀t ∈ ]−δ , − δ[ g (γδ (t)) = 0Rp ,

thus,
∀t ∈ ]−δ , − δ[ g′ (γδ (t)) .γ′δ (t) = 0Rp .

In particular, for t = 0, we have

g′ (γδ (0)) .γ′δ (0) = 0Rp ,

hence,
g′ (x) .h = 0 ,

thus h ∈ Ex.
Let h ∈ Ex, suppose that h = (h1 , h2) where h1 ∈ X1 and h2 ∈ X2;

then:
∂g
∂x1

(x) h1 +
∂g
∂x2

(x) h2 = 0Rp .

By implicit function theorem, there exists an open set U which contains
x1, an open set W containing x and a function φ U → X2 continuously
differentiable such that :

(x1 , x2) ∈ W ∩ Sg ⇔ x1 ∈ U and x2 = φ (x1) .

We have :
∀x1 ∈ U g (x1,φ (x1)) = 0R∗ .

Differentiating this relation gives :

∀x1 ∈ U
∂g
∂x1

(x1 , φ (x1)) +
∂g
∂x2

(x1 , φ (x1)) φ′ (x1) = 0X∗
1

.

Replacing x1 by x1, and as x2 = φ (x1), we obtain :

∂g
∂x1

(x) +
∂g
∂x2

(x) φ′ (x1) = 0X∗
1

.

thus :

φ′ (x1) = −
[

∂g
∂x2

(x)
]−1 ∂g

∂x1
(x) .

Let F be the function defined by

F (x1) = f (x1 , φ (x1)) ∀x1 ∈ U ,

we have :
F (x1) ≥ F (x1) ∀x1 ∈ U ,
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thus the fréchet derivative

F′ (x1) = 0X∗
1

,

that is
∂f
∂x1

(x) +
∂f
∂x2

(x) φ′ (x1) = 0X∗
1

.

So for
h = (h1 , h2) ∈ X1xX2 ,

such that
g′.h = 0Rp ,

that is
∂g
∂x1

(x) h1 +
∂g
∂x2

(x) h2 = 0Rp ,

we have

h2 = −
[

∂g
∂x2

(x)
]−1 ∂g

∂x1
(x) h1 ,

But :
f ′ (x) . h =

∂f
∂x1

(x) h1 +
∂f
∂x2

(x) h2 .

Substituting for h2 gives

f ′ (x) . h =
∂f
∂x1

(x) h1 −
∂f
∂x2

(x)
[

∂g
∂x2

(x)
]−1 ∂g

∂x1
(x) h1 .

thus,
f ′ (x) . h = 0X∗ .

Finally, we have :

∀h ∈ X if ∀i ∈ {1,...,p} g′i (x) .h = 0 ⇒ f ′ (x) . h = 0X∗ .

To conclude we use the following proposition :

Proposition 29 If x∗1 ,...,x∗p and x∗ are linear continuous forms on X such
that :

∀h ∈ X if ∀i ∈ {1 ,..., p} < x∗1 , h > = 0 ⇒< x∗ , h > = 0 .

Then there exist real numbers λ1,..., λp such that :

x∗ =
p∑

i=1

λi x∗i .
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Proof : It is obvious from the following lemma :

Lemma 1 If x∗1 ,..., x∗p and x∗ are continuous linear forms on X such that
:

∀h ∈ X if ∀i ∈ {1 ,..., p} < x∗i , h >≥ 0 ⇒< x∗ , h >≥ 0 .

Then there exist real positive numbers µ1,...,µp such that :

x∗ =
p∑

i=1

µi x∗i .

Proof : One may suppose that
{
x∗1 ,..., x∗p

}
is linearly independant .

Put :

C =

{
u∗ ∈ X∗ u∗ =

p∑
i=1

µi x∗i

}
.

The subset C is convex and closed . We suppose that x∗ /∈ C, there exists
(h , α) ∈ X xR such that :

• < x∗ , h > > α .

• ∀u∗ ∈ C < u∗ , h >≤ α .

We have α ≥ 0 thus, < x∗ , h > > 0. If there exists i0 ∈ {1 ,..., p} such
that < x∗i0 , h > > 0. As

∀µ1 ≥ 0,...,∀µp ≥ 0
i=p∑
i=1

µi < x∗i , h >≤ α .

As µi0 tends to +∞, the preceeding property is false . Thus,

∀i ∈ {1 ,...,p } < x∗i , h >≤ 0 .

then < x∗ , − h >≥ 0 this implies < x∗ , h >≤ 0 and this is impossible .
Thus x∗ ∈ C.

Optimality conditions with inequality constraints

Let {g1 ,..., gp} be functions from X to R and f X → R. Set S−g =
{x ∈ X |∀i ∈ {1,...,p} gi (x) ≤ 0} We consider the following problem Pmin

:
min
x∈S−g

f (x) .

. As in the proof of the preceeding theorem, we obtain :
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Proposition 30 If f and g1 ,..., gp are continuously differentiable, if x is
a solution of the problem Pmin and if g′ (x) is onto, then there exists real
positive numbers µ1 ,..., µp such that :

f (x) +
p∑

i=1

µi g′i (x) = 0X∗ .

and
∀i ∈ {1 ,..., p} µi gi (x) = 0X∗

2.2.4 Applications

2.2.5 Some examples in Hilbert spaces

Let H be a Hilbert space over the set of real numbers with the scalar product
< , >H and the associated norm ‖ ‖H.

Projection Theorem

Theorem 8 If C is a convex closed subset of H, then for every x belonging
to H there exits one and only one element of C denoted by PC (x) such that
:

‖x − PC (x)‖H = min
y ∈C

‖x− y‖H .

In addition PC (x) is the unique element z ∈ C such that

∀y ∈ C < x − z , y − z >H ≤ 0 .

Proof : We set
∀y ∈ H J (y) =

1
2
‖x − y‖2

H .

this gives :

∀y ∈ H J (y) =
1
2

< y , y >H − < x , y >H + < x , x >H .

The problem min
y∈C

J (y) is a quadratic optimization problem and the function

J is convex and coercive. Thus, this problem has one and only one solution
PC (x) ∈ C. The function J is differentiable and

∀h ∈ H < J′ (y) , h >H=< y , h >H − < x , h >H .
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Thus z ∈ H is solution of min
y∈C

J (y) if and only if:

z ∈ C and ∀y ∈ C < J′ (z) , y − z >H = < z − x , y − z >H ≥ 0 ,

then
∀y ∈ C < x − z , y − z >H ≤ 0 .

Exercice :
Let C be a non void convex closed subset of H.

• Show that

∀x ∈ H ∀y ∈ H ‖PC (x) − PC (y)‖H ≤ ‖x − y‖H .

• Show that if C is a closed linear subspace of H then :

z = PC (x) if and only if z ∈ C and ∀y ∈ C < x − z , y >H = 0 .

• Show that if C is a closed linear subspace of H then PC is linear and
continuous and moreover,

∀x ∈ H ‖x‖2
H = ‖PC (x)‖2

H + ‖x − PC (x)‖2
H .

• Prove that if C is a closed linear subspace H and if

C⊥ = {x ∈ H | ∀y ∈ C < x , y >H = 0}

then
H = C ⊕ C⊥ .

Stampacchia Theorem : the symmetric case

Lett a be a bilinear form on H which is continuous, coercive and symmetric
. We have:

• the continuity of a is equivalent to

∃M > 0 | ∀x ∈ X ∀y ∈ X |a (x , y)| ≤ M ‖x‖X ‖y‖X ;

• the coercivity of a is equivalent to

∃α > 0 | ∀x ∈ X α ‖x‖2
X ≤ a (x , x) ;
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• a is symmetric if and only if

∀x ∈ H ∀y ∈ H a (x ,y ) = a (y ,x ) ;

Let ` be a linear continuous form on H . There exists L > 0 such that

∀x ∈ H |` (x)| ≤ M ‖x‖H

We define on H, the function denoted by J by :

J (x) =
1
2
a (x , x) − ` (x , x) ∀x ∈ H .

Theorem 9 If C is a non void closed convex subset of the Hilbert space H
, if a is a bilinear form on H which is symmetric, continuous and coercive;
and if ` is a linear continuous form on H then the problem :

Findu ∈ C such that ∀v ∈ C a (u , v − u) ≥ ` (v − u)

has one and only one solution .

Proof : Let J be the proper convex continuous and coercive function
which is defined by :

J (v) =
1
2

a (v , v)− ` (v) .

The problem
min
x∈C

J (x)

is a quadratic optimization problem which has one and only one solution
u ∈ C and which is characterized by :

∀v ∈ C J′ (u) . (v − u) ≥ 0 ;

or
∀v ∈ C a (u , v − u) − ` (v − u) ≥ 0 ,

thus u ∈ C verifies :

∀v ∈ C a (u , v − u) ≥ ` (v − u) .

Remark 16 The problem may be interpreted like a projection problem when
we endow H with the scalar product defined by a .
The theorem is also true if a is not symmetric .
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Lax Milgram Theorem

Theorem 10 If H is a Hilbert space, if a is a bilinear form on H which is
symmetric, continuous and coercive and if ` is a linear form on H which is
continuous then the problem :

Find u ∈ H such that ∀v ∈ H a (u , v) = ` (v)

admits one and only one solution .

Proof : It is enough to prove the equivalence of the problem P1

Find u ∈ H such that ∀v ∈ H a (u , v) = ` (v)

with the problem P2

Find u ∈ H such that ∀v ∈ H a (u , v − u) ≥ ` (v − u) .

We suppose that u ∈ H is a solution of P1 :
Let v ∈ H, we have

a (u , v − u) = a (u , v) − a (u , u) = ` (v) − ` (u) ,

then
a (u , v − u) = ` (v − u) .

thus u is the solution of P2.
Conversely, let u ∈ H be a solution of P2 :
Let v ∈ H then w = u + v belong H. Replacing v with w in P2 gives:

a (u , v) ≥ ` (v) .

If we replace v by −v in this relation, we obtain :

a (u , v) ≤ ` (v) ,

so
a (u , v) = ` (v) .

Thus u is a solution of P1.
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An example of application in solving partial differential equation

Let Ω be a non void open domain of RN . Let f ∈ L2 (Ω), we want to solve
the problem :
Find u ∈ H1

0 (Ω) such that

−∆u = f in Ω

This problem is equivalent to the minimization problem which is defined by
the function J where:

J (v) =
1
2

∫
Ω

< ∇v ,∇v >RN dx −
∫
Ω

f v dx v ∈ H1
0 (Ω)

and the minimization problem

min
v∈ H1

0 (Ω)
J (v) .

This problem is a quadratic optimization problem, it has one and only one
solution .

2.2.6 An example in a Banach space

Let p > 1 and q > 1 such that 1
p + 1

q = 1. Let f ∈ Lq (Ω) , where Ω a non
void bounded domain of RN . We want to solve the problem :

Find u ∈ W1 p
0 (Ω) such that

−div
(
‖∇u‖p−2

RN ∇u
)

= f in Ω .

This problem is equivalent to the minimization problem which is defined by
the function J where:

J (v) =
1
p

∫
Ω
‖∇v‖p

RN dx −
∫
Ω

f v dx v ∈ W1 p
0 (Ω)

and the minimization problem

min
v∈ W1 p

0 (Ω)
J (v) .

The function J is strictly convex, lsc, proper and coercive on the Sobolev
space W1 p

0 which is a reflexive Banach space . The minimizing problem has
one and only one solution .
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2.2.7 An eigenvalue problem

Let Ω be a non void bounded domain of RN .
We want to find a function u ∈ H1

0 (Ω) \ {0} such that there exists a real
number λ with

−∆u = λ u on Ω .

This problem is an optimization problem with equality constraints

min
v∈ H1

0 (Ω) g (v) = 0
J (v)

J and g are defined as follows:

v ∈ H1
0 (Ω) J (v) =

1
2

∫
Ω
‖∇v‖2

RN dx ;

v ∈ H1
0 (Ω) g (v) =

1
2

∫
Ω
|v|2 dx − 1

2
.

We remark that if {v ∈ H1
0 (Ω) : g (v) = 0} 6= ∅ then

∀h ∈ H1
0 (Ω) g′ (v) .h =

∫
Ω

v h dx

and g′ (v) is a continuous onto linear form on H1
0 (Ω). The function J is

differentiable and :

∀h ∈ H1
0 (Ω) J′ (v) .h =

∫
Ω

< ∇v ,∇h >RN dx .

Thus, if the minimization problem has a solution u, there exists λ ∈ R such
that ∀h ∈ H1

0 (Ω) J′ (u) .h = λ g′ (u) .h , then

∀h ∈ H1
0 (Ω)

∫
Ω

< ∇u ,∇h >RN dx = λ

∫
Ω

u h dx .

We deduce that u ∈ H1
0 (Ω) and −∆u = λ u .

Moreover, if λ > 0, it is enough to take h = u. Now, we prove the existence
of u. The function J is bounded below by 0 thus, it has a finite infimum.
There exists a minimizing sequence (un)n∈N of elements of H1

0 (Ω) such that
∀n ∈ N ‖un‖L2(Ω) = 1.
The sequence (un)n∈N is bounded in H1

0 (Ω) thus it has a subsequence
(unk

)k∈N which converges weekly in H1
0 (Ω) to an element u. The space

H1
0 (Ω) is included with compact inclusion in L2 (Ω),then the sequence (unk

)k∈N
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converges in L2 (Ω) to u. Thus, g (v) = 0 and ‖u‖L2(Ω) = 1, u 6= 0.
In addition, J is weakly lsc, so

J (u) ≤ lim inf
k→+∞

J (unk
) = inf

v∈ H1
0 (Ω) g (v) = 0

J (v) .

The minimization problem has one solution .
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