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Chapter 1

Direct Methods

1.1 An easy example

Let a and b be real numbers such that a < b and let f [a,b] — R be

differentiable. The problem H[linb} f (x) has at least one solution z € [a, b]
zEla ,

by the Wierstrass’s theorem. Moreover, the point z satisfies the following :

/

Ve € [a,b] (x —z)f (z) >0.

This relation is called the Euler equation of the problem H[linb] f(z).
z€la,

To prove this relation, we consider the three cases:

/

o Ifz = athenf (a)=f,(a) > 0.

o Ifz = bthenf (b) =f,(b) < 0.

o If z € ]a, b], we have £ (z) = fcll () > 0 and £ (x) = f; (z) < 0 thus
f' (z) = 0.

The compactness of [a, b] permits us to prove the existence of a minimum
and the derivation leads to the relation verified by the point x where f
reaches its minimum. In this relation one should note that the properties
are different depending on whether z is an interior point or a boundary
point.
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1.2 Minimum and maximum

1.2.1 Minimum
Definitions

Let X is a non void (non empty) set and f a map from X to R U {4o00}.

Definition 1 Let z € X, the function f has a minimum over X at the point
z € X, if we have :
VeeX f(z) < f(x) .

One notes :
f(z) = min f(2) .
(2) = mip £ (2)
Definition 2 Let z € X, we say that f has a strict minimum over X at the

point x € X, if we have :

VeeX f(z) < f(x) .

1.2.2 Maximum
Definitions

Let X a non void set and let f be a map from X to R U {+o0c}.

Definition 3 Let x € X, we say that f has a mazimum over X at the point
z € X, if we have :
VeeX f(x) < f(T) .
One notes:
f(z) = f )
(z) = max f(z)

Definition 4 Let x € X, we say that £ has a strict mazimum over X at the
point x € X, if we have :

VeeX f(z) < f(z) .
Remark 1 :

e The map f has a mazimum at the point T if and only if the map —f
has a minimum at the point T.

o The map f has a strict maximum at the point T if and only if the map
—f has a strict minimum at the point T.
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Remark 1 shows that the problem of finding the maximum
may be posed as a minimization problem. We, therefore, restrict
ourselves to the study of the problem of finding a minimum in this
note only .

1.3 Lower semi continuity and upper semi conti-
nuity

Let 7 be a topology on X. We denote the set of all neighbourhoods of a by
V (a).

1.3.1 Lower semi continuity

Definition 5 A function f of the topological space (X, T) which takes its
values in R U {400} is lower semi continuous (Isc) at the point a € X, if
one has :

VAXe R|A<f(a) IVEV(a)| VeV = f(z)> X.

Exercice 1 Show that if f (a) € R then f is Isc at the point a if and only
if :
Ve > 03V eV(a)| Ve eV = f(x)> f(a) — €.

Deduce that if £ is continuous at a point a € X then f is 1sc at the point a.

Exercice 2 Let f be a map from the topological space (X, T) which takes
its values in RU {+00}.
Show that :
f(a) > sup inf f(y
(@) veV(a) Y€V )

Deduce that £ is 1sc at a point a € X if and only if :

f(a) = sup inf f(y) .
(@) vev(a) Y€V )

Exercice 3 Let f and g are maps from the topological space (X, T) which
take there values in RU{+o00} 1Isc, show if a and 3 are real positive numbers
then of + Og is Isc.

Definition 6 A function f from the topological space (X, T) which takes

its values in R U {+oc} is lower semi continuous, if it is Isc at every point
of X.
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Remark 2 A continuous function is Isc.

We have the following properties :

Proposition 1 A function f from the topological space (X, T) which takes
its values in R U {+oo} is Isc, if and only if :

VAXER, (N, +o0)) €T .

Proof :
Suppose that f is Isc. One sets :

O =f1(\, +o0]) .

Let a € O, then f (a) > A. Since the function f is lsc,there exists V € V (a)
such that :
VeeV = f(z)> \.

This implies that V' C O , thus O € 7.
Next, we prove the reverse. Let ¢ € X and let A € R such that f (a) > A
then

O=f"'1(\, +x]) € V(a) .

Thus f is Isc.
Definition 7 If £ is a map from X to R U {+o0}, the subset of X x R

defined by :
epi(f) = { (z,\) e XxR|f(z) < A} .

is called the epigraph of f.

The following proposition gives a characterisation of the lower semi con-
tinuity of a function by the properties of its epigrah.

Proposition 2 A function f defined from the topological space (X, T)
which takes its values in R U {400} is Isc if and only if epi (f) is closed in
XxR.

Proof : Suppose that f is Isc. Let (a, \g) € X x R such that
(a,Xo) ¢ epi(f) then f(a) > Ao. Let € > 0 be such that \g +¢ < f(a).
There exists V' € V (a) such that

Ve e V f(z) > X +e€.
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Therefore (V x [Ag —€; Ao+ €[ ) N epi (f) is void (empty) ; but Vx]Ag — €; Ao + €]
is a neighbourhood of (a , Ag) thus, epi (f) is closed.
Conversely, suppose that epi (f) is closed in XxR. Let a € X and A € R
such that f (a) > A, then (f (a) ,\) ¢ epi(f) thus, there exists V' € V (a)
and € > 0 such that (Vx ]A—e; A+ ¢€[)) epi(f) is void. Let x € V,
(x,\) ¢epi(f) .

therefore f (z) > A. Then f is Isc.

For a family of Isc functions , we have :

Proposition 3 If (f;),.; is a family of Isc functions from the topological
space (X, T) which take its values in RU{+o0} then supf; is a lsc function.
i€l
Proof : It is enough to remark that :

epi(f) = ﬂ epi(f;) .

1€l

Proposition 4 If a function f from a topological space (X, T) to R U

{+oo} is Isc at a point a € X, if (xp),cn 95 @ sequence in X such that
lim z, = a, then liminff (z,) > f(a)

n——+00 n——+00

Proof : Let A < f (a), there exists V' € V (a) such that :
VeeV f(x)> X;

and since lirf T, = a, there exists N € N such that
n—-+0oo

VneN,n>N = x,€V.
Thus if n € N is such that n > N then

inf f(z,) > A,

p=>n
therefore
sup inf f (z,) > .
neN P2n
Conequently,

liminf f (x,) = sup inf f(z,) > f(a) .
=400 neN p2n
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Exercice 4 Prove that if (X, d) is a metric space, a function f is lsc if

and only if for all sequences (Tn),cn Such that lir}rl T, = a implies
n—-roo
lim f(z,) > f(a).
n— 400

Definition 8 Let A € R, a subset of X denoted by Sy (f) where :
Syx(f)={zeX|f(z) <A}
1s called a section of f.

Remark 3 If f is Isc then Sy (f) is closed.

1.3.2 Upper semi continuity

Definition 9 A function f from a topological space (X, T) which takes its
values in R U {—o0} is upper semi continuous (usc) at the point a € X, if
one has :

VAe R|[f(a) < AV eV(a)| VeV = f(z)< X.

Remark 4 The map f is usc if and only if —f is Isc.

1.4 Wierstrass’s theorem

Definition 10 If f is a function from X to RU{+oc}, the domain of f
is the subset denoted by dom (f) and defined by :

dom(f) = {r e X |f(z) < +o0} .
If dom (f) is non void, one says that f is proper.

Theorem 1 (Wierstrass)
If (X, T) is a compact topological space and if f is a proper map and lsc
from (X, T) which takes its values in R U {+oo} then there ezists z € X
such that

VeeX f(z) < f(x) .

Proof : Let m = {L}g)f(f (x).

Suppose that m = —oo. There exists a sequence (), Of elements of X
such that
VneN f(z,) <-—n.
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Let A € R, then there exists NV € N such that
Vne N|n >N = f(z,) <A

The sequence (), has a cluster point 2 € X. The function f is Isc at =
then there exists V' € V (z) such that

VeeV f(x) >\

There exists also p € N such that p > N and 2, € V then f(z,) > A and
f(xzp) < A. It is impossible. Thus m € R.

Let z € X be the cluster point of the minimizing sequence (z,,),,cn- Suppose
that f (z) > m. Then there exists § > 0 such that f (z) > m + §. But the
function f is Isc at x, thus there exists V' € V (z) such that

VeeV f(x) >m+4§
There exists also NV € N such that
Vne N|n >N = m<f(x,) <m+9

There exists p € N such that p > N and z, € V then f(z,) > m +0
and f (z,) < m+6 . It is impossible. Thus m = f ().

1.4.1 Sequentially compact set

Let (X, 7) a topological space.

Definition 11 A subset K of X is said to be sequentially compact if
every sequence of elements of K has a subsequence which converges to an
element of K.

Following the proof of the Wierstrass’s theorem we have:

Theorem 2 If (X, T) is a sequentially compact topological space and if
f is a proper map and 1sc from (X, T) which takes its values in RU{+o0}
then there exists x € X such that

VeeX f(z) < f(x) .
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1.5 Coercivity property

1.5.1 Coercivity

Definition 12 A function f from the topological space (X, T) which takes
its values in R U {+oo} is said coercive if the closure of every section

S\x(f)={zeX|f(z) <A}
18 compact in X.

Definition 13 A map £ from the topological space (X, T) to R U {+o0}
1s said to be sequentially coercive if the closure of every section

Sy(f) ={zeX|f(x) <A}
1s sequentially compact in X.

If (X, | |lx) is a reflexive Banach space, one defines, in general, the
coercivity of f by the property :
lim f(z) = +o00.

llllx o0

In fact we have :

Proposition 5 If (X, || ||x) is a reflexive Banach space then the map f is
weakly sequentially coercive if and only if :
lim f(z) = +0 .
l[[] =00
Proof : One supposes that f is weakly sequentially coercive . If f does

not tend to +o0o when ||z|, — +oo, there exists a sequence (z,,),cn stuch
that : lirf |znllx = +oo and (f (2y)),cn is bounded. Let A € R such
n—-10o0o

that :
YneN, |f(z,)] <.

As S, (f) is weakly sequentially compact, the sequence (z,), . has a sub-
sequence (Zn, ), Which converges weakly to an element x of Sy (f). Then
(Tny,)pen s bounded . This is impossible .

Now, we prove the converse. Let A € R and (z,,),,cn @ sequence of elements
of Sy (f) then (), is a bounded sequence ; then it has a weakly conver-
gent subsequence (7, ), cn in the closure of Sy (f). Thus f is sequentially
coercive.
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Theorem 3 (Tonelli’s Theorem) Let £ from (X, T) to RU {+o0}, be
a proper, coercive, Isc function. Then £ has a minimum in X.

Proof : Let a € X be such that f (a) < 400, the subset Sg(,) (f) is relatively
compact ( that is, the closure is compact), but f is Isc, since Sg(,) (f) is

closed, it is compact. Thus by Wierstrass’s theorem, there exists z €
St(q) (f) such that :

Va € Sy (F) £(2) < f(2) -

As a result :
Vee X f(z) <f(x) .

The following theorem is easy to prove :

Theorem 4 (Tonelli’s Theorem) A map f from the topological space
(X, 7) to RU{+o0}, proper, Isc and sequentially coercive has at least
a minimum n X.

1.6 Minimizing sequences
Let f be a map from X to RU {400} such that

mleg)f(f(x) .

Definition 14 We say that a sequence (z,),c N %5 @ Mminimizing se-
quence of f, if it verifies :

ml_lgloof(xn) =m.

Exercice 5 Prove that every proper map f has a minimizing sequence.

Remark 5 As consequences of the Tonelli’s theorems, if f is a map from
the topological space (X, T) to RU {400} is proper and lsc, one has :

o if f is coercive, every minimizing sequence (xy),cn of £ has a cluster
point x € X where x is the minimum point of £ : £(x) = m;

o if £ is sequentially coercive, every minimizing sequence (), of £
has a subsequence (Tn,),cn Which converges to a point x € X where
z is the minimum point of £ : £(z) = m.
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1.7 Convexity

In this part of the note, X is a real linear space with the norm || [|x. One
denotes by X*, the topological dual space of X, that is X* is the real linear
space of the continuous linear forms on the normed space (X, || ||x). One
denotes the bilinear pairing in the duality between X and X* by < , > then

Vet e X* Ve eX, 2" () =<z ,2> .

If we set for every a* € X*,

||x*”X* = sup < z* , T >,
llellx=1
then (X*, || |x+) is a normed linear space.

1.7.1 Convex sets

Definition 15 : A subset C of X is said to be convex if :
Vte0,1] Ve CVyeC tw+(1—-t)y €C.

Definition 16 Let x and y belong to X, a subset of X denoted by [z , y] is
called the geometrical segment with extremal points x and y and it is given
by :

[z,y] = {t+(1-t)y |t0,1]} .

A subset C of X is convex if and only if every geometrical segment with
extremal points in C is included in C.
We now have the following :

Proposition 6 A subset C of X is convex if and only if :

P P
Vay...xp € C Vag...op € Ry | Zai =1= Zai:ci e C.
i=1 i=1

Proof : The proof is given by induction . Suppose that C is a convex
subset . Then the case p = 2 is obvious . Suppose that the hypothesis is
true for an integer p greater than 2, we prove that it is also true foe p+1 .
Now, let xy,...£p4+1 be points of C. Let aj,...04,11 any positive real numbers

1=p+1
such that Z a; = 1. If apy1 = 0, we are in the case of p points. So, by
i=1
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p

induction hypothesis, we are done. If a1 # 0 then y = ! Zai x;

1-api1
=1

belong C then

p+1
Z oy T, = (1 — ap+1) Y+ Qpt1Tpr1 € C.
=1

Exemples :

The linear space X, every sublinear space of X and every affine sub-
space of X are convex .

Let f X — R be a linear map such that f is not identically zero and
a € R, the subset denoted by
Hi, ={x € X | f(z) = a}, called a hyperplane is convex .

Let f X — R be a linear map such that f is not identically zero
and a € R, the following subsets Df, = {z € X | f(z) > a} and
Dy, ={x e X | f(x) < a} called closed half spaces are convex .

Let f X — R be a linear map such that f is not identically zero
and a € R, the following subsets Df I = {z € X | f(z) > o} and
Di ={x e X |f(z) <a} called open half spaces are convex .

Exercice 6 Let X be a real linear space endowed with the norm | ||x. Let
f X — R be a linear map such that f is not identically zero and o € R.

Prove that £ is continuous if and only if Hy o, is a closed subset .
Prove that if £ is continuous then D?a and Dy, are closed subsets .

Prove that if £ is continuous then D?;r and Df | are open subsets .

The convex subsets have the following proprties :

If (C;),c1 is a family of convex subsets of X then ﬂ C, is convex .
i€l
If (Ci)y<;<,, is a finite family of convex subsets and if (\;),,;.,, are
<i< N <i<

real numbers then Z X;C; is a convex subset .
i=1

The closure of a convex subset is convex .
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1.7.2 The Convex Functions

Definition 17 A function f defined on a subset C of X which takes its
values in R U {400}, is called convex if C is convexr and if

Vte0,1] VeeCVyeC, f(ta+(1—t)y) < tf(z) + (1—1t) f(y) .

Remark 6 If f is a convex function from the convex subset C of X to
R U {+o0}, one defines the convex extention of f as the function f,,
from X to RU {400} such that

o Ve Cf,(x)=1f(z) ,
o Vr ¢ Cf,(r)=1400.

The function f,, is convex on X if and only if f is convex on C.
The function f., and f are proper at the same time .
This extension does not change the minimization problem. Then if f is
proper, it has a minimum at a point z € C if and only if f., has a minimum
on X at a point x.

We shall consider in what follows the functions defined on X
and which takes its values in RU {+o0} .

Definition 18 A function f defined on a subset C of X which takes its
values in R U {400}, is said to be stricly convex if C is conver and if

Viel0,1[VeeCVyeCandx £y, f(tx+(1—1t)y) <tf(z)+(1—1t)f(y) .
A stricly convex function is a convex function .

Proposition 7 A function f from X to RU {400} is convez if and only if
epi (f) is a convex subset of X x R.

Proof : Suppose that f is convex .
Let (z,m) €epi(f), (y,72) € epi(f), let t € [0, 1], One has :

Flte+(1—1)y) <tF@)+(1-OFf(y) <ty +(1—1)7 .
Thus

ty, )+ A=)y, =0Cz+1-t)y,ty1+(1—-1)72) €epi(f) .
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So, epi (f) is convex .

Conversely we suppose epi (f) to be convex .

Let z € dom (f) and y € dom (f), then (z ,f (z)) € epi(f) and (y ,f(y)) €
epi (f) thus if ¢ € [0, 1] then

t(x  f(x)+1-t)(y ,f(y)) cepi(f) ,

therefore
f(tz+(1—-t)y) < tf(x) + (1—1t) f(y) .

So, the function f is convex.

Remark 7 If f is convex then the sections S, (f) are conver .

Exemples :

e If f and g are convex functions from X to RU {+o0}, if A € Ry and
if © € Ry then AMf + pg is convex.

e If f is convex and g is strictly convex from X to RU{+oc} then f+g
is strictly convex .

o If f and g are strictly convex functions from X to RU{+o0}, if A € R%
and if 4 € RY then M + pg is strictly convex .

o If (f;);cr is a family of convex functions from X to R U {+oc} then
sup f; is convex .

i€l
1.7.3 Continuity of the convex functions

Proposition 8 If f is a convex function from X to R U {+oo} which is
bounded above on a neighbourhood of a point a belonging to its domain, then
f is continuous at the point a and, moreover, f is locally lipschitz in the
interior of its domain .

Proof : Define the function g by :

gy)=f(a+y) —f(a) .

Then 0 is in the domain of g, g(0) = 0 and g is bounded above in a
neighbourhood of 0. The function f is continuous at the point a if and only
if g is continuous at 0. Let M > 0 and r > 0 such that:

VyeX | lylx <r=gly) <M.
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Let r > 0, if z € X\ {0} and if ||z||x < r then because, g is convex, we have

) — _ l=lix lzlx =l el (.
B g<(l r )0+ ro lzlix >§<1 r >g(0)+ r g<|g;||X )

.
[zl x

As‘

xH = r, one has :
X

r

In addition, one has :

T r T
L <1 - ) <_ x>
T+ Tl r+ Tl ) Tl

then
r r r
ST A W
r+ zflx r+ lzflx (21"

thus

T r

n ng — z) < g(z)

r (21"

therefore

At the end, we have

Let € > 0, we set n = min (47¢,7), if 2 € X and ||z|[x <7 then we have

g (2)] <e.

Now we prove that g is continuous in the interior of its domain . It is
enough to prove that g is bounded above a neighbourhood of every point of
0

—_——

dom (g) .

Let = belong to dom (g). The function of the segment [0, 1] to X which
associates ¢t with (1 + ¢)x is continuous, then there exists ¢ty € ]0, 1[ such

that
0

—
Vte[0,t)] = (1+t)x €dom(g) .
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We set g = (1 + o)z and r; = 1+t —zlx <
. || 1+to _ — _to 1449 _
1, then we have : H ey - HX < r. However, y = 115 ( o (y a:)) +

1+t ((1+tp)x) theny = 1250 (H'to (y — x))—i—ﬁxo thus g (y) < 1i°t0g (liroto (y — x))—i—

to

T475:8 (z0) o g (y) < 2 =8 (z0) -
We set M =max (M ,g (a;o))

Then one has :

VweX | ly—zlx <rm = gy) <M .

Therefore g is continuous at the point z. To complete the proof we show
0

—
that g is locally lipschitz on dom (g). It is enough to prove it at the point
0. Let § > 0 such that 6 < r and let u € B(0,9), v € B(0,0).
Let n € N such that n > %, we set Vi € {1,..,n} zip1 =2+ 2 (v —u)
with 1 = u. Then x,41 = v and Vi € {1,..,n — 1}, one has : =41 €
B (zi,r — §) thus x;4+1 € B(0,r). The first part of the proof give us :

M
g (zit1) — g ()] < T35 @it — @illx -

then e
g (zi+1) — g (zi)] < —n v —ullx -
thus
M
8 ()~ g ()| =g (z) £ (x)] < Zr g (ris) ~ 8 (@0)] < o~y

1.7.4 Lsc convex functions

Proposition 9 A function £ from X to RU{+4o00} is convexr and 1sc if and
only if it is weakly lsc.

Proof : It is enough to remark that epi (f) is closed convex if and only if
epi (f) is weakly closed convex .

Exemples :

e A continuous convex function is a weakly Isc convex function . In
particular the function || || is a weakly Isc convex function on X;
every continuous linear form on X is weakly lsc convex function and
every continuous affine form on X is weakly Isc convex function.
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e Let a be a positive bilinear form on X then the map q defined by
q(z)=a(x,x)is convex . Let z € X, y € X and ¢ € [0, 1], one has :

q(tz+(1-t)y)=a(tz+(1-10)y), (ta+(1-1) y)) .
thus
q(tz+(1—t) y) =ta(e,z)+t(1-t)[a(z,y) +a(y,z)]+(1 - 1) a(y,y) .

Because a is positive, developing a(x —y,z —y) > 0, one obtains
a(zx,y)+a(y,z)<a(x,z)+a(y,y). Finally one has :

qtz+(1—t)y) <ta(z,z)+(1-t)a(y,y) <tq(x)+(1-t)aly) .

Thus, q is convex .

If a is positive definite, one verifies by the same method that q is
strictly convex . In particular a is positive definite if it satisfies the
following coercivity condition :

3a>0|VeeX a(z,z)>a |k -
If a is positive continuous bilinear then a is convex lIsc .
One sets :

EMf)={(=",0) eX*xR |Vz e X <z",2>+a<f(z)} .

Proposition 10 If f is a lsc convex proper function from X to R U {+o0}
then :

f(z) = sup <z',r>+4a.
(z*, a)e E(f)

Proof : We have according to the definition of & (f) :

f(x) > sup <z",x>+a.

(z*; a)e E(F)

Let zp € dom (f) and let € > 0 then (z¢,f (z9) —€) ¢ epi(f). Because
epi (f) is closed convex subset of XxR, there exists z* € X*, a € R and
v € R such that :

V(z,\) eepi(f) <z*,z0>+a(f(xg) —€) <y<<z*,z>+al.
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One verifies that « is strictly positive. If & = 0, when we set x = g in the
two members, we have < z* , g > < v < < a*,xg > this is impossible . If
we suppose that o < 0, we take A such that f (xg) < A, one has

<z x> +a(f(zg) —€) < v <<z¥,20> +a)
and as A tends to oo then :
<z, x> 4a(f(zg) —€) <y< —00.
It is impossible . Then we have :
L. Lo
Vz € dom (f) <.® ,x0>+f(a:0)—e<'y§<ax yx > +f(x)
thus
—1 * 1 *
Ve edom (f) < —z", 2>+ < —a", 20> +f(x9) —e<f(z) .
o o
Therefore we have :

-1 1
Ve edom (f) < —z"x >+ < —a"x90>+f(r9)—e< sup <z'z>4a<f(z).
« « (z*, a)e E(F)

Finally ,

f(xo) —€e< sup < z¥,x0>+a <f(x) .
(z*, )€ E(F)

Since € > 0 is arbitrary, we conclude that :

sup <x*,xo>4a="1(x).
(z* , )€ E(f)

1.7.5 Minimization of convex functions

We have the following proposition :

Proposition 11 If f is a strictly proper convex function from X to R U
{+o0} then if it has a minimum at a point, this point is unique .

Proof : We suppose that a € X and b € X are such that a # b and

Vee X f(a)=1() <f(x),
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then

£(a) gf(;aJr;b) < %f(a)+%f(b)=f(a) .

It is impossible .
We have below a theorem which is very useful .

Theorem 5 If X is a reflexive Banach space, if £ is a lsc proper convex
function from X to RU {400} and if

lim f(z)=+o00
[l[j—+o0

then £ has a minimum at a point of X.

Proof : The sections of f are closed, convex and bounded;thus they are
weakly compact . Since f is proper and weakly Isc, we apply the Tonelli
theorem .

Usual particular cases : Let H a real Hilbert space endowed with its
scalar product < , >g and with the associated norm || ||¢. It is well known
that H is a reflexive Banach space : the Riez’s theorem permits us to
establish an isometric isomorphism between H and its topological dual H*.

e Projection on a convex closed subset
Let C be a non void convex closed subset of X. Let z € X and let F,
the function from X to R U {400} which is defined as follows :

ify € C then F (y) = [ly — =[x

and
if y¢ C then F(y)=+o0

. The function F is convex lsc and it satisfies :

lim F(z)=+oc0.
]| —+o00

Thus there exists AS C such that

F (g) = Z%ISF (y) .
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e Quadratic optimization Let a be a bilinear form on X which is
continuous and coercive. These properties mean :

continuity : IM >0|Vz e XVy e X Ja(z,y)| <M |z[x llylx ,

coercivity : Ja>0|VzeX a|z|kx < a(z,z) .

Let £ be a continuous linear form on X, there exists L > 0 such that
Vo e X |£(2)] < L falx

and let £k € R . One defines on X, the function denoted J by :

VeeXJ(z)=-a(r,z) — l(z,z) + k.

l\')év—\

The function J is convex Isc proper and verifies :

because
VeeX J(x)>alzx —L |zlx + k.

Then there exists x € X such that

J(z) = gél)l(l.](x) .

1.8 Duality

In this section, X is a real linear space with the norm || [|x. One denotes
X*, the topological dual space of X, it means the real linear space of contin-
uous linear forms on the normed space (X, || ||x). One denotes the bilinear
pairing by < , > then :

Vet e X*Ve e X 2z (z) =<2,z > .
If we set for every x* € X*,

2%« = sup <a*,x>
llellx=1

then (X* . ) is a normed linear space .
( ) X p
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Definition 19 conjugate or polar function

Let £ from X to RU{+oc}, the conjugate function or the polar func-
tion of f denoted by £* is the function from X* to RU{—o00, + oo} which
is defined by :

Vot e X* £ (2") =sup (<z*,z>—f(z)) .
zeX

One has :

Vet e X* f* (%)= sup (<a2",z>—f(z)) .
zedom(f)

Remark 8 The function £* from X* to RU{—o00, + 0o} is convezr and lsc

Proof : It enough to remark that the function £, which is defined by
Va* e X* £ (") =<2,z > —f (x)
is Isc, convex and moreover £* (z*) = sup £ (z*).
zeX

Then we have :

£~ =— inf f .
0=~ cdomn) T @)

Proposition 12 If f is an application from X to R U {4+00} convexr and
proper then £* is convezx, lsc and proper .

Proof : We have to prove that f* is proper . There exists (zf;, ) € X*xR
such that :
VeeX <azj,z>—a < f(z)
then
VeeX <zj,z>—f(z) < «
thus z§ € dom (f*).

Exercice 7 e Iff and g are functions from X to RU {400} such that
f <g, prove that f* > g*.

o Letf be a function from X to RU{+o0}. Let A € R\ {0}, and suppose
that Ve € X £y (x) =f (A z).
Prove that f5 (z*) = £* (%x*)
Prove that (f + \)" = f* — \.
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o Let f be a function from X to RU{+o0}. Let a € X, one denotes 7,f,
the function defined by Ve € X 7,f(x) =f(z+a).
Prove that Vz* 1,£% () = f* (2¥) — < 2* ,a >.

We have :

Proposition 13 Young Inequality
If £ is a function from X to RU {400} then :

Vet e X*VeeX <z"x >< (2% + f(z) .

1.8.1 Bidual

Definition 20 If f is a function from X to RU {+oo}, the bipolar of f
is the map denoted by £** from X to RU{—o00, + oo} and which is defined

by :
VeeX £ (z)= ()" () = sup (<z*,z>—f"(2")) .
r*eX*
By the Young’s inequality , we have that :
VeeX " (x) <f(z) .

In addition f** is convex and lsc .

Theorem 6 If f is an application from X to R U {+o0}, convez, lsc and
proper then
" =f.

Proof : It is enough to prove that Vo € X ** (x) > f (z). Suppose that
there exists g € X such that £** (z¢) < f (z0).
Then (xg , £** (x0)) ¢ epi (f), there exists (z*, a) € X*xR which verifies :

£ (z9) < <z ,20>+a < f(x0)

and
VeeX <z¥,z>+a < f(z) .

The second inequality :

VeeX <a*,z>-f(z) < —a,
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let
f* (%) < —a.

The inequality gives :
<x¥,zo>—f"(2%) << 2",z >+,

then
—a < f*(z%) .

It is impossible .

1.9 Applications to some problems of calculus of
variations

Let € a non void open subset of RY. On RY, we use the Lebesgue measure

Definition 21 A function F from QxRP to RU{—o00, + oo} is said to be
of Caratheodory if it satisfies :

o for every x € €, the function u — F (z,u) is continuous,
o for every u € RP, the function v +— F (x,u) is measurable .

Proposition 14 Suppose a function F from QxRP to RU{—o00, + oo} is
of Caratheodory, if u Q — RP is measurable then the map

x — F(z,u(x))
1s measurable .

Proof : It is enough to remark that a measurable function is the limit
almost everywhere of a sequence of simple functions . However if u is a
simple function then the function x — F (z,u(z)) is obviosly measurable.

To obtain integrability in the spaces of type LP for p > 1 some kind of
growth controls on F are used . One gives here an exemple of this type of
estimations.

Proposition 15 Ifp; > 1 and ps > 1, ifa > 0 and if b € LP2 (Q) then if
F is of Caratheodory and verifies

Vo € QVE € RP |F(2,8)| < b(2) + a |¢]lgs

then the map ® of LP* (Q, RP) to LP? (2, R) which associatesu to ® (u) x —
®(u)(x) = F(z,u(zx)) is a continuous map and transforms the bounded
subsets to bounded subsets .
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Proof : Let u € L (Q2,RP) the map ®(u) =z — F(z,u(x)) is
measurable. And we have :

[F(z,u(z))] < b(z) + a ||u($)’|1%0 :

The second part of the inequality belong LP2 (2, R) then by the dom-
inated convergence theorem of Lebesgue the map ® (u) =z — F(z,u(z))
belong to LP! (2, RP).

In the other hand we have
P

”(I)<u)HLP2(Q,Rp) < HbHLPQ(Q,R)+a’HuH€%2(Q’R) :

Let (u,),cn @ sequence of functions of L7t (€, R?) which converges to u €
LPt (Q,RP). Tt has a subsequence (up, ), converges almost everywhere
to u and such that :

. 1
Vie N ||unk+1 - u"k"LPl(Q7RP) < ? :
Then
+oo
Vo e K(2) = un, (@)ge + Y [tng, (@) = tn, (2)]g. -
i=1
The function K is measurable positive and we have :
+oo
HKHLP1(Q , RP) < Hum HLPl(Q,RP) + Z Huni+1 — Unp,; LP1(Q,RpP) °
i=1

The function K is then in LP* (2, RP). Because
Vi € N* |up,| < K,

then ot
Vie N* [®(up,)| < b+ (K)2 €eL”?(Q2,R) .

By the Lebesgue’s dominated convergence theorem , the sequence (® (up,,)),cn
converges in L2 (2, R) to ® (u). Finally ® is continuous .
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Chapter 2
Optimality Conditions

In this chapter, we give some methods, when it is possible, to determine the
equations or the inequalities satisfied by the solutions of the minimization
problems .

In this chapter, X is a real linear space with the norm || ||x. One denotes
X*, the topological dual space X, it means the linear space of the continuous
forms on the normed space (X, || ||x). One denote the duality pairing by
< , > then:

Ve* e X* Ve e X z*(z) =<a™,z> .

If we set, for every z* € X*,

|z ||« = sup <a*,z> .
]| x =1
then (X*, || ||x+) is a linear normed space . If (X, || ||¢) is a Banach space
then (X*, || |x+) is also a Banach space .

If f, a function from X to RU{+00}. One denotes by (Pyin) the following
problem :

Find z € X, a solution of minf (z) .
zeX

One says that z is solution of the problem (Pyiy) if f has a minimum on
X at the point z, then :

VeeX f(z) < f(z) .

29
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2.1 Different concepts of derivatives

Let (Y, || [[y) be a linear normed space over R. One denotes by £ (X ,Y)
the space of linear continuous functions from X to Y.

2.1.1 Derivatives following a direction

Definition 22 Let f X — Y; let x € X and let h € X, one says that
has a derivative at the point x in the direction h if

lim f(z+th) —f(x)

t—04 t

exists.

In this case, we name this limit, the derivative of £ at the point x following
the direction h and we set :

Remark 9 Iff X — R U {400}, we have the same definition if we take
x € dom (f) and let h € X.

If z € dom (f), One has : ' (z;0x) =0
If we set g, (t) = f (2 +th), if g, , is defined on a segment [0, J] for a

real number > 0 then f has a derivative at the point z in the direction h
if and only if g,  , has a derivative at the right at 0. moreover we have :

/oo _ !
£/ (2:h) = (g,,1) (0) -
Remark 10 Iff’(:v;h) is defined then :
YA>0 f (z;0h) = A (23h) .

Exemple : Let a be a bilinear continuous form on X, let z* € X* and
k € R, if we set :

1
J(:c):ia(a:,x)—<a:*,x>+k:,
we obtain

J(x+th)—3(z) — %[a(x,x)+m<m,h)+m(h,x)+t2a(h,h)]

—<zt,x>—-t<az*,h> .
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Then

J th) —J 1

et t) (x)_z[a(x,h)+a(h,x)—2<$*ah>]+m(hvh)'
Thus

Ve eXVheX I (z;h)==la(z,h)+a(h,z)—2<a* h>].

DO

In the particular case where a is symmetric, that is if :
VeeXVyeX, a(x,y)=a(y,x) .
We have :
Ve e X Vhe X J’(z;h) =a(x,h) — <z",h> .

Exemple : Let H be a real Hilbert space with its associated scalar
product < , >g and the corresponding norm || ||g. If :

Vee H, J(z)=|z|qg -

We have :
2 3 1
o () = (e + )" = (< w4 th, o+ th =gt
Thus :
’ / <z,h>
Ve e H\{0} Vh e H J (5;h) = (g, ;) (0) = =8
" ™
VheH J (0xih) = (gox,n),(0) = Ihllg -

Exemple : Let f be a continuously differentiable map from R to R. Let
K be a compact subset of RY. One denotes by X = C (K, R), the linear
space of continuous functions from K to R and if u € X, we set

lullx = max|u ()]

One defines the map ® X — X which associates u € X to its image
® (u) = fou. We determine the derivative of ® in any direction as follows .
Let ue X ,heXandte[0,1], there exists 0 (z,t) € [0, 1] such that :

f(u(z) + th(x)) — f(u(z)) = tf (u(x) + 0(xt) th(z)) h(x) .
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The subset
Ky = u(K)+[-1,1]

is compact in R . The map f’ is thus uniformly continuous on Ky. Let € > 0
In>0|VpeKiVgeKy [p—ql<n = |[f'(p)—1f'(¢)] <e.
We set 771 = min (n, 1), if h € X is such that
Ve e K |h(x)] <m,

this implies that
1Pllx <m

then for every x belonging to K, we set

flu(z) + th(z) - flulx))

A(x) = "

— hf' (u(@))]

then
Az) = [ (u(z) + 0(x,t) th(z)) h(z) — £ (u(z)) h(z)|,

hence, we obtain that

eex |fu@ + th(:)) — f(u()) _f'<u<x)>] <elh(@)] .
Finally,

Hé(qutht)—‘I’(“) — hflou < 1hllx
Then

& (u;h) = htlou.

Exercice 8 1. Compute the derivative of the absolute value function on
R in every direction .

2. Letx € R, one setsxt =x six > 0,27 = 0siz < 0. Determine the
derivatives following the directions of the function from R to R which
associates x to x .

Exercice 9 Let f be a continuous map having continuous partial deriva-
tives from RxRYN to R. Let K be a compact subset of RY. Denote by
X = C! (K, R), the space of continuous functions having continuous partial
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derivatives from K to R and Y = C (K, R), the linear space of continuous
functions from K to R. If u € X, we define

il = mae u ()] + Zmax

— zeK (93:Z

. IfveY, we define
lvlly = max v (z)] .

Define the map VX — Y which associates u € X to U (u) by
U(u)(z) = f(u(z),Vu(z)) VeeK

Determine the directional derivatives of W .

2.1.2 Gateaux Derivatives

Definition 23 If f X — R U {+o0}, if x € dom(f), one says that £
is Gateaux differentiable at the point x € X if it admits a derivative
following every direction h € X and if there exists Ly € X* such that :

VheX f'(x;h) =<Lg;h> .

The linear continuous form Ly is called the Gdteaur derivative of f at
the point x; it is also called the gradient of f at the point x and is denoted
by VE (z). Thus :

L, = Vf(z) .

Remark 11 When X s a Hilbert space, the Riez theorem permits the iden-
tification of Vf (z) with an element of X.

Exemple : Let f be a continuous map having continuous partial deriva-
tives from RY to R. Let K be a compact subset of R". One denotes by
X = C! (K, R), the linear space of continuous functions having continuous
partial derivatives from K to R. If u € X, one sets

lullx = max u(z)] + Zmax

— 2cK 8.131

Define the map J X — R which associates u € X to J (u) by

I (u) = /Kf(Vu(:U)) dx |
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Step by step computation as in the preceeding subsection gives :

N
of oh
/ —
Vo = [ > oy, (Vule) e

The map h — J' (u, h) is a linear form on X and there exits a constant C
such that :
[ (u, )| < C Al -

Finally, J is Gateaux differentiable at every point of X.

Definition 24 If f is Gateauz differentiable at every point of X, we say
that £ is Gateaux differentiable .

2.1.3 Relationship between Gateaux differentiability and Fréchet
differentiability

We recall the concept of differentiability or Fréchet differentiability.

Definition 25 A map f X — Y is said to be differentiable or Fréchet
differentiable at the point x € X if there exists L, € L (X ,Y) such that

o I h) — £ ()~ L ()l
b [llx

= 0.

The linear continuous map L, is called the derivative of f at the point
x, we also call L, the Fréchet derivative of f at the point x.

This definition is equivalent to the following property :
There exists L, € £(X,Y) and ¢, X — Y such that :

i h) =0
°hi>néxe‘”() Y

e VheX, fx+h) = f(z) + Ly (h) + ||hllx ez (h).

—
Iff X — RU{+oo}, If x € dom (f), we say that f is differentiable
at a point x € X if there exists L, € X* such that :

(@ R) — £ (@) ~ L (1)

=0.
h— Ox 1Pllx

The linear continuous form L, is called the derivative of f at the point
x, L, is also called the Fréchet derivative of f at the point z.
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o

—
We may characterise the differentiability of f at a point € dom (f) by
the following property : there exists L, € £L(X,Y),r >0ande, B(0x ,7) —
R such that :

o lim e;(h) =0.

h— 0x
e VheB(0x,r) f(x+h) = f(z) + Ly (h) + ||hllx € (h) .

Notation : We set : f' (z) = L.

The following proposition is obvious .

Proposition 16 If f is differentiable at the point x then f is Gateauz dif-
ferentiable at the point x. Moreover, V£ (x)=1{"(z).

We have the converse in the following case :

o

—_—
Proposition 17 If f X — R U {400}, if v € dom (f), suppose that f is
Gateauz differentiable in a neighbourhood V of x and if VE 'V — X* is
continuous then f is Fréchet differentiable at the point x, in addition :

' (z) = V() .
Proof : If € > 0, there exists n > 0 such that B (z,n) C V and :

Ve e B(0x,n) [[VE(z+§) — VI (2)]

X*<6'

Let h € B(z,n), we denote by g [0,1] — R, the map which associate
te€]0,1] tog(t) = f(x + th). The function g is differentiable in [0, 1]
and

Vtel[0,1] g (t) =< Vf(x +th) ,h> .

By the mean value theorem, there exits 6 € [0, 1] such that :
f(x+h)—f(z) =g(1)—g(0) =< Vf(x +60h) ,h> .
One deduces that :
f(x+h)—f(z)— < Vf(x) ,h>=<Vf(zx +0h)—-Vi(z) ,h>,
so that

If(x+h)—f(z)— <VE(z), h> <|VE(x+0h)—Vf(z)]

x- hllx
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thus,
f(x+h)—f(x)- <VE(z) h>] < elhlx -
The function f is then differentiable at the point z and we have :
f' () = VFf(x) .

Proposition 18 Let f X — R U {+o00} be a convex function . If f is
Gateauz différentiable on X then f is a convex function if and only if :

VeeXVyeX f(x) + <Vf(z) ,y—a>< f(y)
(Convexity Inequality ).

Proof : It is given in the proof of some following propositions .

We characterise the convexity of a function by the properties of the
Gateaux derivatives .
Let C be a non void convex closed subset of X and let f be a convex function
from C to R.

Proposition 19 Iff has a Gateaux derivative on C then £ is convex if and
only if :

Vy €e C Vo € C, <Vf(y) — Vf(z) ,y —2>>0.

Remark 12 If the inequality in proposition 19 holds, we say that V{ is
monotone.

Proof : We suppose that f is convex then one may apply the convexity
inequality for  and y belonging to C, thus :

fx)+ < Vf(z) ,y—xz><f(y)

and
fly)+<Vi(y) ,o—y><f(2) .

Adding these two inequalities, we obtain

<Vf(z) — Vf(y),y—axz><0

which implies

<Vf(y) = Vf(z),y—axz>>0
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We prove now the converse .
Let x € C,ye Cand t € [0, 1], we set :

) = f((1-1t)z + ty)
The function ¢ is continuously differentiable :
Ot =<VF(1-t)z +ty),y—x> .

As Vf is monotone then ¢’ is inceasing on [0, 1] thus ¢ is convex on [0, 1].
Hence, we have that

pt)=p((1-=)0+1t1) < (1-1)p(0)+tp(1)
which implies
f(1-t)z +ty) < (11—t f(zx) +tf(y) .

Thus f is convex .

2.1.4 Subdifferential

Definition 26 Let f X — R U {400}, if z € dom (f), then f is subdif-
ferentiable at the point x if there exits a linear continuous form x* € X*
such that :

VyeX f(z) + <z2",y—x><f(y) .

We denote by Of (x) the set of the linear continuous forms x* € X* which
satisfy the above property . The subset Of () is called the subdifferential
of f at the point x.

Remark 13 The subset Of (z) is convex and closed in X*

Proposition 20 Let f X — R U {+o0} be a convex function . If f is
Gateauz differentiable at the point x € dom (f) then Of (z) = {Vf (z)}.

Proof : Let y € dom (f) and ¢ € |0, 1], then by convexity of f we have :
f(1-t)x +ty) < (1-t)f(x) +tf(y) .

this implies

£z +t(y—=) - f)] < fy) - f2).

| =
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As t tends to 0+, we obtain :
<Vf(z),y—z>< f(y) - f(z),

thus,
Vye X f(z) + <Vf(z) ,y—az>< f(y) .

Let
Vi (z) € of (x) .

Let z* € Of (x),let h € X if t € ]0, 1], we have :
f(x +th)>f(x) + <z"th> .
this implies
% F(x+th) — F(@)] ><a"h> .
As t tends to 0+, we obtain :
VheX < Vf(x),h>><z"h>.
If we replace h by —h in the preceeding inequality, we obtain :
VheX <Vf(z) ,h><<z" h>.

Thus,
VheX < Vf(x),h>=<z",h>,

hence,

of (z) = {VIf(2)}
The converse of proposition 20 is given as follows :
Proposition 21 Let f X — R U {+oo} be a convex application . If f

is continuous at a point © € dom (f) and if Of (z) is a singleton then f is
Gateaur différentiable at the point x.

Some computational properties of the usual derivitives also hold for sub-
differentials .

Proposition 22 Let f and g be convex functions from X to RU {+oc}, if
z € dom (f) Ndom (g) :

o If A >0 then
ONf) = AO(f) .
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d(f) (z) + 0(f)(z) C O(f + g)(2) -

o Iff and g are lsc, proper and and if £ is continuous at the point x
then :

I +g)(x) =0(f)(z) + I(g)(z) -
Proof : The first property is obvious . We prove now the inclusion .
I(f + g)(z) C (f)(z) + 9(f)(2) -
Let 2* € O(f + g) (z) then
VyeX f(z) + g2+ <" y—z><fy) +8) -
Set :
Ci = {(pA) eXxR[f(y) — f(z) - <a”,y—z>< A}

and
Cz = {(y,\) eXxR | ) < g(z) — g(y)} .

The preceeding inequality shows that the common points of C; and Cso
are the boundary points only . In addition the function F which is defined
by :

VyeX F(y) = f(y) — f(x) — <a",y—z> .
has C; as its epigraph, also, F is continuous at the point x thus the interior
of Cy is empty . As Cg is convex , there exists (u*,a) € X*xR \ {(0x,0)}
such that :

VyeX g(z) —gy) <<u",y>+a < f(y) —f(z) - <2, y—z> .

Thus for y = z, we obtain < u*,x > 4+« = 0 and this implies a« =< u*,—x >.
On the one hand, we have :

VyeX gz) —gy) <<u",y—z> .

That is

VyeX gz)+ <—u",y—z><g(y) .
thus —u* € 0 (g) (x).
In addition

VeX <u',y-z><f(y) - f(z) - <a",y—z>,
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this implies
VyeX f(z) + <z +u,y—z><f(y) — f(z) ,

thus, * + uv* € 9 (f) (z).
Hence z* = (2* + u*) 4 (—u*) belongs to

o(f) (z) + J(g) (z) -

2.2 Euler Equations

With the help of the concept of differentiability, it is possible for us to write
the the relation satisfied by a solution z of the problem :

min f(z)

2.2.1 Optimality conditions

Let f X — R U {+o0} be a function . Suppose that the problem mi}r{lf (x)
S

has at least one solution z € dom (f).

Proposition 23 If f has a derivative in the direction h € X at the point x
then :
f'(z,h) >0

Proof : We have :
VE>0 f(z+th) > f(z),

this implies

f th) — f
t—0+ t

Proposition 24 If f admits a Gateauz derivative at the point x and if
0

—
z € dom (f) then :
VE(z) = 0.

Proof : This is obvious by proposition 23 .

We now examine important properties of convex functions . Let C be a
non void closed convex subset of X and f a convex function of C to R.



2.2. EULER EQUATIONS 41

Proposition 25 If f has a continuous Gateaux derivative at the point x €
C then the following properties are equivalent :

z is the solution of the problem micr%f () .
S

Vy e C <Vf(z),y —x>>0.

Vy e C <Vf(y),y —z>>0.

Proof : We suppose that z is solution of the problem min f ().

zeC
Let y € C and ¢t € ]0,1], then
fF((1-tz+ty) >1f(z),

this gives

fa+tly-2)-fl@)
. 2
thus, taking the limit as ¢ tends to 0+ gives
<Vf(z),y —z>>0.

Now, we suppose that Vy € C < Vf(z) ,y —2z>> 0
But the function f is convex and its Gateaux derivative is monotone thus

Vy € CVz € C <Vf(y) — Vf(2) ,y —2>>0.
If we put z = z, we obtain :
Vy e CVz e C <Vf(y) —Vf(z),y —z>>0.

Since
We easily obtain :

Now suppose that :
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Let y € C, and t € [0,1], define
p(t) =f((A1-t)z +ty) .
The function ¢ is differentiable and
) =<VE(L-t)z +ty) .y —z>

thus
vte[0,1] ¢ (t) >0,
then ¢ (1) > ¢ (0) that is f (y) > f (z). Hence, z is solution of the problem
Hli(Ijl f(z).
TE

Proposition 26 Iff is a convex function from X to RU{+oo} then f has
a minimum at the point x € X if and only if :

Ox- € Of (z) .

2.2.2 Ekeland Variational Principle
Let f be a function from a Banach space X to R U {+o0}

Ekeland Variational Principle

Theorem 7 Suppose that f is proper, bounded below and lsc such that there
exits € > 0 and x. € X wverifying f (z¢) < in)f(f (x) + €. Then there exists
xe

Ye € X such that :

fye) <f(z) .
[ze = yellx <1 -

Ve € X |z #y = f(x) >f(y) —ellr —yellx -

Proof : Observe that the function z — f(x) — €|z — ye|[x has a strict
minimum at the point y.. We construct a sequence (zn)neN to approximate
Ye. Put z9 = =z, suppose that we have defined z; to z,; then we set :

Sp = {u e X |f(u) <f(2) —ellu—znlx} -
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Observe that z, € S, thus, S,, # 0. As f(z,) > inf f(u) we obtain

u€eS,

inf f(u) <1 inf f(u)+f(2,) ,

u€eS, 2 uES,

thus there exists z,411 € S;, such that :

1 1
< =i -

this gives

. 1 .
f(znt1) — ulélsfnf(u) < 5 f(zp) — ulensfnf(u)
We prove that the sequence (z,),cn is a Cauchy sequence . The sequence
(f (2n))pen is decreasing, as f is bounded below, it converges . If m and n
are integers such that m > n, we have :

€ llzm — znllx < £(zn) — £(2m) -

Thus, the sequence (z,),cn is a Cauchy sequence, so there exists z € X

such that z = lir+n zn. Since the function f is Isc , we obtain :
n—-100

f(z) < liminff(zn) .
Then
f(z) < liminff (z,) < liminf inf f(u) .

n——+00 n—+00 UES,

As the sequence (f (2,)),cn is decreasing , we have f (z) < f(2) = f (xc)
then
€ [lze —2llx =€ 20 — 2lIx >

thus,
llze—2lx < £z = £(2) < £z — inf £(2) |
therefore,
€ lze —2llx < €,
hence,

lze — 2|lx < 1.

Finally, to verify the last part of the theorem, we assume that z does not
satisfy it . Then there exists v # z such that

fo)<f(z)—elv—z2lx ,
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thus
f(v) < f(z) .
We also have that :
VneNf(v) <f(z)—€|v—2zlx ,

then
veES,VneN,

thus

This is impossible.
To conclude it is enough to take y. = z. This completes the proof .

From this theorem, we obtain the following obvious proposition :

Corollary 1 If X is a Banach space and if f X — RU{+oo} is Isc, proper
and bounded below then

Ve>0 . e X |VeeXa#ax f(x) > f(z) — ||lo—acx -
We also have the following corollary :

Corollary 2 If X is a Banach space and if f X — R s lsc, Gateaux
differentiable and such that there exists € > 0 and z. € X satisfying f (z.) <
in)f(f (x) + €. Then there exists y. € X such that :

S

f(ye) <f(ze) .
er - yEHX < \@ .

I (ol < Ve .

Proof : As in the proof of Ekeland variational Principle with the following

equivalent norm
1

=

One consequence of this result is :
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Corollary 3 If X is a Banach space and if f X — R is lsc, Gateauz
differentiable, then there exits a sequence (), of elements belonging to
X such that :

inf f(z)= lim f(z,) .

rxeX n—-+4oo

lim Vf (z,) = 0x~ .

n—-4oo

Remark 14 This result is a generalization of the Fuler equation .

Palais Smale condition

Definition 27 If X is a Banach space and if f X — R is of class C'.
One says that £ satisfies the Palais Smale conditions at the level ¢ € R,
i.e., f satisfies (PS),, if for every sequence (xy,),c of elements in X such
that :

c’

ngr}_loof(xn) =c.

lim Vf (z,)=0x~ .

n—-+o0o

then (x,),cn converges to an element of X.
When f satisfies (PS), for all c € R, we say that f satisfies Palais Smale
conditions and we write £ satisfies (PS).

Proposition 27 IfX is a Banach space, if f X — R is of class C', bounded
below and satisfies the Palais Smale condition, then f has a minimum on
X.

Remark 15 The Palais Smale conditions are often used in the proof of
the existence of critical points .
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2.2.3 Optimality conditions with constraints
Optimality conditions with equality constraints

Let X be a reflexive Banach space with the norm || ||x. Let f X — R
and g; ,..., 8p X — R. Define the map g from X to R” by g(z) =
(g1 (2) ..., 8p (2)), Vo € X.
Put S = {x € X |g(z) = Orer}.
We consider the following problem Pyip :
in f .

g, £)

Proposition 28 If f and g ,..., g, are continuously differentiable, if x is

solution of the problem Puin and if g’ (x) is onto, then there exists real
numbers A1 ,..., \p such that :

p
f'(z) + > Aigi(z)=0x- .
=1

Proof : The linear function g’ (x) is continuous and onto from X to R?.
If we set X; = Ker (g’ (z)) then X; is a closed linear subspace of X with
codimension p, with the norm || [, which is restriction of || [|x on X, thus,
X is a Banach space . If X5 is the orthogonal complement of X; with the
norm || |x,, then (X, | [[x) can be identified as the product space X; x X
with the product norm . If x € X, and z = (x1,z2) where ;1 € X; and
T9 € Xo.
The hypothesis of the theorem are equivalent to : f and gy ,..., g, are con-
tinuously differentiable and the continuous linear application 88—52 (z) is an
isomorphism from X5 to R?.

The tangent linear space to Sg at the point x is given by:
T, ={h € X |36 >0andv; |-6, — §] — Sg differentiable and ~;(0) =

Put :
E, = {h € X |g(x).h = Ors} .

Let h € T, there exits § > 0 and a function
s ]_57 _5[ - Sg7

differentiable such that
v5(0) = h.

ny .
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We have
vVt € ]-0, =4[ g(15(t) = Ore,
thus,
vt € ]=6, —dl & (1)) = Ors -

In particular, for ¢ = 0, we have

g (75 (0)) 75 (0) = Oms ,

hence,

thus h € E,.
Let h € E;, suppose that b = (hy, ha) where by € X and hy € Xo;
then:
98 Og

h —_— h == P .
. (x) hi + e (z) ho = Or

By implicit function theorem, there exists an open set U which contains
x;, an open set W containing z and a function ¢ U — X, continuously
differentiable such that :

(x1,22) € WNSg & z1 € Uanday = ¢ (x1) .

We have :
Vo, € U g(x1,6(21)) = Or~ -

Differentiating this relation gives :

Viy € U (fijgl(wh(ﬁ(ﬂfl)) + gi(x1,¢(w1)) ¢' (x1) = Ox; .

Replacing z1 by z;, and as x5 = ¢ (z,), we obtain :

og og

871(@ + (972@) ¢’ (z1) = Oxy -

thus :

Let F be the function defined by
F(:El) = f(x17¢(ajl)) vxl eU ’

we have :

F(z1) > F(z;) V2, € U,
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thus the fréchet derivative

F'(z1) = 0x; ,
that is ot ot
[ —_— / = *
a$1 (@ + 811?2 (i) ¢ (il) 0X1 .
So for
h = (hl R hg) € X1xXsy ,
such that
g’.h = ORp 5
that is 9 5
g g _
D () hh + s () ho = Ogrp ,
we have .
_ og — 0Og
he = [a$2 ($)] 671 (@) h1 ’
But : o8 58
/ _ 9 el
f'(z).h = o, () b + 02s () ha .
Substituting for he gives
of of g -1 og
f/ h = — - = =3 Ys
@h= @i - 2@ |E@ E@n
thus,
f'(z).h = 0x+

Finally, we have :
VheX ifVie{l,..,p} gi(x).h =0 = f'(z).h = 0x- .
To conclude we use the following proposition :

Proposition 29 Ifz7,...,z; and z* are linear continuous forms on X such
that :

VheX ifVie{l,.,p} <zj,h>=0 =<z2*,h>=0.

Then there exist real numbers A1,..., A\p such that :

=Y N

=1
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Proof : It is obvious from the following lemma :
Lemma 1 Ifx7 ,..., x, and x* are continuous linear forms on X such that

VheX ifVie{l,..,p} <z ,h>>0 =<z*,h>>0.

Then there exist real positive numbers fi1,...,1, such that :

*

Proof : One may suppose that {x*{ yeey Ty

Put :

} is linearly independant .

P
C:{u* e X* ut = Zuzxf} .
i=1

The subset C is convex and closed . We suppose that * ¢ C, there exists
(h,a) € XxR such that :

e <zF h>> «.
e Vut € C <u,h>< «.

We have o > 0 thus, < z* ,h > > 0. If there exists ig € {1,..., p} such

that <zj ,h>> 0. As
1=p
Vupr > 0,....Vpp >0 Z'“i <zi,h>< a.
i=1

As p;, tends to 400, the preceeding property is false . Thus,
Vie{l,.p} <z/,h><0.

then < z*, — h > > 0 this implies < z* , h > < 0 and this is impossible .

Thus z* € C.

Optimality conditions with inequality constraints

Let {g1,...,gp} be functions from X to R and f X — R. Set S; =

{z e X |Vi € {1,...,p} gi(x) < 0} We consider the following problem Ppin

min f(z) .

TE€Sg

. As in the proof of the preceeding theorem, we obtain :
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Proposition 30 If f and g ,..., g, are continuously differentiable, if x is
a solution of the problem Ppin and if g’ (z) is onto, then there exists real
positive numbers fi1 ,..., jip such that :

p
f(z) + ) migl(z)=0x- .
=1

and
Vie{l,..,p} pigi(z)=0x-

2.2.4 Applications
2.2.5 Some examples in Hilbert spaces

Let H be a Hilbert space over the set of real numbers with the scalar product
<, >g and the associated norm || ||g.

Projection Theorem

Theorem 8 If C is a convex closed subset of H, then for every x belonging
to H there exits one and only one element of C denoted by P () such that

z — Pc(z = min || — .
I ¢ (@)llg = min Iz — yllg
In addition Pc (z) is the unique element z € C such that
Vy e C <zx —z,y—2>a<0.

Proof : We set .
vy e H J(y) = 5l - vl -

this gives :
1
vy e HJI() = 5<y,y>m—<z,y>u+<c,2>n .

The problem miél J (y) is a quadratic optimization problem and the function
ye

J is convex and coercive. Thus, this problem has one and only one solution
Pc () € C. The function J is differentiable and

Vh e H <J(y) ,h>g=<y,h>g—<z,h>g .
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Thus z € H is solution of micrjl J (y) if and only if:
ye

z€Cand Yy e C <J (2),y—2>a=<2—x,y — 2>g> 0,

then
Vye C <z —z,y—2>a <0.

Exercice :
Let C be a non void convex closed subset of H.

e Show that

Ve c Hvy € H |[Pc(z) = Pclla < llz = yllu -

e Show that if C is a closed linear subspace of H then :

z = Pc(z) ifandonly if z€ CandVy € C <z — z,y>u= 0.

e Show that if C is a closed linear subspace of H then P¢ is linear and
continuous and moreover,

Ve € H |loff = [IPc @) + llr — Po (@)l -
e Prove that if C is a closed linear subspace H and if
Ctl={zr eH|VWeC <z,y>u= 0}

then
H=C ® C*.

Stampacchia Theorem : the symmetric case

Lett a be a bilinear form on H which is continuous, coercive and symmetric
. We have:

e the continuity of a is equivalent to

M >0 | Ve e Xvy e X [a(z,y)| <M [zlx [lylx ;

e the coercivity of a is equivalent to

Ja>0|VreX alzl} < a(z,z) ;
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e a is symmetric if and only if

Ve e HVy € H a(z,y) = a(y,x) ;

Let ¢ be a linear continuous form on H . There exists L > 0 such that
Ve e H [{(z)] <M ||z|g

We define on H, the function denoted by J by :
1
J(x) :§a(x,x) —l(z,z) VveH.

Theorem 9 If C is a non void closed convex subset of the Hilbert space H
,if a is a bilinear form on H which is symmetric, continuous and coercive;
and if ¢ is a linear continuous form on H then the problem :

Findu € C such that Yv € C a(u,v—u) > {(v—u)
has one and only one solution .

Proof : Let J be the proper convex continuous and coercive function
which is defined by :

I() = %a(v,v)—ﬁ(v) |

The problem

gélg.] (x)

is a quadratic optimization problem which has one and only one solution
v € C and which is characterized by :

Vo € C J(u). (v—u) > 0;

or
Vo e C a(u,v—u) —l(v—u) >0,

thus u € C verifies :
Vv e C a(u,v—u) > l(v—u) .

Remark 16 The problem may be interpreted like a projection problem when
we endow H with the scalar product defined by a .
The theorem is also true if a is not symmetric .
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Lax Milgram Theorem

Theorem 10 If H is a Hilbert space, if a is a bilinear form on H which is
symmetric, continuous and coercive and if £ is a linear form on H which is
continuous then the problem :

Finduw € H such that Yv e H a(u,v) = £(v)

admaits one and only one solution .

Proof : It is enough to prove the equivalence of the problem Py
Find v € H such that Yo e H a(u,v) = £(v)
with the problem Py
Find v € H such that Yo e H a(u,v—u) > {(v—u) .

We suppose that © € H is a solution of Py :
Let v € H, we have

a(u,v—u) = a(u,v) —a(u,u)= () — L(u) ,

then

a(u,v—u) =L(v—u) .

thus u is the solution of Ps.
Conversely, let © € H be a solution of Py :
Let v € H then w = u + v belong H. Replacing v with w in Py gives:

a(u,v) > £(v) .
If we replace v by —v in this relation, we obtain :
a(u,v) < £(v)

a(u,v) = £(v) .

Thus w is a solution of P;.
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An example of application in solving partial differential equation

Let Q be a non void open domain of RY. Let f € L? (Q), we want to solve
the problem :
Find u € H} (Q) such that

—Au=f inQ

This problem is equivalent to the minimization problem which is defined by
the function J where:

1
J(v) = 5/9 < Vv,Vv >~ dx—/vadxveH(l)(Q)

and the minimization problem

min  J(v)

ve H} ()

This problem is a quadratic optimization problem, it has one and only one
solution .

2.2.6 An example in a Banach space

Letp>1andq>1suchthat%—i—%:l. Let f € LY(Q), where Q a non

void bounded domain of RY. We want to solve the problem :

Find u € W,? () such that
~div (|Vulg7 Vu) = f in Q.

This problem is equivalent to the minimization problem which is defined by
the function J where:

1
J(v) = 7/ [VV|ay dz — / fvdev e WiP(Q)
p Ja Q
and the minimization problem

min J(v) .
ve WP (Q)

The function J is strictly convex, lsc, proper and coercive on the Sobolev
space W(l)p which is a reflexive Banach space . The minimizing problem has
one and only one solution .
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2.2.7 An eigenvalue problem

Let © be a non void bounded domain of RY.
We want to find a function u € H (Q) \ {0} such that there exists a real

number A with
—Au = Au on Q.

This problem is an optimization problem with equality constraints

. min J(v)
ve Hy () g(v) = 0

J and g are defined as follows:

1
v € H(l) Q) J(v) = 5 /Q HVVH]%{N dz ;

1
veH(Q) gv) = / V2 do — = .
Q
We remark that if {v € H} (Q):g(v) = 0} # 0 then

Vh € Hj () g’(v).h:/vhd:c
Q

and g’ (v) is a continuous onto linear form on H{ (). The function J is
differentiable and :

Vh € H}(Q) J’(v).h:/ < Vv,Vh >y d .
Q

Thus, if the minimization problem has a solution u, there exists A € R such
that Vh € H{ (Q) J (u).h = Ag' (u).h, then

Vh € H)(Q) /

<Vu,Vh>gyx dz = )\/ uhdz .
Q Q

We deduce that u € H} () and —Au = Au.

Moreover, if A > 0, it is enough to take h = u. Now, we prove the existence
of u. The function J is bounded below by 0 thus, it has a finite infimum.
There exists a minimizing sequence (u, ), of elements of H} (Q) such that
Vn € N [[un|lg2q) = 1.

The sequence (U,),.n is bounded in H{ () thus it has a subsequence
(Wn,)pen Which converges weekly in H} (Q) to an element u. The space
Hj () is included with compact inclusion in L? (2),then the sequence (up, ).cx
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converges in L? () to u. Thus, g (v) = 0 and ullp2@) = 1, u # 0.
In addition, J is weakly lsc, so

J(u) < liminf J (u,,) = inf J(v) .
= oo Ve HY(9) g(v) = 0

The minimization problem has one solution .
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