

SMR1777/8

School on Nonlinear Differential Equations

(9 - 27 October 2006)

Introduction to Optimization and Calculus of Variations

Mary Teuw Niane Laboratoire d' Analyse Numérique et d' informatique (LANI) Université Gaston Berger Saint-Louis, Sénégal

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Introduction to Optimization and Calculus of Variations

Mary Teuw Niane Laboratoire d'Analyse Numérique et d'Informatique (LANI) UFR de Sciences Appliquées et de Technologie Université Gaston Berger BP234 Saint-Louis, Sénégal Emai: niane@ugb.sn

16 Octobre 2006

Contents

1	Dire	ect Methods 8	5
	1.1	An easy example	5
	1.2	Minimum and maximum	6
		1.2.1 Minimum \ldots \ldots \ldots \ldots \ldots	6
		1.2.2 Maximum	6
	1.3	Lower semi continuity and upper semi continuity '	7
		1.3.1 Lower semi continuity $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	7
		1.3.2 Upper semi continuity $\ldots \ldots \ldots$	0
	1.4	Wierstrass's theorem	0
		1.4.1 Sequentially compact set	1
	1.5	Coercivity property	2
		1.5.1 Coercivity $\ldots \ldots \ldots$	2
	1.6	Minimizing sequences	3
	1.7	Convexity $\ldots \ldots 1^4$	4
		1.7.1 Convex sets $\ldots \ldots \ldots$	4
		1.7.2 The Convex Functions	6
		1.7.3 Continuity of the convex functions	7
		1.7.4 Lsc convex functions $\ldots \ldots \ldots$	9
		1.7.5 Minimization of convex functions	1
	1.8	Duality	3
		1.8.1 Bidual $\ldots \ldots 28$	5
	1.9	Applications to some problems of calculus of variations 20	6
2	Opt	timality Conditions 29	9
	2.1	Different concepts of derivatives	0
		2.1.1 Derivatives following a direction	0
		2.1.2 Gâteaux Derivatives	3
		2.1.3 Relationship between Gâteaux differentiability and Fréchet	
		differentiability $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 34$	4

CONTENTS

	2.1.4	Subdifferential	7
2.2	Euler	Equations	0
	2.2.1	Optimality conditions 4	0
	2.2.2	Ekeland Variational Principle	2
	2.2.3	Optimality conditions with constraints 4	6
	2.2.4	Applications	0
	2.2.5	Some examples in Hilbert spaces	0
	2.2.6	An example in a Banach space	4
	2.2.7	An eigenvalue problem 5	5
2.3	A very	short bibliography 5	6

Chapter 1

Direct Methods

1.1 An easy example

Let a and b be real numbers such that a < b and let $\mathbf{f} [a, b] \to \mathbf{R}$ be differentiable. The problem $\min_{x \in [a, b]} \mathbf{f}(x)$ has at least one solution $\underline{x} \in [a, b]$ by the Wierstrass's theorem. Moreover, the point \underline{x} satisfies the following :

$$\forall x \in [a, b] \quad (x - \underline{x}) \mathbf{f}'(\underline{x}) \ge 0.$$

This relation is called the **Euler equation** of the problem $\min_{x \in [a, b]} \mathbf{f}(x)$. To prove this relation, we consider the three cases:

- If $\underline{x} = a$ then $\mathbf{f}'(a) = \mathbf{f}'_d(a) \ge 0$.
- If $\underline{x} = b$ then $\mathbf{f}'(b) = \mathbf{f}'_{a}(b) \leq 0$.
- If $\underline{x} \in]a$, b[, we have $\mathbf{f}'(\underline{x}) = \mathbf{f}'_d(\underline{x}) \ge 0$ and $\mathbf{f}'(\underline{x}) = \mathbf{f}'_g(\underline{x}) \le 0$ thus $\mathbf{f}'(\underline{x}) = 0$.

The compactness of [a, b] permits us to prove the existence of a minimum and the derivation leads to the relation verified by the point \underline{x} where **f** reaches its minimum. In this relation one should note that the properties are different depending on whether \underline{x} is an interior point or a boundary point.

1.2 Minimum and maximum

1.2.1 Minimum

Definitions

Let **X** is a non void (non empty) set and **f** a map from **X** to $\mathbf{R} \cup \{+\infty\}$.

Definition 1 Let $\underline{x} \in \mathbf{X}$, the function **f** has a minimum over **X** at the point $\underline{x} \in \mathbf{X}$, if we have :

$$\forall x \in \mathbf{X} \ \mathbf{f}(\underline{x}) \leq \mathbf{f}(x)$$

One notes :

$$\mathbf{f}\left(\underline{x}\right) = \min_{x \in \mathbf{X}} \mathbf{f}\left(x\right) \ .$$

Definition 2 Let $\underline{x} \in \mathbf{X}$, we say that **f** has a strict minimum over **X** at the point $\underline{x} \in \mathbf{X}$, if we have :

$$\forall x \in \mathbf{X} \ \mathbf{f}(\underline{x}) < \mathbf{f}(x)$$
.

1.2.2 Maximum

Definitions

Let **X** a non void set and let **f** be a map from **X** to $\mathbf{R} \cup \{+\infty\}$.

Definition 3 Let $\underline{x} \in \mathbf{X}$, we say that **f** has a maximum over **X** at the point $\underline{x} \in \mathbf{X}$, if we have :

$$\forall x \in \mathbf{X} \ \mathbf{f}(x) \leq \mathbf{f}(\overline{x})$$
.

One notes:

$$\mathbf{f}\left(\overline{x}\right) \ = \ \max_{x \in \mathbf{X}} \ \mathbf{f}\left(x\right) \ .$$

Definition 4 Let $\underline{x} \in \mathbf{X}$, we say that **f** has a strict maximum over **X** at the point $\underline{x} \in \mathbf{X}$, if we have :

$$\forall x \in \mathbf{X} \ \mathbf{f}(x) < \mathbf{f}(\overline{x})$$
.

Remark 1 :

- The map f has a maximum at the point x̄ if and only if the map −f has a minimum at the point x̄.
- The map f has a strict maximum at the point x̄ if and only if the map -f has a strict minimum at the point x̄.

Remark 1 shows that the problem of finding the maximum may be posed as a minimization problem. We, therefore, restrict ourselves to the study of the problem of finding a minimum in this note only.

1.3 Lower semi continuity and upper semi continuity

Let \mathcal{T} be a topology on **X**. We denote the set of all neighbourhoods of a by $\mathcal{V}(a)$.

1.3.1 Lower semi continuity

Definition 5 A function **f** of the topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup \{+\infty\}$ is lower semi continuous (lsc) at the point $a \in \mathbf{X}$, if one has :

$$\forall \lambda \in \mathbf{R} \mid \lambda < \mathbf{f}(a) \ \exists V \in \mathcal{V}(a) \mid \forall x \in V \Rightarrow \mathbf{f}(x) > \lambda .$$

Exercice 1 Show that if $\mathbf{f}(a) \in \mathbf{R}$ then \mathbf{f} is lsc at the point a if and only if :

 $\forall \epsilon > 0 \exists V \in \mathcal{V}(a) \mid \forall x \in V \implies \mathbf{f}(x) > \mathbf{f}(a) - \epsilon .$

Deduce that if \mathbf{f} is continuous at a point $a \in \mathbf{X}$ then \mathbf{f} is lsc at the point a.

Exercice 2 Let \mathbf{f} be a map from the topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup \{+\infty\}$. Show that :

$$\mathbf{f}(a) \geq \sup_{V \in \mathcal{V}(a)} \inf_{y \in V} \mathbf{f}(y)$$

Deduce that \mathbf{f} is \mathbf{lsc} at a point $a \in \mathbf{X}$ if and only if :

$$\mathbf{f}(a) = \sup_{V \in \mathcal{V}(a)} \inf_{y \in V} \mathbf{f}(y)$$

Exercice 3 Let \mathbf{f} and \mathbf{g} are maps from the topological space $(\mathbf{X}, \mathcal{T})$ which take there values in $\mathbf{R} \cup \{+\infty\}$ lsc, show if α and β are real positive numbers then $\alpha \mathbf{f} + \beta \mathbf{g}$ is lsc.

Definition 6 A function **f** from the topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup \{+\infty\}$ is lower semi continuous, if it is **lsc** at every point of **X**. Remark 2 A continuous function is lsc.

We have the following properties :

Proposition 1 A function **f** from the topological space (**X**, \mathcal{T}) which takes its values in $\mathbf{R} \cup \{+\infty\}$ is lsc, if and only if :

$$\forall \lambda \in \mathbf{R}, \ \mathbf{f}^{-1}\left(\left[\lambda, +\infty\right]\right) \in \mathcal{T}$$
.

Proof :

Suppose that \mathbf{f} is $\mathbf{lsc.}$ One sets :

$$\mathcal{O} = \mathbf{f}^{-1}([\lambda, +\infty])$$
.

Let $a \in \mathcal{O}$, then $\mathbf{f}(a) > \lambda$. Since the function \mathbf{f} is \mathbf{lsc} , there exists $V \in \mathcal{V}(a)$ such that :

$$\forall x \in V \Rightarrow \mathbf{f}(x) > \lambda .$$

This implies that $V \subset \mathcal{O}$, thus $\mathcal{O} \in \mathcal{T}$. Next, we prove the reverse. Let $a \in \mathbf{X}$ and let $\lambda \in \mathbf{R}$ such that $\mathbf{f}(a) > \lambda$ then

$$\mathcal{O} = \mathbf{f}^{-1}([\lambda, +\infty]) \in \mathcal{V}(a)$$
.

Thus f is lsc.

Definition 7 If **f** is a map from **X** to $\mathbf{R} \cup \{+\infty\}$, the subset of $\mathbf{X} \times \mathbf{R}$ defined by :

$$\mathbf{epi}(\mathbf{f}) = \{ (x, \lambda) \in \mathbf{X} \ge \mathbf{R} \mid \mathbf{f}(x) \le \lambda \}$$

is called the epigraph of f.

The following proposition gives a characterisation of the lower semi continuity of a function by the properties of its epigrah.

Proposition 2 A function **f** defined from the topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup \{+\infty\}$ is lsc if and only if $\mathbf{epi}(\mathbf{f})$ is closed in $\mathbf{X} \times \mathbf{R}$.

Proof: Suppose that **f** is lsc. Let $(a, \lambda_0) \in \mathbf{X} \times \mathbf{R}$ such that $(a, \lambda_0) \notin \mathbf{epi}(\mathbf{f})$ then $\mathbf{f}(a) > \lambda_0$. Let $\epsilon > 0$ be such that $\lambda_0 + \epsilon < \mathbf{f}(a)$. There exists $V \in \mathcal{V}(a)$ such that

$$\forall x \in V \ \mathbf{f}(x) > \lambda_0 + \epsilon \ .$$

Therefore $(V \ge [\lambda_0 - \epsilon; \lambda_0 + \epsilon[) \cap \mathbf{epi}(\mathbf{f}) \text{ is void (empty)}; \text{ but } V \ge [\lambda_0 - \epsilon; \lambda_0 + \epsilon[$ is a neighbourhood of (a, λ_0) thus, $\mathbf{epi}(\mathbf{f})$ is closed. **Conversely**, suppose that $\mathbf{epi}(\mathbf{f})$ is closed in $\mathbf{X} \ge \mathbf{R}$. Let $a \in \mathbf{X}$ and $\lambda \in \mathbf{R}$

such that $\mathbf{f}(a) > \lambda$, then $(\mathbf{f}(a), \lambda) \notin \mathbf{epi}(\mathbf{f})$ thus, there exists $V \in \mathcal{V}(a)$ and $\epsilon > 0$ such that $(V \mathbf{x}]\lambda - \epsilon; \lambda + \epsilon[) \cap \mathbf{epi}(\mathbf{f})$ is void. Let $x \in V$,

$$(x, \lambda) \notin \mathbf{epi}(\mathbf{f})$$
.

therefore $\mathbf{f}(x) > \lambda$. Then \mathbf{f} is lsc.

For a family of **lsc** functions , we have :

Proposition 3 If $(\mathbf{f}_i)_{i \in \mathbf{I}}$ is a family of lsc functions from the topological space $(\mathbf{X}, \mathcal{T})$ which take its values in $\mathbf{R} \cup \{+\infty\}$ then $\sup_{i \in \mathbf{I}} \mathbf{f}_i$ is a lsc function.

Proof: It is enough to remark that :

$$\mathbf{epi}\left(\mathbf{f}
ight)\ =\ igcap_{i\in\mathbf{I}}\ \mathbf{epi}\left(\mathbf{f}_{i}
ight)$$

Proposition 4 If a function **f** from a topological space $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup \{+\infty\}$ is lsc at a point $a \in \mathbf{X}$, if $(x_n)_{n \in \mathbf{N}}$ is a sequence in **X** such that $\lim_{n \mapsto +\infty} x_n = a$, then $\liminf_{n \mapsto +\infty} \mathbf{f}(x_n) \geq \mathbf{f}(a)$

Proof : Let $\lambda < \mathbf{f}(a)$, there exists $V \in \mathcal{V}(a)$ such that :

$$\forall x \in V \ \mathbf{f}(x) > \lambda ;$$

and since $\lim_{n \to +\infty} x_n = a$, there exists $N \in \mathbf{N}$ such that

$$\forall n \in \mathbf{N}, n \ge N \implies x_n \in V .$$

Thus if $n \in \mathbf{N}$ is such that $n \ge N$ then

$$\inf_{p>n} \mathbf{f}(x_p) \geq \lambda ,$$

therefore

$$\sup_{n \in \mathbf{N}} \inf_{p \ge n} \mathbf{f}(x_p) \ge \lambda .$$

Conequently,

$$\liminf_{n \mapsto +\infty} \mathbf{f}(x_n) = \sup_{n \in \mathbf{N}} \inf_{p \ge n} \mathbf{f}(x_p) \ge \mathbf{f}(a) .$$

Exercice 4 Prove that if (\mathbf{X}, d) is a metric space, a function \mathbf{f} is lsc if and only if for all sequences $(x_n)_{n \in \mathbf{N}}$ such that $\lim_{n \to +\infty} x_n = a$ implies $\lim_{n \to +\infty} \mathbf{f}(x_n) \geq \mathbf{f}(a)$.

Definition 8 Let $\lambda \in \mathbf{R}$, a subset of \mathbf{X} denoted by $S_{\lambda}(\mathbf{f})$ where :

$$S_{\lambda}(\mathbf{f}) = \{ x \in \mathbf{X} \mid \mathbf{f}(x) \le \lambda \}$$

is called a section of \mathbf{f} .

Remark 3 If **f** is lsc then $S_{\lambda}(\mathbf{f})$ is closed.

1.3.2 Upper semi continuity

Definition 9 A function **f** from a topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup \{-\infty\}$ is upper semi continuous (\mathbf{usc}) at the point $a \in \mathbf{X}$, if one has :

$$\forall \lambda \in \mathbf{R} \mid \mathbf{f}(a) < \lambda \exists V \in \mathcal{V}(a) \mid \forall x \in V \implies \mathbf{f}(x) < \lambda .$$

Remark 4 The map \mathbf{f} is use if and only if $-\mathbf{f}$ is lsc.

1.4 Wierstrass's theorem

Definition 10 If \mathbf{f} is a function from \mathbf{X} to $\mathbf{R} \cup \{+\infty\}$, the domain of \mathbf{f} is the subset denoted by $\mathbf{dom}(\mathbf{f})$ and defined by :

$$\mathbf{dom}\left(\mathbf{f}\right) = \left\{x \in \mathbf{X} \mid \mathbf{f}\left(x\right) < +\infty\right\} .$$

If dom(f) is non void, one says that f is proper.

Theorem 1 (Wierstrass)

If $(\mathbf{X}, \mathcal{T})$ is a **compact** topological space and if \mathbf{f} is a **proper** map and lsc from $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup \{+\infty\}$ then there exists $\underline{x} \in \mathbf{X}$ such that

$$\forall x \in \mathbf{X} \ \mathbf{f}(\underline{x}) \leq \mathbf{f}(x)$$
.

Proof: Let $m = \inf_{x \in \mathbf{X}} f(x)$.

Suppose that $m = -\infty$. There exists a sequence $(x_n)_{n \in \mathbb{N}}$ of elements of **X** such that

$$\forall n \in \mathbf{N} \ \mathbf{f}(x_n) < -n$$
.

1.4. WIERSTRASS'S THEOREM

Let $\lambda \in \mathbf{R}$, then there exists $N \in \mathbf{N}$ such that

$$\forall n \in \mathbf{N} \mid n \geq N \Rightarrow \mathbf{f}(x_n) < \lambda$$

The sequence $(x_n)_{n \in \mathbb{N}}$ has a cluster point $\underline{x} \in \mathbb{X}$. The function **f** is lsc at \underline{x} then there exists $V \in \mathcal{V}(\underline{x})$ such that

$$\forall x \in V \ \mathbf{f}(x) > \lambda$$

There exists also $p \in \mathbf{N}$ such that p > N and $x_p \in V$ then $\mathbf{f}(x_p) > \lambda$ and $\mathbf{f}(x_p) < \lambda$. It is impossible. Thus $m \in \mathbf{R}$.

Let $\underline{x} \in \mathbf{X}$ be the cluster point of the minimizing sequence $(x_n)_{n \in \mathbf{N}}$. Suppose that $\mathbf{f}(\underline{x}) > m$. Then there exists $\delta > 0$ such that $\mathbf{f}(\underline{x}) > m + \delta$. But the function \mathbf{f} is lsc at \underline{x} , thus there exists $V \in \mathcal{V}(\underline{x})$ such that

$$\forall x \in V \ \mathbf{f}(x) > m + \delta$$

There exists also $N \in \mathbf{N}$ such that

$$\forall n \in \mathbf{N} \mid n \geq N \Rightarrow m \leq \mathbf{f}(x_n) < m + \delta$$

There exists $p \in \mathbf{N}$ such that p > N and $x_p \in V$ then $\mathbf{f}(x_p) > m + \delta$ and $\mathbf{f}(x_p) < m + \delta$. It is impossible. Thus $m = \mathbf{f}(\underline{x})$.

1.4.1 Sequentially compact set

Let $(\mathbf{X}, \mathcal{T})$ a topological space.

Definition 11 A subset \mathbf{K} of \mathbf{X} is said to be sequentially compact if every sequence of elements of \mathbf{K} has a subsequence which converges to an element of \mathbf{K} .

Following the proof of the Wierstrass's theorem we have:

Theorem 2 If $(\mathbf{X}, \mathcal{T})$ is a sequentially compact topological space and if **f** is a proper map and lsc from $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup \{+\infty\}$ then there exists $\underline{x} \in \mathbf{X}$ such that

$$\forall x \in \mathbf{X} \ \mathbf{f}(\underline{x}) \leq \mathbf{f}(x)$$
.

1.5 Coercivity property

1.5.1 Coercivity

Definition 12 A function **f** from the topological space $(\mathbf{X}, \mathcal{T})$ which takes its values in $\mathbf{R} \cup \{+\infty\}$ is said **coercive** if the closure of every section

$$S_{\lambda}(\mathbf{f}) = \{x \in \mathbf{X} \mid \mathbf{f}(x) \le \lambda\}$$

is compact in \mathbf{X} .

Definition 13 A map **f** from the topological space $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup \{+\infty\}$ is said to be sequentially coercive if the closure of every section

$$S_{\lambda}(\mathbf{f}) = \{ x \in \mathbf{X} \mid \mathbf{f}(x) \le \lambda \}$$

is sequentially compact in \mathbf{X} .

If $(\mathbf{X}, \| \|_{\mathbf{X}})$ is a reflexive Banach space, one defines, in general, the coercivity of \mathbf{f} by the property :

$$\lim_{\left\|x\right\|_{\mathbf{X}}\mapsto+\infty}\mathbf{f}\left(x\right)\ =\ +\infty\ .$$

In fact we have :

Proposition 5 If $(\mathbf{X}, || ||_{\mathbf{X}})$ is a reflexive Banach space then the map \mathbf{f} is weakly sequentially coercive if and only if :

$$\lim_{\|x\|_{\mathbf{x}}\mapsto+\infty}\mathbf{f}(x) = +\infty .$$

Proof: One supposes that **f** is weakly sequentially coercive. If **f** does not tend to $+\infty$ when $||x||_{\mathbf{x}} \mapsto +\infty$, there exists a sequence $(x_n)_{n \in \mathbf{N}}$ such that : $\lim_{n \mapsto +\infty} ||x_n||_{\mathbf{x}} = +\infty$ and $(\mathbf{f}(x_n))_{n \in \mathbf{N}}$ is bounded. Let $\lambda \in \mathbf{R}$ such that :

$$\forall n \in \mathbf{N}, |\mathbf{f}(x_n)| \leq \lambda$$
.

As $S_{\lambda}(\mathbf{f})$ is weakly sequentially compact, the sequence $(x_n)_{n \in \mathbf{N}}$ has a subsequence $(x_{n_k})_{k \in \mathbf{N}}$ which converges weakly to an element \underline{x} of $S_{\lambda}(\mathbf{f})$. Then $(x_{n_k})_{k \in \mathbf{N}}$ is bounded. This is impossible.

Now, we prove the converse. Let $\lambda \in \mathbf{R}$ and $(x_n)_{n \in \mathbf{N}}$ a sequence of elements of $S_{\lambda}(\mathbf{f})$ then $(x_n)_{n \in \mathbf{N}}$ is a bounded sequence; then it has a weakly convergent subsequence $(x_{n_k})_{k \in \mathbf{N}}$ in the closure of $S_{\lambda}(\mathbf{f})$. Thus \mathbf{f} is sequentially coercive. **Theorem 3** (Tonelli's Theorem) Let \mathbf{f} from $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup \{+\infty\}$, be a proper, coercive, lsc function. Then \mathbf{f} has a minimum in \mathbf{X} .

Proof: Let $a \in \mathbf{X}$ be such that $\mathbf{f}(a) < +\infty$, the subset $S_{\mathbf{f}(a)}(\mathbf{f})$ is relatively compact (that is, the closure is compact), but \mathbf{f} is lsc, since $S_{\mathbf{f}(a)}(\mathbf{f})$ is closed, it is compact. Thus by **Wierstrass's theorem**, there exists $\underline{x} \in S_{\mathbf{f}(a)}(\mathbf{f})$ such that :

$$\forall x \in S_{\mathbf{f}(a)}(\mathbf{f}) \ \mathbf{f}(\underline{x}) \leq \mathbf{f}(x)$$

As a result :

 $\forall x \in \mathbf{X} \mathbf{f}(\underline{x}) \leq \mathbf{f}(x)$.

The following theorem is easy to prove :

Theorem 4 (Tonelli's Theorem) A map **f** from the topological space $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup \{+\infty\}$, proper, lsc and sequentially coercive has at least a minimum in **X**.

1.6 Minimizing sequences

Let **f** be a map from **X** to $\mathbf{R} \cup \{+\infty\}$ such that

$$m = \inf_{x \in \mathbf{X}} \mathbf{f}(x)$$

Definition 14 We say that a sequence $(x_n)_{n \in \mathbb{N}}$ is a minimizing sequence of \mathbf{f} , if it verifies :

$$\lim_{n \mapsto +\infty} \mathbf{f}(x_n) = m$$

Exercice 5 Prove that every proper map **f** has a minimizing sequence.

Remark 5 As consequences of the **Tonelli's theorems**, if **f** is a map from the topological space $(\mathbf{X}, \mathcal{T})$ to $\mathbf{R} \cup \{+\infty\}$ is **proper** and **lsc**, one has :

- if f is coercive, every minimizing sequence (x_n)_{n∈N} of f has a cluster point <u>x</u> ∈ X where <u>x</u> is the minimum point of f : f (<u>x</u>) = m;
- if **f** is sequentially coercive, every minimizing sequence $(x_n)_{n \in \mathbb{N}}$ of **f** has a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ which converges to a point $\underline{x} \in \mathbf{X}$ where \underline{x} is the minimum point of **f** : **f** $(\underline{x}) = m$.

1.7 Convexity

In this part of the note, **X** is a real linear space with the norm $\| \|_{\mathbf{X}}$. One denotes by \mathbf{X}^* , the topological dual space of **X**, that is \mathbf{X}^* is the real linear space of the continuous linear forms on the normed space (**X**, $\| \|_{\mathbf{X}}$). One denotes the bilinear pairing in the duality between **X** and \mathbf{X}^* by <, > then

$$\forall x^* \in \mathbf{X}^* \; \forall x \in \mathbf{X}, \; x^*(x) = < x^*, x > \; .$$

If we set for every $x^* \in \mathbf{X}^*$,

$$||x^*||_{\mathbf{X}^*} = \sup_{||x||_{\mathbf{X}}=1} \langle x^*, x \rangle$$
,

then $(\mathbf{X}^*, \| \|_{\mathbf{X}^*})$ is a normed linear space.

1.7.1 Convex sets

Definition 15 : A subset C of X is said to be convex if :

$$\forall t \in [0, 1] \ \forall x \in \mathbf{C} \ \forall y \in \mathbf{C} \ tx + (1 - t)y \in \mathbf{C}$$
.

Definition 16 Let x and y belong to **X**, a subset of **X** denoted by [x, y] is called the geometrical segment with extremal points x and y and it is given by :

$$[x, y] = \{ tx + (1 - t)y \mid t \in [0, 1] \}$$

A subset \mathbf{C} of \mathbf{X} is **convex** if and only if every geometrical segment with extremal points in \mathbf{C} is included in \mathbf{C} .

We now have the following :

Proposition 6 A subset \mathbf{C} of \mathbf{X} is convex if and only if :

$$\forall x_1, \dots, x_p \in \mathbf{C} \ \forall \alpha_1, \dots, \alpha_p \in \mathbf{R}_+ \mid \sum_{i=1}^p \alpha_i = 1 \Rightarrow \sum_{i=1}^p \alpha_i x_i \in \mathbf{C} .$$

Proof : The proof is given by induction . Suppose that **C** is a convex subset . Then the case p = 2 is obvious . Suppose that the hypothesis is true for an integer p greater than 2, we prove that it is also true for p + 1. Now, let x_1, \dots, x_{p+1} be points of **C**. Let $\alpha_1, \dots, \alpha_{p+1}$ any positive real numbers such that $\sum_{i=1}^{i=p+1} \alpha_i = 1$. If $\alpha_{p+1} = 0$, we are in the case of p points. So, by

:

induction hypothesis, we are done. If $\alpha_{p+1} \neq 0$ then $y = \frac{1}{1-\alpha_{p+1}} \sum_{i=1}^{p} \alpha_i x_i$ belong **C** then

$$\sum_{i=1}^{p+1} \alpha_i x_i = (1 - \alpha_{p+1}) y + \alpha_{p+1} x_{p+1} \in \mathbf{C}$$

Exemples :

- The linear space \mathbf{X} , every sublinear space of \mathbf{X} and every affine subspace of \mathbf{X} are convex.
- Let $\mathbf{f} \mathbf{X} \to \mathbf{R}$ be a linear map such that \mathbf{f} is not identically zero and $\alpha \in \mathbf{R}$, the subset denoted by $H_{\mathbf{f} \alpha} = \{x \in \mathbf{X} \mid \mathbf{f}(x) = \alpha\}$, called a hyperplane is convex.
- Let $\mathbf{f} \mathbf{X} \to \mathbf{R}$ be a linear map such that \mathbf{f} is not identically zero and $\alpha \in \mathbf{R}$, the following subsets $D_{\mathbf{f}\,\alpha}^+ = \{x \in \mathbf{X} \mid \mathbf{f}(x) \ge \alpha\}$ and $D_{\mathbf{f}\,\alpha}^- = \{x \in \mathbf{X} \mid \mathbf{f}(x) \le \alpha\}$ called closed half spaces are convex.
- Let $\mathbf{f} \mathbf{X} \to \mathbf{R}$ be a linear map such that \mathbf{f} is not identically zero and $\alpha \in \mathbf{R}$, the following subsets $D_{\mathbf{f}\alpha}^{*+} = \{x \in \mathbf{X} \mid \mathbf{f}(x) > \alpha\}$ and $D_{\mathbf{f}\alpha}^{*-} = \{x \in \mathbf{X} \mid \mathbf{f}(x) < \alpha\}$ called open half spaces are convex.

Exercice 6 Let X be a real linear space endowed with the norm $|| ||_{\mathbf{X}}$. Let $\mathbf{f} \mathbf{X} \to \mathbf{R}$ be a linear map such that \mathbf{f} is not identically zero and $\alpha \in \mathbf{R}$.

- Prove that **f** is continuous if and only if $H_{\mathbf{f} \alpha}$ is a closed subset.
- Prove that if **f** is continuous then $D^+_{\mathbf{f}\,\alpha}$ and $D^-_{\mathbf{f}\,\alpha}$ are closed subsets.
- Prove that if **f** is continuous then $D_{\mathbf{f}\,\alpha}^{*\,+}$ and $D_{\mathbf{f}\,\alpha}^{*\,-}$ are open subsets.

The convex subsets have the following proprties :

- If $(\mathbf{C}_i)_{i \in \mathbf{I}}$ is a family of convex subsets of \mathbf{X} then $\bigcap_{i \in \mathbf{I}} \mathbf{C}_i$ is convex.
- If $(\mathbf{C}_i)_{1 \le i \le n}$ is a finite family of convex subsets and if $(\lambda_i)_{1 \le i \le n}$ are real numbers then $\sum_{i=1}^n \lambda_i \mathbf{C}_i$ is a convex subset.
- The closure of a convex subset is convex .

1.7.2 The Convex Functions

Definition 17 A function **f** defined on a subset **C** of **X** which takes its values in $\mathbf{R} \cup \{+\infty\}$, is called convex if **C** is convex and if

$$\forall t \in [0, 1] \ \forall x \in \mathbf{C} \ \forall y \in \mathbf{C}, \ \mathbf{f} \left(t \ x + (1 - t) \ y \right) \le t \ \mathbf{f} \left(x \right) + \left(1 - t \right) \ \mathbf{f} \left(y \right)$$

Remark 6 If **f** is a convex function from the convex subset **C** of **X** to $\mathbf{R} \cup \{+\infty\}$, one defines **the convex extention** of **f** as the function \mathbf{f}_{co} from **X** to $\mathbf{R} \cup \{+\infty\}$ such that

- $\forall x \in \mathbf{C} \mathbf{f}_{co}(x) = \mathbf{f}(x)$,
- $\forall x \notin \mathbf{C} \ \mathbf{f}_{co}(x) = +\infty$.

The function \mathbf{f}_{co} is convex on \mathbf{X} if and only if \mathbf{f} is convex on \mathbf{C} . The function \mathbf{f}_{co} and \mathbf{f} are proper at the same time.

This extension does not change the minimization problem. Then if \mathbf{f} is proper, it has a minimum at a point $\underline{x} \in \mathbf{C}$ if and only if \mathbf{f}_{co} has a minimum on \mathbf{X} at a point \underline{x} .

We shall consider in what follows the functions defined on X and which takes its values in $\mathbf{R} \cup \{+\infty\}$.

Definition 18 A function **f** defined on a subset **C** of **X** which takes its values in $\mathbf{R} \cup \{+\infty\}$, is said to be strictly convex if **C** is convex and if

$$\forall t \in [0, 1[\forall x \in \mathbf{C} \forall y \in \mathbf{C} and x \neq y, \mathbf{f}(t x + (1-t) y) < t\mathbf{f}(x) + (1-t)\mathbf{f}(y)$$

A stricly convex function is a convex function.

Proposition 7 A function **f** from **X** to $\mathbf{R} \cup \{+\infty\}$ is convex if and only if $\mathbf{epi}(\mathbf{f})$ is a convex subset of $\mathbf{X} \times \mathbf{R}$.

Proof: Suppose that **f** is convex. Let $(x, \gamma_1) \in \mathbf{epi}(\mathbf{f})$, $(y, \gamma_2) \in \mathbf{epi}(\mathbf{f})$, let $t \in [0, 1]$, One has :

$$\mathbf{f}(tx + (1-t)y) \le t\mathbf{f}(x) + (1-t)\mathbf{f}(y) \le t\gamma_1 + (1-t)\gamma_2$$
.

Thus

$$t(y, \gamma_1) + (1-t)(y, \gamma_2) = (tx + (1-t)y, t\gamma_1 + (1-t)\gamma_2) \in epi(f)$$

So, epi(f) is convex.

Conversely we suppose $\mathbf{epi}(\mathbf{f})$ to be convex. Let $x \in \mathbf{dom}(\mathbf{f})$ and $y \in \mathbf{dom}(\mathbf{f})$, then $(x, \mathbf{f}(x)) \in \mathbf{epi}(\mathbf{f})$ and $(y, \mathbf{f}(y)) \in \mathbf{epi}(\mathbf{f})$ thus if $t \in [0, 1]$ then

$$t(x, \mathbf{f}(x)) + (1-t)(y, \mathbf{f}(y)) \in \mathbf{epi}(\mathbf{f})$$
,

therefore

$$\mathbf{f}(t \ x + (1-t) \ y) \le t \ \mathbf{f}(x) + (1-t) \ \mathbf{f}(y)$$

So, the function \mathbf{f} is convex.

Remark 7 If \mathbf{f} is convex then the sections $\mathbf{S}_{\alpha}(\mathbf{f})$ are convex.

Exemples :

- If **f** and **g** are convex functions from **X** to $\mathbf{R} \cup \{+\infty\}$, if $\lambda \in \mathbf{R}_+$ and if $\mu \in \mathbf{R}_+$ then $\lambda \mathbf{f} + \mu \mathbf{g}$ is convex.
- If **f** is convex and **g** is strictly convex from **X** to $\mathbf{R} \cup \{+\infty\}$ then $\mathbf{f} + \mathbf{g}$ is strictly convex.
- If **f** and **g** are strictly convex functions from **X** to **R**∪{+∞}, if λ ∈ **R**^{*}₊ and if μ ∈ **R**^{*}₊ then λ**f** + μ**g** is strictly convex.
- If $(\mathbf{f}_i)_{i \in \mathbf{I}}$ is a family of convex functions from \mathbf{X} to $\mathbf{R} \cup \{+\infty\}$ then $\sup_{i \in \mathbf{I}} \mathbf{f}_i$ is convex.

1.7.3 Continuity of the convex functions

Proposition 8 If **f** is a convex function from **X** to $\mathbf{R} \cup \{+\infty\}$ which is bounded above on a neighbourhood of a point a belonging to its domain, then **f** is continuous at the point a and, moreover, **f** is locally lipschitz in the interior of its domain.

Proof : Define the function **g** by :

$$\mathbf{g}(y) = \mathbf{f}(a+y) - \mathbf{f}(a) .$$

Then 0 is in the domain of \mathbf{g} , $\mathbf{g}(0) = 0$ and \mathbf{g} is bounded above in a neighbourhood of 0. The function \mathbf{f} is continuous at the point a if and only if \mathbf{g} is continuous at 0. Let M > 0 and r > 0 such that:

$$\forall y \in \mathbf{X} \mid \|y\|_{\mathbf{X}} \le r \Rightarrow \mathbf{g}(y) \le M .$$

Let r > 0, if $x \in \mathbf{X} \setminus \{0\}$ and if $||x||_{\mathbf{X}} < r$ then because, **g** is convex, we have :

$$\begin{aligned} \mathbf{g}\left(x\right) &= \mathbf{g}\left(\left(1 - \frac{\|x\|_{\mathbf{X}}}{r}\right)0 + \frac{\|x\|_{\mathbf{X}}}{r} \frac{r}{\|x\|_{\mathbf{X}}}x\right) \leq \left(1 - \frac{\|x\|_{\mathbf{X}}}{r}\right)\mathbf{g}\left(0\right) + \frac{\|x\|_{\mathbf{X}}}{r}\mathbf{g}\left(\frac{r}{\|x\|_{\mathbf{X}}}x\right) \\ \text{As } \left\|\frac{r}{\|x\|_{\mathbf{X}}}x\right\|_{\mathbf{X}} = r, \text{ one has :} \end{aligned}$$

$$\mathbf{g}\left(x\right) \leq \frac{\|x\|_{\mathbf{X}}}{r}M \; .$$

In addition, one has :

$$0 = \frac{r}{r + \|x\|_{\mathbf{X}}} x + \left(1 - \frac{r}{r + \|x\|_{\mathbf{X}}}\right) \left(-\frac{r}{\|x\|_{\mathbf{X}}}x\right)$$

then

$$0 \le \frac{r}{r + \|x\|_{\mathbf{X}}} \mathbf{g}\left(x\right) + \left(1 - \frac{r}{r + \|x\|_{\mathbf{X}}}\right) \mathbf{g}\left(-\frac{r}{\|x\|_{\mathbf{X}}}x\right)$$

thus

:

$$-\frac{\|x\|_{\mathbf{X}}}{r} \mathbf{g}\left(-\frac{r}{\|x\|_{\mathbf{X}}}x\right) \leq \mathbf{g}(x)$$

therefore

$$-\frac{\|x\|_{\mathbf{X}}}{r} M \leq \mathbf{g}\left(x\right) \ .$$

At the end, we have

$$|\mathbf{g}(x)| \leq \frac{\|x\|_{\mathbf{X}}}{r} M .$$

Let $\epsilon > 0$, we set $\eta = \min\left(\frac{r}{M}\epsilon, r\right)$, if $x \in \mathbf{X}$ and $||x||_{\mathbf{X}} < \eta$ then we have

$$|\mathbf{g}(x)| < \epsilon .$$

Now we prove that \mathbf{g} is continuous in the interior of its domain . It is enough to prove that \mathbf{g} is bounded above a neighbourhood of every point of

$\mathbf{dom}\left(\mathbf{g}\right)$.

Let x belong to **dom** (g). The function of the segment [0, 1] to X which associates t with (1 + t)x is continuous, then there exists $t_0 \in [0, 1[$ such that

$$\forall t \in [0, t_0] \Rightarrow (1+t) x \in \overbrace{\mathbf{dom}(\mathbf{g})}^{0}$$
.

1.7. CONVEXITY

We set $x_0 = (1 + t_0) x$ and $r_1 = \frac{t_0}{1+t_0} r$. Let $y \in \mathbf{X}$ be such that $||y - x||_{\mathbf{X}} < r_1$, then we have : $\left\| \frac{1+t_0}{t_0} (y - x) \right\|_{\mathbf{X}} < r$. However, $y = \frac{t_0}{1+t_0} \left(\frac{1+t_0}{t_0} (y - x) \right) + \frac{1}{1+t_0} \left((1 + t_0) x \right)$ then $y = \frac{t_0}{1+t_0} \left(\frac{1+t_0}{t_0} (y - x) \right) + \frac{1}{1+t_0} x_0$ thus $\mathbf{g}(y) \le \frac{t_0}{1+t_0} \mathbf{g} \left(\frac{1+t_0}{t_0} (y - x) \right) + \frac{1}{1+t_0} \mathbf{g}(x_0)$ d'où $\mathbf{g}(y) \le \frac{t_0}{1+t_0} M + \frac{1}{1+t_0} \mathbf{g}(x_0)$. We set $M_1 = \max(M, \mathbf{g}(x_0))$. Then one has :

$$\forall y \in \mathbf{X} \mid \|y - x\|_{\mathbf{X}} < r_1 \Rightarrow \mathbf{g}(y) \le M_1 .$$

Therefore **g** is continuous at the point x. To complete the proof we show

that **g** is locally lipschitz on **dom** (**g**). It is enough to prove it at the point 0. Let $\delta > 0$ such that $\delta < r$ and let $u \in B(0,\delta), v \in B(0,\delta)$.

Let $n \in \mathbf{N}$ such that $n > \frac{\|u-v\|_{\mathbf{X}}}{r-\delta}$, we set $\forall i \in \{1,...,n\}$ $x_{i+1} = x_i + \frac{1}{n}(v-u)$ with $x_1 = u$. Then $x_{n+1} = v$ and $\forall i \in \{1,...,n-1\}$, one has : $x_{i+1} \in B(x_i, r-\delta)$ thus $x_{i+1} \in B(0, r)$. The first part of the proof give us :

$$|\mathbf{g}(x_{i+1}) - \mathbf{g}(x_i)| \le \frac{M}{r-\delta} ||x_{i+1} - x_i||_{\mathbf{X}}$$
.

then

$$\left|\mathbf{g}\left(x_{i+1}\right) - \mathbf{g}\left(x_{i}\right)\right| \leq \frac{M}{r-\delta} \frac{1}{n} \left\|v - u\right\|_{\mathbf{X}} .$$

thus

$$|\mathbf{g}(v) - \mathbf{g}(u)| = |\mathbf{g}(x_n) - \mathbf{g}(x_1)| \le \sum_{i=1}^{n-1} |(\mathbf{g}(x_{i+1}) - \mathbf{g}(x_i))| \le \frac{M}{r-\delta} ||v - u||_{\mathbf{X}}$$

1.7.4 Lsc convex functions

Proposition 9 A function **f** from **X** to $\mathbf{R} \cup \{+\infty\}$ is convex and lsc if and only if it is weakly lsc.

Proof: It is enough to remark that epi(f) is closed convex if and only if epi(f) is weakly closed convex.

Exemples :

• A continuous convex function is a weakly lsc convex function . In particular the function $\| \, \|_{\mathbf{X}}$ is a weakly lsc convex function on \mathbf{X} ; every continuous linear form on \mathbf{X} is weakly lsc convex function and every continuous affine form on \mathbf{X} is weakly lsc convex function.

• Let **a** be a positive bilinear form on **X** then the map **q** defined by $\mathbf{q}(x) = \mathbf{a}(x, x)$ is convex. Let $x \in \mathbf{X}$, $y \in \mathbf{X}$ and $t \in [0, 1]$, one has :

$$\mathbf{q}(t\,x + (1-t)\,y) = \mathbf{a}((t\,x + (1-t)\,y)\,,\,(t\,x + (1-t)\,y))\,.$$

thus

$$\mathbf{q}(t\,x + (1-t)\,y) = t^2 \mathbf{a}(x, x) + t\,(1-t)\,[\mathbf{a}(x, y) + \mathbf{a}(y, x)] + (1-t)^2\,\mathbf{a}(y, y) \ .$$

Because **a** is positive, developing $\mathbf{a}(x - y, x - y) \ge 0$, one obtains $\mathbf{a}(x, y) + \mathbf{a}(y, x) \le \mathbf{a}(x, x) + \mathbf{a}(y, y)$. Finally one has :

$$\mathbf{q}(t\,x + (1-t)\,y) \le t\mathbf{a}(x\,,x) + (1-t)\mathbf{a}(y\,,y) \le t\mathbf{q}(x) + (1-t)\mathbf{q}(y) \ .$$

Thus, \mathbf{q} is convex.

If \mathbf{a} is positive definite, one verifies by the same method that \mathbf{q} is strictly convex . In particular \mathbf{a} is positive definite if it satisfies the following coercivity condition :

$$\exists \alpha > 0 \mid \forall x \in \mathbf{X} \ \mathbf{a}(x, x) \ge \alpha \ \|x\|_{\mathbf{X}}^2$$

If \mathbf{a} is positive continuous bilinear then \mathbf{a} is convex lsc.

One sets :

$$\mathcal{E}(\mathbf{f}) = \{ (x^*, \alpha) \in \mathbf{X}^* \mathbf{x} \mathbf{R} \mid \forall x \in \mathbf{X} < x^*, x > +\alpha \leq \mathbf{f}(x) \}$$

Proposition 10 If \mathbf{f} is a lsc convex proper function from \mathbf{X} to $\mathbf{R} \cup \{+\infty\}$ then :

$$\mathbf{f}(x) \ = \ \sup_{(x^* \ , \ \alpha) \in \ \mathcal{E}(\mathbf{f})} < x^* \ , \ x > + \alpha \ .$$

Proof : We have according to the definition of $\mathcal{E}(\mathbf{f})$:

$$\mathbf{f}(x) \geq \sup_{(x^*, \alpha) \in \mathcal{E}(\mathbf{f})} < x^*, x > +\alpha .$$

Let $x_0 \in \mathbf{dom}(\mathbf{f})$ and let $\epsilon > 0$ then $(x_0, \mathbf{f}(x_0) - \epsilon) \notin \mathbf{epi}(\mathbf{f})$. Because $\mathbf{epi}(\mathbf{f})$ is closed convex subset of \mathbf{XxR} , there exists $x^* \in \mathbf{X}^*$, $\alpha \in \mathbf{R}$ and $\gamma \in \mathbf{R}$ such that :

$$\forall (x, \lambda) \in \mathbf{epi}(\mathbf{f}) \quad < x^*, x_0 > +\alpha \left(\mathbf{f}(x_0) - \epsilon\right) < \gamma \leq < x^*, x > +\alpha\lambda.$$

1.7. CONVEXITY

One verifies that α is strictly positive. If $\alpha = 0$, when we set $x = x_0$ in the two members, we have $\langle x^*, x_0 \rangle \langle \gamma \rangle \leq \langle x^*, x_0 \rangle$ this is impossible. If we suppose that $\alpha < 0$, we take λ such that $\mathbf{f}(x_0) \leq \lambda$, one has

$$\langle x^*, x_0 \rangle + \alpha \left(\mathbf{f} \left(x_0 \right) - \epsilon \right) \langle \gamma \rangle \leq \langle x^*, x_0 \rangle + \alpha \lambda$$

and as λ tends to $+\infty$ then :

$$\langle x^*, x_0 \rangle + \alpha \left(\mathbf{f} \left(x_0 \right) - \epsilon \right) \langle \gamma \leq -\infty$$
.

It is impossible . Then we have :

$$\forall x \in \mathbf{dom}\left(\mathbf{f}\right) \quad <\frac{1}{\alpha}x^{*}, x_{0}>+\mathbf{f}\left(x_{0}\right)-\epsilon < \gamma \leq <\frac{1}{\alpha}x^{*}, x>+\mathbf{f}\left(x\right) \;,$$

thus

$$\forall x \in \mathbf{dom}\left(\mathbf{f}\right) \quad < \frac{-1}{\alpha} x^* , x > + < \frac{1}{\alpha} x^* , x_0 > + \mathbf{f}\left(x_0\right) - \epsilon \le \mathbf{f}\left(x\right) \ .$$

Therefore we have :

$$\forall x \in \mathbf{dom}\left(\mathbf{f}\right) \quad <\frac{-1}{\alpha}x^{*}, x > + <\frac{1}{\alpha}x^{*}, x_{0} > +\mathbf{f}\left(x_{0}\right) - \epsilon \leq \sup_{\left(x^{*}, \alpha\right) \in \mathcal{E}\left(\mathbf{f}\right)} < x^{*}, x > +\alpha \leq \mathbf{f}\left(x\right) \;.$$

Finally,

$$\mathbf{f}(x_0) - \epsilon \le \sup_{(x^*, \alpha) \in \mathcal{E}(\mathbf{f})} < x^*, x_0 > +\alpha \le \mathbf{f}(x_0)$$

Since $\epsilon > 0$ is arbitrary, we conclude that :

$$\sup_{(x^*, \alpha) \in \mathcal{E}(\mathbf{f})} < x^*, x_0 > +\alpha = \mathbf{f}(x_0).$$

1.7.5 Minimization of convex functions

We have the following proposition :

Proposition 11 If **f** is a strictly proper convex function from **X** to $\mathbf{R} \cup \{+\infty\}$ then if it has a minimum at a point, this point is unique.

Proof : We suppose that $a \in \mathbf{X}$ and $b \in \mathbf{X}$ are such that $a \neq b$ and

$$\forall x \in \mathbf{X} \mathbf{f}(a) = \mathbf{f}(b) \le \mathbf{f}(x) ,$$

then

$$\mathbf{f}(a) \le \mathbf{f}\left(\frac{1}{2}a + \frac{1}{2}b\right) < \frac{1}{2}\mathbf{f}(a) + \frac{1}{2}\mathbf{f}(b) = \mathbf{f}(a) \quad .$$

It is impossible .

We have below a theorem which is very useful.

Theorem 5 If **X** is a reflexive Banach space, if **f** is a lsc proper convex function from **X** to $\mathbf{R} \cup \{+\infty\}$ and if

$$\lim_{\|x\|\mapsto+\infty}\mathbf{f}\left(x\right)=+\infty$$

then \mathbf{f} has a minimum at a point of \mathbf{X} .

Proof: The sections of f are closed, convex and bounded;thus they are weakly compact . Since f is proper and weakly lsc, we apply the Tonelli theorem .

Usual particular cases : Let **H** a real Hilbert space endowed with its scalar product $\langle , \rangle_{\mathbf{H}}$ and with the associated norm $\| \|_{\mathbf{H}}$. It is well known that **H** is a reflexive Banach space : the **Riez's theorem** permits us to establish an isometric isomorphism between **H** and its topological dual \mathbf{H}^* .

• Projection on a convex closed subset

Let C be a non void convex closed subset of X. Let $x \in \mathbf{X}$ and let F, the function from X to $\mathbf{R} \cup \{+\infty\}$ which is defined as follows :

if
$$y \in \mathbf{C}$$
 then $\mathbf{F}(y) = \|y - x\|_{\mathbf{X}}$

and

if
$$y \notin \mathbf{C}$$
 then $\mathbf{F}(y) = +\infty$

. The function ${\bf F}$ is convex lsc and it satisfies :

$$\lim_{\|x\|\mapsto+\infty}\mathbf{F}\left(x\right)=+\infty\ .$$

Thus there exists $\underline{y} \in \mathbf{C}$ such that

$$\mathbf{F}\left(\underline{y}\right) = \min_{y \in \mathbf{C}} \mathbf{F}\left(y\right)$$
.

1.8. DUALITY

• Quadratic optimization Let *a* be a bilinear form on **X** which is continuous and coercive. These properties mean :

 $\mathbf{continuity}: \ \exists M > 0 \mid \forall x \in \mathbf{X} \, \forall y \in \mathbf{X} \quad \left| a\left(x\,,y\right) \right| \leq M \ \left\|x\right\|_{\mathbf{X}} \ \left\|y\right\|_{\mathbf{X}} \ ,$

coercivity :
$$\exists \alpha > 0 \mid \forall x \in \mathbf{X} \quad \alpha \parallel x \parallel_{\mathbf{X}}^2 \leq a(x, x)$$

Let ℓ be a continuous linear form on **X**, there exists L > 0 such that

 $\forall x \in \mathbf{X} \ \left| \ell \left(x \right) \right| \ \le \ L \ \left\| x \right\|_{\mathbf{X}}$

and let $k \in \mathbf{R}$. One defines on $\mathbf{X},$ the function denoted \mathbf{J} by :

$$\forall x \in \mathbf{X} \mathbf{J}(x) = \frac{1}{2}a(x, x) - \ell(x, x) + k.$$

The function \mathbf{J} is convex lsc proper and verifies :

$$\lim_{\|x\|\mapsto+\infty} \mathbf{J}(x) = +\infty \; .$$

because

$$\forall x \in \mathbf{X} \ \mathbf{J}(x) \ge \alpha \|x\|_{\mathbf{X}}^2 - L \|x\|_{\mathbf{X}} + k.$$

Then there exists $\underline{x} \in \mathbf{X}$ such that

$$\mathbf{J}\left(\underline{x}\right) \ = \ \min_{x \in \mathbf{X}} \mathbf{J}\left(x\right) \ .$$

1.8 Duality

In this section, **X** is a real linear space with the norm $\| \|_{\mathbf{X}}$. One denotes \mathbf{X}^* , the topological dual space of **X**, it means the real linear space of continuous linear forms on the normed space (**X**, $\| \|_{\mathbf{X}}$). One denotes the bilinear pairing by <, > then :

$$\forall x^* \in \mathbf{X}^* \; \forall x \in \mathbf{X} \; x^* \left(x \right) = < x^* \, , x > \; .$$

If we set for every $x^* \in \mathbf{X}^*$,

$$||x^*||_{\mathbf{X}^*} = \sup_{||x||_{\mathbf{X}}=1} \langle x^*, x \rangle$$

then $(\mathbf{X}^{*}\,,\,\parallel\parallel_{\mathbf{X}^{*}})$ is a normed linear space .

Definition 19 conjugate or polar function

Let **f** from **X** to $\mathbf{R} \cup \{+\infty\}$, the conjugate function or the polar function of **f** denoted by \mathbf{f}^* is the function from \mathbf{X}^* to $\mathbf{R} \cup \{-\infty, +\infty\}$ which is defined by :

$$\forall x^* \in \mathbf{X}^* \quad \mathbf{f}^* \left(x^* \right) = \sup_{x \in \mathbf{X}} \left(< x^* , x > -\mathbf{f} \left(x \right) \right) \;.$$

One has :

$$\forall x^* \in \mathbf{X}^* \ \mathbf{f}^* \left(x^* \right) = \sup_{x \in \mathbf{dom}(\mathbf{f})} \left(< x^* , x > -\mathbf{f} \left(x \right) \right) \ .$$

Remark 8 The function f^* from X^* to $\mathbf{R} \cup \{-\infty, +\infty\}$ is convex and lsc

Proof: It enough to remark that the function \mathbf{f}_x^* , which is defined by

$$\forall x^* \in \mathbf{X}^* \ \mathbf{f}_x^* (x^*) = \langle x^*, x \rangle - \mathbf{f} (x)$$

is lsc, convex and moreover $\mathbf{f}^{*}(x^{*}) = \sup_{x \in \mathbf{X}} \mathbf{f}_{x}^{*}(x^{*}).$

Then we have :

$$\mathbf{f}^{*}\left(0\right)=-\inf_{x\in\mathbf{dom}(\mathbf{f})}\mathbf{f}\left(x\right)\ .$$

Proposition 12 If \mathbf{f} is an application from \mathbf{X} to $\mathbf{R} \cup \{+\infty\}$ convex and proper then \mathbf{f}^* is convex, lsc and proper.

Proof: We have to prove that \mathbf{f}^* is proper. There exists $(x_0^*, \alpha) \in \mathbf{X}^* \mathbf{x} \mathbf{R}$ such that :

$$\forall x \in \mathbf{X} \quad \langle x_0^*, x \rangle - \alpha \leq \mathbf{f}(x)$$

then

$$\forall x \in \mathbf{X} \quad \langle x_0^*, x \rangle - \mathbf{f}(x) \leq \alpha$$

thus $x_0^* \in \mathbf{dom}(\mathbf{f}^*)$.

- **Exercice 7** If **f** and **g** are functions from **X** to $\mathbf{R} \cup \{+\infty\}$ such that $\mathbf{f} \leq \mathbf{g}$, prove that $\mathbf{f}^* \geq \mathbf{g}^*$.
 - Let **f** be a function from **X** to $\mathbf{R} \cup \{+\infty\}$. Let $\lambda \in \mathbf{R} \setminus \{0\}$, and suppose that $\forall x \in \mathbf{X} \quad \mathbf{f}_{\lambda}(x) = \mathbf{f}(\lambda x)$. Prove that $\mathbf{f}_{\lambda}^{*}(x^{*}) = \mathbf{f}^{*}(\frac{1}{\lambda}x^{*})$. Prove that $(\mathbf{f} + \lambda)^{*} = \mathbf{f}^{*} - \lambda$.

24

.

• Let **f** be a function from **X** to $\mathbf{R} \cup \{+\infty\}$. Let $a \in \mathbf{X}$, one denotes $\tau_a \mathbf{f}$, the function defined by $\forall x \in \mathbf{X} \quad \tau_a \mathbf{f}(x) = \mathbf{f}(x+a)$. Prove that $\forall x^* \quad \tau_a \mathbf{f}^*(x^*) = \mathbf{f}^*(x^*) - \langle x^*, a \rangle$.

We have :

Proposition 13 Young Inequality If **f** is a function from **X** to $\mathbf{R} \cup \{+\infty\}$ then :

$$\forall x^* \in \mathbf{X}^* \ \forall x \in \mathbf{X} \quad \langle x^*, x \rangle \leq \mathbf{f}^*(x^*) + \mathbf{f}(x) \ .$$

1.8.1 Bidual

Definition 20 If **f** is a function from **X** to $\mathbf{R} \cup \{+\infty\}$, the **bipolar of f** is the map denoted by \mathbf{f}^{**} from **X** to $\mathbf{R} \cup \{-\infty, +\infty\}$ and which is defined by :

$$\forall x \in \mathbf{X} \ \mathbf{f}^{**}(x) = (\mathbf{f}^{*})^{*}(x) = \sup_{x^{*} \in \mathbf{X}^{*}} (\langle x^{*}, x \rangle - \mathbf{f}^{*}(x^{*}))$$
.

By the Young's inequality , we have that :

$$\forall x \in \mathbf{X} \ \mathbf{f}^{**}(x) \le \mathbf{f}(x) \ .$$

In addition \mathbf{f}^{**} is convex and lsc .

Theorem 6 If \mathbf{f} is an application from \mathbf{X} to $\mathbf{R} \cup \{+\infty\}$, convex, lsc and proper then

$$\mathbf{f}^{**} = \mathbf{f}$$
 .

Proof: It is enough to prove that $\forall x \in \mathbf{X} \quad \mathbf{f}^{**}(x) \ge \mathbf{f}(x)$. Suppose that there exists $x_0 \in \mathbf{X}$ such that $\mathbf{f}^{**}(x_0) < \mathbf{f}(x_0)$. Then $(x_0 \quad \mathbf{f}^{**}(x_0)) \not\in \mathbf{opi}(\mathbf{f})$, there exists $(x^* \quad \alpha) \in \mathbf{X}^* \mathbf{xP}$ which verifies :

Then $(x_0, \mathbf{f}^{**}(x_0)) \notin \mathbf{epi}(\mathbf{f})$, there exists $(x^*, \alpha) \in \mathbf{X}^* \mathbf{xR}$ which verifies :

$$\mathbf{f}^{**}(x_0) < < x^*, x_0 > + \alpha \le \mathbf{f}(x_0)$$

and

$$\forall x \in \mathbf{X} \quad < x^* , x > +\alpha \leq \mathbf{f}(x) .$$

The second inequality :

$$\forall x \in \mathbf{X} \quad < x^* \,, x > -\mathbf{f}(x) \leq -\alpha \,,$$

let

$$\mathbf{f}^*\left(x^*\right) \,\leq\, -\alpha \,\,.$$

The inequality gives :

$$< x^*, x_0 > -\mathbf{f}^*(x^*) < < x^*, x_0 > +\alpha$$

then

$$-\alpha < \mathbf{f}^*(x^*)$$

It is impossible .

1.9 Applications to some problems of calculus of variations

Let Ω a non void open subset of \mathbf{R}^N . On \mathbf{R}^N , we use the Lebesgue measure

Definition 21 A function **F** from $\Omega \mathbf{x} \mathbf{R}^p$ to $\mathbf{R} \cup \{-\infty, +\infty\}$ is said to be of *Caratheodory* if it satisfies :

- for every $x \in \Omega$, the function $u \mapsto \mathbf{F}(x, u)$ is continuous,
- for every $u \in \mathbf{R}^p$, the function $x \mapsto \mathbf{F}(x,u)$ is measurable.

Proposition 14 Suppose a function \mathbf{F} from $\Omega \mathbf{x} \mathbf{R}^p$ to $\mathbf{R} \cup \{-\infty, +\infty\}$ is of **Caratheodory**, if $\mathbf{u} \ \Omega \rightarrow \mathbf{R}^p$ is measurable then the map

$$x \mapsto \mathbf{F}(x,\mathbf{u}(x))$$

is measurable.

Proof: It is enough to remark that a measurable function is the limit almost everywhere of a sequence of simple functions. However if u is a simple function then the function $x \mapsto \mathbf{F}(x, \mathbf{u}(x))$ is obviously measurable.

To obtain integrability in the spaces of type \mathbf{L}^p for $p \ge 1$ some kind of growth controls on \mathbf{F} are used. One gives here an exemple of this type of estimations.

Proposition 15 If $p_1 \ge 1$ and $p_2 \ge 1$, if a > 0 and if $\mathbf{b} \in \mathbf{L}^{p_2}(\Omega)$ then if **F** is of Caratheodory and verifies

$$\forall x \in \Omega \; \forall \xi \in \mathbf{R}^p \; \left| \mathbf{F}(x,\xi) \right| \le \mathbf{b}(x) + a \; \|\xi\|_{\mathbf{R}^p}$$

then the map Φ of $\mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)$ to $\mathbf{L}^{p_2}(\Omega, \mathbf{R})$ which associates \mathbf{u} to $\Phi(\mathbf{u}) \ x \to \Phi(\mathbf{u})(x) = \mathbf{F}(x, \mathbf{u}(x))$ is a continuous map and transforms the bounded subsets to bounded subsets.

Proof: Let $\mathbf{u} \in \mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)$ the map $\Phi(\mathbf{u}) \quad x \to \mathbf{F}(x, \mathbf{u}(x))$ is measurable. And we have :

$$|\mathbf{F}(x, \mathbf{u}(x))| \le \mathbf{b}(x) + a \|\mathbf{u}(x)\|_{\mathbf{R}^p}^{\frac{p_1}{p_2}}$$

The second part of the inequality belong $\mathbf{L}^{p_2}(\Omega, \mathbf{R})$ then by the dominated convergence theorem of Lebesgue the map $\Phi(\mathbf{u}) \quad x \to \mathbf{F}(x, \mathbf{u}(x))$ belong to $\mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)$. In the other hand we have

$$\|\Phi\left(\mathbf{u}\right)\|_{\mathbf{L}^{p_{2}}(\Omega,\mathbf{R}^{p})} \leq \|\mathbf{b}\|_{\mathbf{L}^{p_{2}}(\Omega,\mathbf{R})} + a \|\mathbf{u}\|_{\mathbf{L}^{p_{2}}(\Omega,\mathbf{R})}^{\frac{p_{1}}{p_{2}}} + a \|\mathbf{u}\|_{\mathbf{L}^{p_{2}}(\Omega,\mathbf{R})}^{\frac{p_{2}}{p_{2}}} + a \|\mathbf{u}\|_{\mathbf{L}^{p_{2}}(\Omega,\mathbf{R})}^{\frac{p_{2}}{p_{2}$$

Let $(\mathbf{u}_n)_{n \in \mathbf{N}}$ a sequence of functions of $\mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)$ which converges to $\mathbf{u} \in \mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)$. It has a subsequence $(\mathbf{u}_{n_k})_{k \in \mathbf{N}}$ converges almost everywhere to \mathbf{u} and such that :

$$\forall i \in \mathbf{N} \quad \left\| \mathbf{u}_{n_{k+1}} - \mathbf{u}_{n_k} \right\|_{\mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)} < \frac{1}{2^i}$$

Then

$$\forall x \in \Omega \ \mathbf{K}(x) = \|\mathbf{u}_{n_1}(x)\|_{\mathbf{R}^*} + \sum_{i=1}^{+\infty} \|\mathbf{u}_{n_{i+1}}(x) - \mathbf{u}_{n_i}(x)\|_{\mathbf{R}^*}.$$

The function \mathbf{K} is measurable positive and we have :

$$\|\mathbf{K}\|_{\mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)} \leq \|\mathbf{u}_{n_1}\|_{\mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)} + \sum_{i=1}^{+\infty} \|\mathbf{u}_{n_{i+1}} - \mathbf{u}_{n_i}\|_{\mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)}$$

The function **K** is then in $\mathbf{L}^{p_1}(\Omega, \mathbf{R}^p)$. Because

$$\forall i \in \mathbf{N}^* |u_{n_i}| \leq \mathbf{K} ,$$

then

$$\forall i \in \mathbf{N}^* |\Phi(u_{n_i})| \leq \mathbf{b} + (\mathbf{K})^{\frac{p_1}{p_2}} \in \mathbf{L}^{p_2}(\Omega, \mathbf{R}) .$$

By the Lebesgue's dominated convergence theorem, the sequence $(\Phi(\mathbf{u}_{n_k}))_{k \in \mathbf{N}}$ converges in $\mathbf{L}^{p_2}(\Omega, \mathbf{R})$ to $\Phi(\mathbf{u})$. Finally Φ is continuous.

Chapter 2

Optimality Conditions

In this chapter, we give some methods, when it is possible, to determine the equations or the inequalities satisfied by the solutions of the minimization problems .

In this chapter, **X** is a real linear space with the norm $\| \|_{\mathbf{X}}$. One denotes \mathbf{X}^* , the topological dual space \mathbf{X} , it means the linear space of the continuous forms on the normed space $(\mathbf{X}, \| \|_{\mathbf{X}})$. One denote the duality pairing by <, > then :

$$\forall x^* \in \mathbf{X}^* \; \forall x \in \mathbf{X} \; x^* \left(x \right) = < x^* \,, x > \; .$$

If we set, for every $x^* \in \mathbf{X}^*$,

.

$$||x^*||_{\mathbf{X}^*} = \sup_{||x||_{\mathbf{X}}=1} \langle x^*, x \rangle$$

then $(\mathbf{X}^*, \| \|_{\mathbf{X}^*})$ is a linear normed space. If $(\mathbf{X}, \| \|_{\mathbf{X}})$ is a Banach space then $(\mathbf{X}^*, \| \|_{\mathbf{X}^*})$ is also a Banach space.

If **f**, a function from **X** to $\mathbf{R} \cup \{+\infty\}$. One denotes by (P_{\min}) the following problem :

Find
$$\underline{x} \in \mathbf{X}$$
, a solution of $\min_{x \in \mathbf{X}} \mathbf{f}(x)$.

One says that \underline{x} is solution of the problem (P_{\min}) if **f** has a minimum on **X** at the point \underline{x} , then :

$$\forall x \in \mathbf{X} \ \mathbf{f}(\underline{x}) \leq \mathbf{f}(x)$$
.

2.1 Different concepts of derivatives

Let $(\mathbf{Y}, \| \|_{\mathbf{Y}})$ be a linear normed space over **R**. One denotes by $\mathcal{L}(\mathbf{X}, \mathbf{Y})$ the space of linear continuous functions from **X** to **Y**.

2.1.1 Derivatives following a direction

Definition 22 Let $\mathbf{f} \mathbf{X} \to \mathbf{Y}$; let $x \in \mathbf{X}$ and let $h \in \mathbf{X}$, one says that \mathbf{f} has a derivative at the point x in the direction h if

$$\lim_{t \mapsto 0_{+}} \frac{\mathbf{f}(x+th) - \mathbf{f}(x)}{t} \quad exists.$$

In this case, we name this limit, the derivative of \mathbf{f} at the point x following the direction h and we set :

$$\mathbf{f}'(x;h) = \lim_{t \mapsto 0_{+}} \frac{\mathbf{f}(x+th) - \mathbf{f}(x)}{t} .$$

Remark 9 If $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$, we have the same definition if we take $x \in \mathbf{dom}(\mathbf{f})$ and let $h \in \mathbf{X}$.

If $x \in \mathbf{dom}(\mathbf{f})$, One has : $\mathbf{f}'(x; 0_{\mathbf{X}}) = 0$

If we set $\mathbf{g}_{x,h}(t) = \mathbf{f}(x+th)$, if $\mathbf{g}_{x,h}$ is defined on a segment $[0, \delta]$ for a real number $\delta > 0$ then \mathbf{f} has a derivative at the point x in the direction h if and only if $\mathbf{g}_{x,h}$ has a derivative at the right at 0. moreover we have :

$$\mathbf{f}'\left(x;h\right) = \left(\mathbf{g}_{x\,,\,h}^{'}\right)_{d}\left(0\right) \;\;.$$

Remark 10 If $\mathbf{f}'(x;h)$ is defined then :

$$\forall \lambda \ge 0 \quad \mathbf{f}'(x; \lambda h) = \lambda \mathbf{f}'(x; h)$$

Exemple : Let a be a bilinear continuous form on \mathbf{X} , let $x^* \in \mathbf{X}^*$ and $k \in \mathbf{R}$, if we set :

$$\mathbf{J}(x) = \frac{1}{2}a(x, x) - \langle x^*, x \rangle + k ,$$

we obtain

$$\mathbf{J}(x+th) - \mathbf{J}(x) = \frac{1}{2} \left[a(x, x) + ta(x, h) + ta(h, x) + t^{2}a(h, h) \right] - \langle x^{*}, x \rangle - t \langle x^{*}, h \rangle .$$

Then

$$\frac{\mathbf{J}(x+th) - \mathbf{J}(x)}{t} = \frac{1}{2} \left[a(x, h) + a(h, x) - 2 < x^*, h > \right] + t a(h, h) .$$

Thus

$$\forall x \in \mathbf{X} \ \forall h \in \mathbf{X} \ \mathbf{J}'(x;h) = \frac{1}{2} \left[a(x,h) + a(h,x) - 2 < x^*, h > \right]$$
.

In the particular case where a is symmetric, that is if :

$$\forall x \in \mathbf{X} \ \forall y \in \mathbf{X}, \ a(x, y) = a(y, x)$$
.

We have :

$$\forall x \in \mathbf{X} \ \forall h \in \mathbf{X} \ \mathbf{J}'(x;h) = a(x,h) - \langle x^*,h \rangle$$
.

Exemple : Let **H** be a real Hilbert space with its associated scalar product < , >_H and the corresponding norm $\| \, \|_{\mathbf{H}}$. If :

$$\forall x \in \mathbf{H}, \ \mathbf{J}(x) = \|x\|_{\mathbf{H}}$$

We have :

$$\mathbf{g}_{x,h}(t) = \left(\|x+th\|_{\mathbf{H}}^2 \right)^{\frac{1}{2}} = \left(\langle x+th, x+th \rangle_{\mathbf{H}} \right)^{\frac{1}{2}}.$$

Thus :

$$\forall x \in \mathbf{H} \setminus \{0\} \ \forall h \in \mathbf{H} \ \mathbf{J}'(x;h) = \left(\mathbf{g}'_{x,h}\right)_{d}(0) = \frac{\langle x,h \rangle_{\mathbf{H}}}{\|x\|_{\mathbf{H}}} .$$
$$\forall h \in \mathbf{H} \ \mathbf{J}'(0_{\mathbf{X}};h) = \left(\mathbf{g}'_{0_{\mathbf{X}},h}\right)_{d}(0) = \|h\|_{\mathbf{H}} .$$

Exemple : Let **f** be a continuously differentiable map from **R** to **R**. Let **K** be a compact subset of \mathbf{R}^{N} . One denotes by $\mathbf{X} = \mathbf{C}(\mathbf{K}, \mathbf{R})$, the linear space of continuous functions from **K** to **R** and if $u \in \mathbf{X}$, we set

$$\left\| u \right\|_{\mathbf{X}} = \max_{x \in \mathbf{K}} \left| u\left(x \right) \right| \quad .$$

One defines the map $\Phi \mathbf{X} \to \mathbf{X}$ which associates $u \in \mathbf{X}$ to its image $\Phi(u) = \mathbf{f} \circ u$. We determine the derivative of Φ in any direction as follows. Let $u \in \mathbf{X}$, $h \in \mathbf{X}$ and $t \in [0, 1]$, there exists $\theta(x, t) \in [0, 1]$ such that :

$$\mathbf{f}(u(x) + th(x)) - \mathbf{f}(u(x)) = t\mathbf{f}'(u(x) + \theta(x,t) th(x)) h(x) .$$

The subset

$$\mathbf{K_1} = u(\mathbf{K}) + [-1, 1]$$

is compact in **R** . The map \mathbf{f}' is thus uniformly continuous on $\mathbf{K_1}$. Let $\epsilon > 0$

$$\exists \eta > 0 \mid \forall p \in \mathbf{K_1} \; \forall q \in \mathbf{K_1} \; |p - q| < \eta \; \Rightarrow \; \left| \mathbf{f}'(p) - \mathbf{f}'(q) \right| < \epsilon \; .$$

We set $\eta_1 = \min(\eta, 1)$, if $h \in \mathbf{X}$ is such that

$$\forall x \in \mathbf{K} \ |h(x)| < \eta_1 ,$$

this implies that

$$\left\|h\right\|_{\mathbf{X}} < \eta_1 \; ,$$

then for every x belonging to \mathbf{K} , we set

$$\Delta(x) = \left| \frac{\mathbf{f}(u(x) + th(x)) - \mathbf{f}(u(x))}{t} - h\mathbf{f}'(u(x)) \right|,$$

then

$$\Delta(x) = \left| \mathbf{f}'(u(x) + \theta(x,t) t h(x)) h(x) - \mathbf{f}'(u(x)) h(x) \right| ,$$

hence, we obtain that

$$\forall x \in \mathbf{K}, \left| \frac{\mathbf{f} \left(u \left(x \right) \,+\, t \,h \left(x \right) \right) \,-\, \mathbf{f} \left(u \left(x \right) \right)}{t} \,-\, \mathbf{f}' \left(u \left(x \right) \right) \right| \,<\, \epsilon \,\left| h \left(x \right) \right| \;.$$

Finally,

$$\left\|\frac{\Phi\left(u+th\right)-\Phi\left(u\right)}{t} - h \mathbf{f}' \circ u\right\|_{\mathbf{X}} < \epsilon \|h\|_{\mathbf{X}} ,$$

Then

$$\Phi'(u;h) = h \mathbf{f}' \mathbf{o} u .$$

- Exercice 8 1. Compute the derivative of the absolute value function onR in every direction .
 - 2. Let $x \in \mathbf{R}$, one sets $x^+ = x \sin x \ge 0$, $x^+ = 0 \sin x < 0$. Determine the derivatives following the directions of the function from \mathbf{R} to \mathbf{R} which associates x to x^+ .

Exercice 9 Let \mathbf{f} be a continuous map having continuous partial derivatives from $\mathbf{R} \mathbf{x} \mathbf{R}^N$ to \mathbf{R} . Let \mathbf{K} be a compact subset of \mathbf{R}^N . Denote by $\mathbf{X} = \mathbf{C}^1(\mathbf{K}, \mathbf{R})$, the space of continuous functions having continuous partial

derivatives from **K** to **R** and $\mathbf{Y} = \mathbf{C}(\mathbf{K}, \mathbf{R})$, the linear space of continuous functions from **K** to **R**. If $u \in \mathbf{X}$, we define

$$\|u\|_{\mathbf{X}} = \max_{x \in \mathbf{K}} |u(x)| + \sum_{i=1}^{N} \max_{x \in \mathbf{K}} \left| \frac{\partial u}{\partial x_i}(x) \right|$$

. If $v \in \mathbf{Y}$, we define

$$\left\|v\right\|_{\mathbf{Y}} = \max_{x \in \mathbf{K}} \left|v\left(x\right)\right|$$

Define the map $\Psi \mathbf{X} \to \mathbf{Y}$ which associates $u \in \mathbf{X}$ to $\Psi(u)$ by

$$\Psi(u)(x) = \mathbf{f}(u(x), \nabla u(x)) \quad \forall x \in \mathbf{K} \quad .$$

Determine the directional derivatives of Ψ .

2.1.2 Gâteaux Derivatives

Definition 23 If $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$, if $x \in \mathbf{dom}(\mathbf{f})$, one says that \mathbf{f} is **Gâteaux differentiable at the point** $x \in \mathbf{X}$ if it admits a derivative following every direction $h \in \mathbf{X}$ and if there exists $\mathbf{L}_x \in \mathbf{X}^*$ such that :

$$\forall h \in \mathbf{X} \; \mathbf{f}'(x;h) = \langle \mathbf{L}_x;h \rangle$$

The linear continuous form \mathbf{L}_x is called the **Gâteaux derivative of f** at the point x; it is also called the **gradient of f** at the point x and is denoted by $\nabla \mathbf{f}(x)$. Thus :

$$\mathbf{L}_{x} = \nabla \mathbf{f}(x) \; .$$

Remark 11 When **X** is a Hilbert space, the Riez theorem permits the identification of $\nabla \mathbf{f}(x)$ with an element of **X**.

Exemple : Let **f** be a continuous map having continuous partial derivatives from \mathbf{R}^N to \mathbf{R} . Let **K** be a compact subset of \mathbf{R}^N . One denotes by $\mathbf{X} = \mathbf{C}^1(\mathbf{K}, \mathbf{R})$, the linear space of continuous functions having continuous partial derivatives from **K** to **R**. If $u \in \mathbf{X}$, one sets

$$\left\|u\right\|_{\mathbf{X}} = \max_{x \in \mathbf{K}} \left|u\left(x\right)\right| + \sum_{i=1}^{N} \max_{x \in \mathbf{K}} \left|\frac{\partial u}{\partial x_{i}}\left(x\right)\right| .$$

Define the map $\mathbf{J} \ \mathbf{X} \to \mathbf{R}$ which associates $u \in \mathbf{X}$ to $\mathbf{J}(u)$ by

$$\mathbf{J}\left(u\right) \,=\, \int_{\mathbf{K}}\, \mathbf{f}\left(\nabla u\left(x\right)\right)\,\mathrm{d}\mathbf{x}\;.$$

Step by step computation as in the preceeding subsection gives :

$$\mathbf{J}'\left(u\,,h\right)\,=\,\int_{\mathbf{K}}\,\sum_{i=1}^{N}\,\frac{\partial\mathbf{f}}{\partial x_{i}}\left(\nabla u\left(x\right)\right)\,\frac{\partial h}{\partial x_{i}}\,\mathrm{d}\mathbf{x}$$

The map $h \to \mathbf{J}'(u, h)$ is a linear form on **X** and there exits a constant *C* such that :

$$\left|\mathbf{J}'\left(u\,,h\right)\right| \,\leq\, C\,\left\|h\right\|_{\mathbf{X}}$$

Finally, \mathbf{J} is Gâteaux differentiable at every point of \mathbf{X} .

Definition 24 If \mathbf{f} is Gâteaux differentiable at every point of \mathbf{X} , we say that \mathbf{f} is Gâteaux differentiable.

2.1.3 Relationship between Gâteaux differentiability and Fréchet differentiability

We recall the concept of differentiability or Fréchet differentiability.

Definition 25 A map $\mathbf{f} \mathbf{X} \to \mathbf{Y}$ is said to be differentiable or Fréchet differentiable at the point $x \in \mathbf{X}$ if there exists $\mathbf{L}_x \in \mathcal{L}(\mathbf{X}, \mathbf{Y})$ such that

$$\lim_{h \mapsto 0_{\mathbf{X}}} \frac{\|\mathbf{f}(x+h) - \mathbf{f}(x) - \mathbf{L}_{x}(h)\|_{\mathbf{Y}}}{\|h\|_{\mathbf{X}}} = 0$$

The linear continuous map \mathbf{L}_x is called the **derivative of f at the point** x, we also call \mathbf{L}_x the Fréchet derivative of **f** at the point x.

This definition is equivalent to the following property : There exists $\mathbf{L}_x \in \mathcal{L}(\mathbf{X}, \mathbf{Y})$ and $\epsilon_x \mathbf{X} \to \mathbf{Y}$ such that :

- $\lim_{h \mapsto 0_{\mathbf{X}}} \epsilon_x(h) = 0_{\mathbf{Y}},$
- $\forall h \in \mathbf{X}, \ \mathbf{f}(x+h) = \mathbf{f}(x) + \mathbf{L}_x(h) + \|h\|_{\mathbf{X}} \epsilon_x(h).$

If $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$, If $x \in \mathbf{dom}(\mathbf{f})$, we say that \mathbf{f} is differentiable at a point $x \in \mathbf{X}$ if there exists $\mathbf{L}_x \in \mathbf{X}^*$ such that :

$$\lim_{h \mapsto 0_{\mathbf{X}}} \frac{|\mathbf{f}(x+h) - \mathbf{f}(x) - \mathbf{L}_{x}(h)|}{\|h\|_{\mathbf{X}}} = 0.$$

The linear continuous form \mathbf{L}_x is called the **derivative of f at the point** x, \mathbf{L}_x is also called **the Fréchet derivative of f at the point** x.

:

We may characterise the differentiability of \mathbf{f} at a point $x \in \mathbf{dom}(\mathbf{f})$ by the following property : there exists $\mathbf{L}_x \in \mathcal{L}(\mathbf{X}, \mathbf{Y}), r > 0$ and $\epsilon_x \mathbf{B}(\mathbf{0}_{\mathbf{X}}, r) \rightarrow \mathbf{R}$ such that :

- $\lim_{h \mapsto 0_{\mathbf{X}}} \epsilon_x(h) = 0$.
- $\forall h \in \mathbf{B}(0_{\mathbf{X}}, r)$ $\mathbf{f}(x+h) = \mathbf{f}(x) + \mathbf{L}_{x}(h) + ||h||_{\mathbf{X}} \epsilon_{x}(h)$.

Notation : We set : $\mathbf{f}'(x) = \mathbf{L}_x$.

The following proposition is obvious .

Proposition 16 If **f** is differentiable at the point x then **f** is Gâteaux differentiable at the point x. Moreover, $\nabla \mathbf{f}(x) = \mathbf{f}'(x)$.

We have the converse in the following case :

Proposition 17 If $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$, if $x \in \mathbf{dom}(\mathbf{f})$, suppose that \mathbf{f} is Gâteaux differentiable in a neighbourhood \mathbf{V} of x and if $\nabla \mathbf{f} \mathbf{V} \to \mathbf{X}^*$ is continuous then \mathbf{f} is Fréchet differentiable at the point x, in addition :

0

$$\mathbf{f}'\left(x\right) = \nabla \mathbf{f}\left(x\right)$$

Proof : If $\epsilon > 0$, there exists $\eta > 0$ such that $\mathbf{B}(x, \eta) \subset \mathbf{V}$ and :

$$\forall \xi \in \mathbf{B}(0_{\mathbf{X}}, \eta) \quad \|\nabla \mathbf{f}(x+\xi) - \nabla \mathbf{f}(x)\|_{\mathbf{X}^*} < \epsilon \; .$$

Let $h \in \mathbf{B}(x, \eta)$, we denote by $\mathbf{g} [0, 1] \to \mathbf{R}$, the map which associate $t \in [0, 1]$ to $\mathbf{g}(t) = \mathbf{f}(x + th)$. The function \mathbf{g} is differentiable in [0, 1] and

$$\forall t \in [0, 1] \ \mathbf{g}'(t) = \langle \nabla \mathbf{f}(x + t h), h \rangle$$

By the mean value theorem, there exits $\theta \in [0, 1]$ such that :

$$\mathbf{f}(x+h) - \mathbf{f}(x) = \mathbf{g}(1) - \mathbf{g}(0) = \langle \nabla \mathbf{f}(x + \theta h), h \rangle .$$

One deduces that :

$$\mathbf{f}(x+h) - \mathbf{f}(x) - \langle \nabla \mathbf{f}(x) , h \rangle = \langle \nabla \mathbf{f}(x + \theta h) - \nabla \mathbf{f}(x) , h \rangle ,$$

so that

$$\left|\mathbf{f}(x+h) - \mathbf{f}(x)\right| - \langle \nabla \mathbf{f}(x), h \rangle \leq \left\| \nabla \mathbf{f}(x+\theta h) - \nabla \mathbf{f}(x) \right\|_{\mathbf{X}^*} \|h\|_{\mathbf{X}},$$

thus,

$$\left|\mathbf{f}(x+h) - \mathbf{f}(x) - \langle \nabla \mathbf{f}(x) , h \rangle\right| \leq \epsilon \|h\|_{\mathbf{X}} .$$

The function \mathbf{f} is then differentiable at the point x and we have :

$$\mathbf{f}'(x) = \nabla \mathbf{f}(x) \ .$$

Proposition 18 Let $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$ be a convex function. If \mathbf{f} is Gâteaux différentiable on \mathbf{X} then \mathbf{f} is a convex function if and only if :

 $\forall x \in \mathbf{X} \ \forall y \in \mathbf{X} \ \mathbf{f}(x) + \langle \nabla \mathbf{f}(x) , y - x \rangle \leq \mathbf{f}(y)$

(Convexity Inequality).

Proof: It is given in the proof of some following propositions .

We characterise the convexity of a function by the properties of the Gâteaux derivatives .

Let C be a non void convex closed subset of X and let f be a convex function from C to R.

Proposition 19 If \mathbf{f} has a Gâteaux derivative on \mathbf{C} then \mathbf{f} is convex if and only if :

$$\forall y \in \mathbf{C} \ \forall x \in \mathbf{C}, \ < \nabla \mathbf{f}(y) - \nabla \mathbf{f}(x) , y - x \ge 0.$$

Remark 12 If the inequality in proposition 19 holds, we say that $\nabla \mathbf{f}$ is monotone.

Proof: We suppose that **f** is convex then one may apply the convexity inequality for x and y belonging to **C**, thus :

$$\mathbf{f}(x) + \langle \nabla \mathbf{f}(x) , y - x \rangle \leq \mathbf{f}(y)$$

and

$$\mathbf{f}(y) + \langle \nabla \mathbf{f}(y) , x - y \rangle \leq \mathbf{f}(x)$$
.

Adding these two inequalities, we obtain

$$< \nabla \mathbf{f}(x) - \nabla \mathbf{f}(y), y - x \ge 0$$

which implies

$$\langle \nabla \mathbf{f}(y) - \nabla \mathbf{f}(x), y - x \rangle \geq 0$$

2.1. DIFFERENT CONCEPTS OF DERIVATIVES

We prove now the converse . Let $x \in \mathbf{C}$, $y \in \mathbf{C}$ and $t \in [0, 1]$, we set :

$$\varphi(t) = \mathbf{f} \left((1-t) \ x + t \ y \right)$$

The function φ is continuously differentiable :

$$\varphi'(t) = \langle \nabla \mathbf{f} ((1-t) x + t y), y - x \rangle .$$

As $\nabla \mathbf{f}$ is monotone then φ' is inceasing on [0, 1] thus φ is convex on [0, 1]. Hence, we have that

$$\varphi(t) = \varphi((1-t) \ 0 + t \ 1) \le (1-t) \varphi(0) + t\varphi(1)$$

which implies

$$\mathbf{f}((1-t) x + ty) \leq (1-t) \mathbf{f}(x) + t \mathbf{f}(y)$$
.

Thus ${\bf f}$ is convex .

2.1.4 Subdifferential

Definition 26 Let $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$, if $x \in \mathbf{dom}(\mathbf{f})$, then \mathbf{f} is subdifferentiable at the point x if there exits a linear continuous form $x^* \in \mathbf{X}^*$ such that :

$$\forall y \in \mathbf{X} \ \mathbf{f}(x) + \langle x^*, y - x \rangle \leq \mathbf{f}(y)$$
.

We denote by $\partial \mathbf{f}(x)$ the set of the linear continuous forms $x^* \in \mathbf{X}^*$ which satisfy the above property. The subset $\partial \mathbf{f}(x)$ is called **the subdifferential** of \mathbf{f} at the point x.

Remark 13 The subset $\partial \mathbf{f}(x)$ is convex and closed in \mathbf{X}^*

Proposition 20 Let $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$ be a convex function. If \mathbf{f} is Gâteaux differentiable at the point $x \in \mathbf{dom}(\mathbf{f})$ then $\partial \mathbf{f}(x) = \{\nabla \mathbf{f}(x)\}$.

Proof: Let $y \in \text{dom}(\mathbf{f})$ and $t \in [0, 1]$, then by convexity of \mathbf{f} we have :

$$\mathbf{f}((1-t) \ x + t \ y) \le (1-t) \ \mathbf{f}(x) + t \ \mathbf{f}(y)$$
.

this implies

$$\frac{1}{t} \left[\mathbf{f} \left(x \,+\, t \,\left(y - x \right) \right) \,-\, \mathbf{f} \left(x \right) \right] \,\leq\, \mathbf{f} \left(y \right) \,-\, \mathbf{f} \left(x \right) \;.$$

As t tends to 0+, we obtain :

$$\langle \nabla \mathbf{f}(x), y - x \rangle \leq \mathbf{f}(y) - \mathbf{f}(x)$$
,

thus,

$$\forall y \in \mathbf{X} \ \mathbf{f}(x) + \langle \nabla \mathbf{f}(x) , y - x \rangle \leq \mathbf{f}(y) .$$

Let

$$\nabla \mathbf{f}(x) \in \partial \mathbf{f}(x)$$
.

Let $x^* \in \partial \mathbf{f}(x)$, let $h \in \mathbf{X}$ if $t \in [0, 1]$, we have :

$$f(x + th) \ge f(x) + \langle x^*, th \rangle$$
.

this implies

$$\frac{1}{t} \left[\mathbf{f} (x + t h) - \mathbf{f} (x) \right] \ge \langle x^*, h \rangle .$$

As t tends to 0+, we obtain :

$$\forall h \in \mathbf{X} \quad <
abla \mathbf{f}(x) \ , h > \geq < x^*, h > \ .$$

If we replace h by -h in the preceeding inequality, we obtain :

 $\forall h \in \mathbf{X} \quad < \nabla \mathbf{f}(x) , h > \leq < x^*, h > .$

Thus,

$$\forall h \in \mathbf{X} \quad < \nabla \mathbf{f} (x) , h > = < x^* , h > ,$$

hence,

$$\partial \mathbf{f}(x) = \{\nabla \mathbf{f}(x)\}$$

The converse of proposition 20 is given as follows :

Proposition 21 Let $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$ be a convex application. If \mathbf{f} is continuous at a point $x \in \mathbf{dom}(\mathbf{f})$ and if $\partial \mathbf{f}(x)$ is a singleton then \mathbf{f} is Gâteaux différentiable at the point x.

Some computational properties of the usual derivitives also hold for sub-differentials .

Proposition 22 Let **f** and **g** be convex functions from **X** to $\mathbf{R} \cup \{+\infty\}$, if $\underline{x} \in \mathbf{dom}(\mathbf{f}) \cap \mathbf{dom}(\mathbf{g})$:

• If $\lambda > 0$ then

$$\partial (\lambda \mathbf{f}) = \lambda \partial (\mathbf{f})$$
.

٠

$$\partial \left({{\mathbf{f}}}
ight) \left({\underline{x}}
ight) \, + \, \partial \left({{\mathbf{f}}}
ight) \left({\underline{x}}
ight) \, \subset \, \partial \left({{\mathbf{f}} \, + \, {\mathbf{g}}}
ight) \left({\underline{x}}
ight) \, \, .$$

• If **f** and **g** are lsc, proper and and if **f** is continuous at the point <u>x</u> then :

$$\partial (\mathbf{f} + \mathbf{g}) (\underline{x}) = \partial (\mathbf{f}) (\underline{x}) + \partial (\mathbf{g}) (\underline{x})$$

Proof : The first property is obvious . We prove now the inclusion .

 $\partial (\mathbf{f} + \mathbf{g}) (\underline{x}) \subset \partial (\mathbf{f}) (\underline{x}) + \partial (\mathbf{f}) (\underline{x}) .$

Let $x^* \in \partial (\mathbf{f} + \mathbf{g}) (\underline{x})$ then

$$\forall y \in \mathbf{X} \ \mathbf{f}(\underline{x}) + \mathbf{g}(\underline{x}) + < x^*, y - \underline{x} \ge \mathbf{f}(y) + \mathbf{g}(y) .$$

Set :

$$\mathbf{C_1} = \{(y,\lambda) \in \mathbf{XxR} \mid \mathbf{f}(y) - \mathbf{f}(\underline{x}) - \langle x^*, y - \underline{x} \rangle \leq \lambda \}$$

and

$$\mathbf{C_2} \ = \ \left\{ (y, \lambda) \in \mathbf{XxR} \mid \lambda \ \le \ \mathbf{g}\left(\underline{x}\right) \ - \ \mathbf{g}\left(y\right) \right\} \ .$$

The preceeding inequality shows that the common points of C_1 and C_2 are the boundary points only . In addition the function F which is defined by :

$$\forall y \in \mathbf{X} \ \mathbf{F}(y) = \mathbf{f}(y) - \mathbf{f}(\underline{x}) - \langle x^*, y - \underline{x} \rangle .$$

has C_1 as its epigraph, also, F is continuous at the point \underline{x} thus the interior of C_1 is empty. As C_2 is convex, there exists $(u^*, \alpha) \in \mathbf{X}^* \mathbf{xR} \setminus \{(0_{\mathbf{X}}, 0)\}$ such that :

$$\forall y \in \mathbf{X} \ \mathbf{g}(\underline{x}) - \mathbf{g}(y) \le \langle u^*, y \rangle + \alpha \le \mathbf{f}(y) - \mathbf{f}(\underline{x}) - \langle x^*, y - \underline{x} \rangle .$$

Thus for $y = \underline{x}$, we obtain $\langle u^*, \underline{x} \rangle + \alpha = 0$ and this implies $\alpha = \langle u^*, -\underline{x} \rangle$. On the one hand, we have :

$$\forall y \in \mathbf{X} \ \, \mathbf{g}\left(\underline{x}\right) \ - \ \, \mathbf{g}\left(y\right) \ \leq < u^{*} \ , y - \underline{x} > \ \, .$$

That is

$$\forall y \in \mathbf{X} \ \mathbf{g}(\underline{x}) + \langle -u^*, y - \underline{x} \rangle \leq \mathbf{g}(y)$$
.

thus $-u^* \in \partial(\mathbf{g})(\underline{x})$. In addition

$$\forall y \in \mathbf{X} \quad < u^* \,, y - \underline{x} > \leq \mathbf{f}(y) - \mathbf{f}(\underline{x}) - \langle x^* \,, y - \underline{x} \rangle \,,$$

this implies

$$\forall y \in \mathbf{X} \ \mathbf{f}(\underline{x}) + \langle x^* + u^*, y - \underline{x} \rangle \leq \mathbf{f}(y) - \mathbf{f}(\underline{x}) ,$$

thus, $x^* + u^* \in \partial(\mathbf{f})(\underline{x})$. Hence $x^* = (x^* + u^*) + (-u^*)$ belongs to

$$\partial (\mathbf{f}) (\underline{x}) + \partial (\mathbf{g}) (\underline{x})$$

2.2 Euler Equations

With the help of the concept of differentiability, it is possible for us to write the the relation satisfied by a solution \underline{x} of the problem :

$$\min_{x \in \mathbf{X}} \mathbf{f}\left(x\right)$$

2.2.1 Optimality conditions

Let $\mathbf{f} \mathbf{X} \to \mathbf{R} \cup \{+\infty\}$ be a function. Suppose that the problem $\min_{x \in \mathbf{X}} \mathbf{f}(x)$ has at least one solution $\underline{x} \in \mathbf{dom}(\mathbf{f})$.

Proposition 23 If **f** has a derivative in the direction $h \in \mathbf{X}$ at the point \underline{x} then :

$$\mathbf{f}'\left(\underline{x}\,,h\right)\,\geq\,0$$

Proof : We have :

$$\forall t > 0 \ \mathbf{f}(\underline{x} + th) \ge \mathbf{f}(\underline{x}) ,$$

this implies

$$\mathbf{f}'\left(\underline{x}\,,h\right) \,=\, \lim_{t\to 0+} \frac{\mathbf{f}\left(\underline{x}+th\right)-\mathbf{f}\left(\underline{x}\right)}{t} \,\geq\, 0$$

Proposition 24 If **f** admits a Gâteaux derivative at the point \underline{x} and if $\underline{x} \in \overbrace{\mathbf{dom}(\mathbf{f})}^{0}$ then :

$$\nabla \mathbf{f}\left(\underline{x}\right) = 0 \; .$$

Proof: This is obvious by proposition 23.

We now examine important properties of convex functions . Let C be a non void closed convex subset of X and f a convex function of C to R.

Proposition 25 If **f** has a continuous Gâteaux derivative at the point $\underline{x} \in \mathbf{C}$ then the following properties are equivalent :

<u>x</u> is the solution of the problem min f (x).
∀y ∈ C < ∇f (<u>x</u>), y - <u>x</u> > ≥ 0.
∀y ∈ C < ∇f (y), y - <u>x</u> > ≥ 0.

Proof: We suppose that \underline{x} is solution of the problem $\min_{x \in \mathbf{C}} \mathbf{f}(x)$. Let $y \in \mathbf{C}$ and $t \in]0,1]$, then

$$\mathbf{f}\left(\left(1-t\right)\underline{x}+ty\right) \geq \mathbf{f}\left(\underline{x}\right) \;\;,$$

this gives

$$\frac{\mathbf{f}\left(\underline{x}+t\left(y-\underline{x}\right)\right)-\mathbf{f}\left(\underline{x}\right)}{t} \ \geq \ 0 \ ,$$

thus, taking the limit as t tends to 0+ gives

$$\langle \nabla \mathbf{f}(\underline{x}), y - \underline{x} \rangle \geq 0$$
.

Now, we suppose that $\forall y \in \mathbf{C} < \nabla \mathbf{f}(\underline{x}), y - \underline{x} \ge 0$ But the function **f** is convex and its Gâteaux derivative is monotone thus

$$\forall y \in \mathbf{C} \ \forall z \in \mathbf{C} \ < \nabla \mathbf{f}(y) - \nabla \mathbf{f}(z) , y - z \ge 0.$$

If we put $z = \underline{x}$, we obtain :

$$\forall y \in \mathbf{C} \ \forall z \in \mathbf{C} \ < \nabla \mathbf{f}(y) - \nabla \mathbf{f}(\underline{x}), y - \underline{x} \ge 0.$$

Since

$$\langle \nabla \mathbf{f}(\underline{x}), y - \underline{x} \rangle \geq 0$$
.

We easily obtain :

$$\langle \nabla \mathbf{f}(y) , y - \underline{x} \rangle \geq 0$$
.

Now suppose that :

$$\forall y \in \mathbf{C} \quad \langle \nabla \mathbf{f}(y) , y - \underline{x} \rangle \geq 0.$$

Let $y \in \mathbf{C}$, and $t \in [0,1]$, define

$$\varphi(t) = \mathbf{f}((1-t) \underline{x} + t y) .$$

The function φ is differentiable and

$$\varphi'(t) = \langle \nabla \mathbf{f} ((1-t) \underline{x} + t y) , y - \underline{x} \rangle ,$$

thus

$$\forall t \in [0,1] \quad \varphi'(t) \ge 0 ,$$

then $\varphi(1) \geq \varphi(0)$ that is $\mathbf{f}(y) \geq \mathbf{f}(\underline{x})$. Hence, \underline{x} is solution of the problem $\min_{x \in \mathbf{C}} \mathbf{f}(x)$.

Proposition 26 If **f** is a convex function from **X** to $\mathbf{R} \cup \{+\infty\}$ then **f** has a minimum at the point $\underline{x} \in \mathbf{X}$ if and only if :

$$0_{\mathbf{X}^{*}} \in \partial \mathbf{f}(\underline{x})$$
 .

2.2.2 Ekeland Variational Principle

Let ${\bf f}$ be a function from a Banach space ${\bf X}$ to ${\bf R}\cup\{+\infty\}$

Ekeland Variational Principle

Theorem 7 Suppose that **f** is proper, bounded below and lsc such that there exits $\epsilon > 0$ and $x_{\epsilon} \in \mathbf{X}$ verifying $\mathbf{f}(x_{\epsilon}) \leq \inf_{x \in \mathbf{X}} \mathbf{f}(x) + \epsilon$. Then there exists $y_{\epsilon} \in \mathbf{X}$ such that :

•
$$\mathbf{f}(y_{\epsilon}) \leq \mathbf{f}(x_{\epsilon}) \quad .$$
•
$$\|x_{\epsilon} - y_{\epsilon}\|_{\mathbf{X}} \leq 1 \quad .$$
•
$$\forall x \in \mathbf{X} | x \neq y_{\epsilon} \Rightarrow \mathbf{f}(x) > \mathbf{f}(y_{\epsilon}) - \epsilon \|x - y_{\epsilon}\|_{\mathbf{X}} \quad .$$

Proof: Observe that the function $x \mapsto \mathbf{f}(x) - \epsilon ||x - y_{\epsilon}||_{\mathbf{X}}$ has a strict minimum at the point y_{ϵ} . We construct a sequence $(z_n)_{n \in \mathbf{N}}$ to approximate y_{ϵ} . Put $z_0 = x_{\epsilon}$, suppose that we have defined z_1 to z_n ; then we set :

$$\mathbf{S}_{n} = \left\{ u \in \mathbf{X} \mid \mathbf{f}(u) \leq \mathbf{f}(z_{n}) - \epsilon \parallel u - z_{n} \parallel_{\mathbf{X}} \right\} .$$

Observe that $z_n \in \mathbf{S}_n$ thus, $\mathbf{S}_n \neq \emptyset$. As $\mathbf{f}(z_n) > \inf_{u \in \mathbf{S}_n} \mathbf{f}(u)$ we obtain

$$\inf_{u \in \mathbf{S}_{n}} \mathbf{f}(u) < \frac{1}{2} \inf_{u \in \mathbf{S}_{n}} \mathbf{f}(u) + \mathbf{f}(z_{n}) ,$$

thus there exists $z_{n+1} \in \mathbf{S}_n$ such that :

$$\mathbf{f}(z_{n+1}) \leq \frac{1}{2} \inf_{u \in \mathbf{S}_n} \mathbf{f}(u) + \frac{1}{2} \mathbf{f}(z_n)$$

this gives

$$\mathbf{f}(z_{n+1}) - \inf_{u \in \mathbf{S}_n} \mathbf{f}(u) \leq \frac{1}{2} \left[\mathbf{f}(z_n) - \inf_{u \in \mathbf{S}_n} \mathbf{f}(u) \right]$$

We prove that the sequence $(z_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. The sequence $(\mathbf{f}(z_n))_{n \in \mathbb{N}}$ is decreasing, as **f** is bounded below, it converges. If m and n are integers such that m > n, we have :

$$\epsilon \|z_m - z_n\|_{\mathbf{X}} \leq \mathbf{f}(z_n) - \mathbf{f}(z_m)$$

Thus, the sequence $(z_n)_{n \in \mathbf{N}}$ is a Cauchy sequence, so there exists $z \in \mathbf{X}$ such that $z = \lim_{n \to +\infty} z_n$. Since the function **f** is lsc, we obtain :

$$\mathbf{f}(z) \leq \liminf_{n \mapsto +\infty} \mathbf{f}(z_n)$$
.

Then

$$\mathbf{f}(z) \leq \liminf_{n \mapsto +\infty} \mathbf{f}(z_n) \leq \liminf_{n \mapsto +\infty} \inf_{u \in \mathbf{S}_n} \mathbf{f}(u)$$
.

As the sequence $(\mathbf{f}(z_n))_{n \in \mathbf{N}}$ is decreasing , we have $\mathbf{f}(z) \leq \mathbf{f}(z_0) = \mathbf{f}(x_{\epsilon})$ then

$$\epsilon \|x_{\epsilon} - z\|_{\mathbf{X}} = \epsilon \|z_0 - z\|_{\mathbf{X}} ,$$

thus,

$$\epsilon \|x_{\epsilon} - z\|_{\mathbf{X}} \leq \mathbf{f}(x_{\epsilon}) - \mathbf{f}(z) \leq \mathbf{f}(x_{\epsilon}) - \inf_{x \in \mathbf{S}_{n}} \mathbf{f}(x) ,$$

therefore,

$$\epsilon \|x_{\epsilon} - z\|_{\mathbf{X}} < \epsilon ,$$

hence,

$$\|x_{\epsilon}-z\|_{\mathbf{X}} < 1 .$$

Finally, to verify the last part of the theorem, we assume that z does not satisfy it . Then there exists $v\neq z$ such that

$$\mathbf{f}(v) \leq \mathbf{f}(z) - \epsilon \|v - z\|_{\mathbf{X}} ,$$

thus

$$\mathbf{f}(v) < \mathbf{f}(z) .$$

We also have that :

$$\forall n \in \mathbf{N} \mathbf{f}(v) \leq \mathbf{f}(z_n) - \epsilon \|v - z_n\|_{\mathbf{X}} ,$$

then

$$v \in \mathbf{S}_n \ \forall n \in \mathbf{N}$$
,

thus

$$\mathbf{f}(z) \leq \mathbf{f}(v)$$

This is impossible.

To conclude it is enough to take $y_{\epsilon} = z$. This completes the proof .

From this theorem, we obtain the following obvious proposition :

Corollary 1 If X is a Banach space and if $f X \to R \cup \{+\infty\}$ is lsc, proper and bounded below then

$$\forall \epsilon > 0 \; \exists x_{\epsilon} \in \mathbf{X} \; | \; \forall x \in \mathbf{X} \; x \neq x_{\epsilon} \; \mathbf{f}(x) > \mathbf{f}(x_{\epsilon}) - ||x - x_{\epsilon}||_{\mathbf{X}} \; .$$

We also have the following corollary :

Corollary 2 If **X** is a Banach space and if $\mathbf{f} \mathbf{X} \to \mathbf{R}$ is lsc, Gâteaux differentiable and such that there exists $\epsilon > 0$ and $x_{\epsilon} \in \mathbf{X}$ satisfying $\mathbf{f}(x_{\epsilon}) \leq \inf_{x \in \mathbf{X}} \mathbf{f}(x) + \epsilon$. Then there exists $y_{\epsilon} \in \mathbf{X}$ such that :

$$\mathbf{f}(y_{\epsilon}) \leq \mathbf{f}(x_{\epsilon}) \quad .$$
$$\|x_{\epsilon} - y_{\epsilon}\|_{\mathbf{X}} \leq \sqrt{\epsilon} \quad .$$
$$\|\mathbf{f}'(y_{\epsilon})\|_{\mathbf{X}^{*}} \leq \sqrt{\epsilon} \quad .$$

Proof : As in the proof of Ekeland variational Principle with the following equivalent norm

$$\| \, \|_1 = \frac{1}{\sqrt{\epsilon}} \, \| \, \|_{\mathbf{X}} \quad .$$

One consequence of this result is :

Corollary 3 If **X** is a Banach space and if $\mathbf{f} \mathbf{X} \to \mathbf{R}$ is lsc, Gâteaux differentiable, then there exits a sequence $(x_n)_{n \in \mathbf{N}}$ of elements belonging to **X** such that :

•

$$\inf_{x \in \mathbf{X}} \mathbf{f}(x) = \lim_{n \to +\infty} \mathbf{f}(x_n) .$$
•

$$\lim_{n \to +\infty} \nabla \mathbf{f}(x_n) = 0_{\mathbf{X}^*} .$$

Remark 14 This result is a generalization of the Euler equation.

Palais Smale condition

Definition 27 If **X** is a Banach space and if $\mathbf{f} \mathbf{X} \to \mathbf{R}$ is of class \mathbf{C}^1 . One says that \mathbf{f} satisfies the **Palais Smale** conditions at the level $c \in \mathbf{R}$, *i.e.*, \mathbf{f} satisfies $(\mathbf{PS})_{\mathbf{c}}$, if for every sequence $(x_n)_{n \in \mathbf{N}}$ of elements in \mathbf{X} such that :

•
$$\lim_{n \to +\infty} \mathbf{f}(x_n) = c .$$

•
$$\lim_{n \to +\infty} \nabla \mathbf{f}(x_n) = 0_{\mathbf{X}^*} .$$

then $(x_n)_{n \in \mathbf{N}}$ converges to an element of \mathbf{X} . When \mathbf{f} satisfies $(\mathbf{PS})_{\mathbf{c}}$ for all $c \in \mathbf{R}$, we say that \mathbf{f} satisfies **Palais Smale** conditions and we write \mathbf{f} satisfies (\mathbf{PS}).

Proposition 27 If **X** is a Banach space, if $\mathbf{fX} \to \mathbf{R}$ is of class \mathbf{C}^1 , bounded below and satisfies the **Palais Smale** condition, then \mathbf{f} has a minimum on **X**.

Remark 15 The **Palais Smale** conditions are often used in the proof of the existence of critical points.

2.2.3 Optimality conditions with constraints

Optimality conditions with equality constraints

Let **X** be a reflexive Banach space with the norm $\|\|_{\mathbf{X}}$. Let $\mathbf{f} \ \mathbf{X} \to \mathbf{R}$ and $\mathbf{g}_1, ..., \mathbf{g}_p \ \mathbf{X} \to \mathbf{R}$. Define the map \mathbf{g} from \mathbf{X} to \mathbf{R}^p by $\mathbf{g}(x) = (\mathbf{g}_1(x), ..., \mathbf{g}_p(x)), \ \forall x \in \mathbf{X}$. Put $\mathbf{S}_{\mathbf{g}} = \{x \in \mathbf{X} \mid \mathbf{g}(x) = 0_{\mathbf{R}^p}\}.$

We consider the following problem \mathcal{P}_{\min} :

$$\min_{x \in \mathbf{S}_{\mathbf{g}}} \mathbf{f}(x) \ .$$

Proposition 28 If \mathbf{f} and $\mathbf{g}_1, ..., \mathbf{g}_p$ are continuously differentiable, if \underline{x} is solution of the problem \mathcal{P}_{\min} and if $\mathbf{g}'(\underline{x})$ is onto, then there exists real numbers $\lambda_1, ..., \lambda_p$ such that :

$$\mathbf{f}'(\underline{x}) + \sum_{i=1}^{p} \lambda_i \, \mathbf{g}'_i(\underline{x}) = \mathbf{0}_{\mathbf{X}^*}$$

Proof: The linear function $\mathbf{g}'(\underline{x})$ is continuous and onto from \mathbf{X} to \mathbf{R}^p . If we set $\mathbf{X}_1 = \text{Ker}(\mathbf{g}'(\underline{x}))$ then \mathbf{X}_1 is a closed linear subspace of \mathbf{X} with codimension p, with the norm $\| \|_{\mathbf{X}_1}$ which is restriction of $\| \|_{\mathbf{X}}$ on \mathbf{X}_1 , thus, \mathbf{X}_1 is a Banach space. If \mathbf{X}_2 is the orthogonal complement of \mathbf{X}_1 with the norm $\| \|_{\mathbf{X}_2}$, then $(\mathbf{X}, \| \|_{\mathbf{X}})$ can be identified as the product space $\mathbf{X}_1 \mathbf{x} \mathbf{X}_2$ with the product norm . If $x \in \mathbf{X}$, and $x = (x_1, x_2)$ where $x_1 \in \mathbf{X}_1$ and $x_2 \in \mathbf{X}_2$.

The hypothesis of the theorem are equivalent to : \mathbf{f} and $\mathbf{g}_1, ..., \mathbf{g}_p$ are continuously differentiable and the continuous linear application $\frac{\partial \mathbf{g}}{\partial x_2}(\underline{x})$ is an isomorphism from \mathbf{X}_2 to \mathbf{R}^p .

The tangent linear space to $\mathbf{S}_{\mathbf{g}}$ at the point \underline{x} is given by:

 $\mathbf{T}_{\underline{x}} = \left\{ h \in \mathbf{X} \mid \exists \delta > 0 \text{ and } \gamma_{\delta} \mid -\delta, -\delta \mid \rightarrow \mathbf{S}_{\mathbf{g}} \text{ differentiable and } \gamma_{\delta}'(0) = h \right\} .$ Put :

$$\mathbf{E}_{\underline{x}} = \left\{ h \in \mathbf{X} \mid \mathbf{g}'(\underline{x}) . h = \mathbf{0}_{\mathbf{R}^p} \right\}$$
.

Let $h \in \mathbf{T}_x$, there exits $\delta > 0$ and a function

$$\gamma_{\delta}] - \delta , - \delta [\rightarrow \mathbf{S_g} ,$$

differentiable such that

$$\gamma_{\delta}'(0) = h$$

We have

$$\forall t \in]-\delta, -\delta[\mathbf{g}(\gamma_{\delta}(t)) = \mathbf{0}_{\mathbf{R}^{p}},$$

thus,

$$\forall t \in \left] - \delta \right, \quad - \delta \left[\mathbf{g}' \left(\gamma_{\delta} \left(t \right) \right) . \gamma_{\delta}' \left(t \right) \right] = 0_{\mathbf{R}^{p}}$$

In particular, for t = 0, we have

$$\mathbf{g}'\left(\gamma_{\delta}\left(0\right)\right).\gamma_{\delta}'\left(0\right) = 0_{\mathbf{R}^{p}},$$

hence,

$$\mathbf{g}'\left(\underline{x}\right).h = 0 \;,$$

thus $h \in \mathbf{E}_{\underline{x}}$.

Let $h \in \mathbf{E}_{\underline{x}}$, suppose that $h = (h_1, h_2)$ where $h_1 \in \mathbf{X}_1$ and $h_2 \in \mathbf{X}_2$; then:

$$\frac{\partial \mathbf{g}}{\partial x_1} \left(\underline{x} \right) \, h_1 \, + \, \frac{\partial \mathbf{g}}{\partial x_2} \left(\underline{x} \right) \, h_2 \, = \, \mathbf{0}_{\mathbf{R}^p} \, .$$

By implicit function theorem, there exists an open set \mathbf{U} which contains \underline{x}_1 , an open set \mathbf{W} containing \underline{x} and a function $\phi \mathbf{U} \rightarrow \mathbf{X}_2$ continuously differentiable such that :

$$(x_1, x_2) \in \mathbf{W} \cap \mathbf{S}_{\mathbf{g}} \Leftrightarrow x_1 \in \mathbf{U} \text{ and } x_2 = \phi(x_1) .$$

We have :

$$\forall x_1 \in \mathbf{U} \ \mathbf{g} \left(x_1, \phi \left(x_1 \right) \right) = 0_{\mathbf{R}^*} .$$

Differentiating this relation gives :

$$\forall x_1 \in \mathbf{U} \; \frac{\partial \mathbf{g}}{\partial x_1} \left(x_1 , \phi \left(x_1 \right) \right) \; + \; \frac{\partial \mathbf{g}}{\partial x_2} \left(x_1 , \phi \left(x_1 \right) \right) \; \phi' \left(x_1 \right) \; = \; \mathbf{0}_{\mathbf{X}_1^*} \; .$$

Replacing x_1 by \underline{x}_1 , and as $\underline{x}_2 = \phi(\underline{x}_1)$, we obtain :

$$\frac{\partial \mathbf{g}}{\partial x_1} \left(\underline{x} \right) + \frac{\partial \mathbf{g}}{\partial x_2} \left(\underline{x} \right) \phi' \left(\underline{x}_1 \right) = 0_{\mathbf{X}_1^*} \,.$$

thus :

$$\phi'(\underline{x}_1) = -\left[\frac{\partial \mathbf{g}}{\partial x_2}(\underline{x})\right]^{-1} \frac{\partial \mathbf{g}}{\partial x_1}(\underline{x}) .$$

Let ${\bf F}$ be the function defined by

$$\mathbf{F}(x_{1}) = \mathbf{f}(x_{1}, \phi(x_{1})) \ \forall x_{1} \in \mathbf{U},$$

we have :

$$\mathbf{F}(x_1) \geq \mathbf{F}(\underline{x}_1) \ \forall x_1 \in \mathbf{U} ,$$

thus the fréchet derivative

$$\mathbf{F}'\left(\underline{x}_{1}\right) = 0_{\mathbf{X}_{1}^{*}} ,$$

that is

$$\frac{\partial \mathbf{f}}{\partial x_1} \left(\underline{x} \right) \ + \ \frac{\partial \mathbf{f}}{\partial x_2} \left(\underline{x} \right) \ \phi' \left(\underline{x}_1 \right) \ = \ \mathbf{0}_{\mathbf{X}_1^*} \ .$$

So for

$$h = (h_1, h_2) \in \mathbf{X}_1 \mathbf{x} \mathbf{X}_2$$

such that

$$\mathbf{g}'.h = \mathbf{0}_{\mathbf{R}^p} ,$$

that is

$$\frac{\partial \mathbf{g}}{\partial x_1}\left(\underline{x}\right) h_1 + \frac{\partial \mathbf{g}}{\partial x_2}\left(\underline{x}\right) h_2 = 0_{\mathbf{R}^p} ,$$

we have

$$h_2 = -\left[\frac{\partial \mathbf{g}}{\partial x_2}\left(\underline{x}\right)\right]^{-1} \frac{\partial \mathbf{g}}{\partial x_1}\left(\underline{x}\right) h_1 ,$$

But :

$$\mathbf{f}'(\underline{x}) \cdot h = \frac{\partial \mathbf{f}}{\partial x_1}(\underline{x}) h_1 + \frac{\partial \mathbf{f}}{\partial x_2}(\underline{x}) h_2$$

Substituting for h_2 gives

$$\mathbf{f}'(\underline{x}) \cdot h = \frac{\partial \mathbf{f}}{\partial x_1}(\underline{x}) \ h_1 - \frac{\partial \mathbf{f}}{\partial x_2}(\underline{x}) \left[\frac{\partial \mathbf{g}}{\partial x_2}(\underline{x})\right]^{-1} \frac{\partial \mathbf{g}}{\partial x_1}(\underline{x}) \ h_1 \ .$$

thus,

$$\mathbf{f}'(\underline{x}) \cdot h = 0_{\mathbf{X}^*}$$

Finally, we have :

$$\forall h \in \mathbf{X} \text{ if } \forall i \in \{1, ..., p\} \mathbf{g}'_i(\underline{x}) . h = 0 \Rightarrow \mathbf{f}'(\underline{x}) . h = 0_{\mathbf{X}^*}$$

To conclude we use the following proposition :

Proposition 29 If $x_1^*, ..., x_p^*$ and x^* are linear continuous forms on **X** such that :

$$\forall h \in \mathbf{X} \quad \textit{if} \; \forall i \in \{1\;,...,p\} \; < x_1^*\;, h > = \; 0 \quad \Rightarrow < x^*\;, h > = \; 0 \; .$$

Then there exist real numbers $\lambda_1,...,\,\lambda_p$ such that :

$$x^* = \sum_{i=1}^p \lambda_i \, x_i^* \; .$$

2.2. EULER EQUATIONS

Proof : It is obvious from the following lemma :

Lemma 1 If $x_1^*, ..., x_p^*$ and x^* are continuous linear forms on **X** such that

 $\forall h \in \mathbf{X} \quad \textit{if} \ \forall i \in \{1 \ , ..., p\} \ < x_i^* \ , \ h > \geq \ 0 \quad \Rightarrow < x^* \ , \ h > \geq \ 0 \ .$

Then there exist real positive numbers μ_1, \dots, μ_p such that :

$$x^* = \sum_{i=1}^p \mu_i \, x_i^*$$

Proof : One may suppose that $\{x_1^*, ..., x_p^*\}$ is linearly independant . Put :

$$C = \left\{ u^* \in \mathbf{X}^* \ u^* = \sum_{i=1}^p \mu_i \, x_i^* \right\} .$$

The subset C is convex and closed. We suppose that $x^* \notin C$, there exists $(h, \alpha) \in \mathbf{X} \times \mathbf{R}$ such that :

- $< x^*$, $h >> \alpha$.
- $\forall u^* \in \mathcal{C} \quad < u^*, h > \leq \alpha$.

We have $\alpha \geq 0$ thus, $\langle x^*, h \rangle > 0$. If there exists $i_0 \in \{1, ..., p\}$ such that $\langle x^*_{i_0}, h \rangle > 0$. As

$$\forall \mu_1 \ge 0, ..., \forall \mu_p \ge 0 \quad \sum_{i=1}^{i=p} \mu_i < x_i^*, h \ge \alpha .$$

As μ_{i_0} tends to $+\infty$, the preceeding property is false. Thus,

$$\forall i \in \{1, ..., p\} < x_i^*, h \ge 0$$
.

then $\langle x^*, -h \rangle \geq 0$ this implies $\langle x^*, h \rangle \leq 0$ and this is impossible . Thus $x^* \in C$.

Optimality conditions with inequality constraints

Let $\{\mathbf{g}_1,...,\mathbf{g}_p\}$ be functions from \mathbf{X} to \mathbf{R} and $\mathbf{f} \ \mathbf{X} \to \mathbf{R}$. Set $\mathbf{S}_{\mathbf{g}}^- = \{x \in \mathbf{X} \mid \forall i \in \{1,...,p\} \ \mathbf{g}_i(x) \leq 0\}$ We consider the following problem \mathcal{P}_{\min} :

$$\min_{x \in \mathbf{S}_{\mathbf{g}}^{-}} \mathbf{f}(x) \ .$$

. As in the proof of the preceeding theorem, we obtain :

Proposition 30 If \mathbf{f} and $\mathbf{g}_1, ..., \mathbf{g}_p$ are continuously differentiable, if \underline{x} is a solution of the problem \mathcal{P}_{\min} and if $\mathbf{g}'(\underline{x})$ is onto, then there exists real positive numbers $\mu_1, ..., \mu_p$ such that :

$$\mathbf{f}\left(\underline{x}\right) + \sum_{i=1}^{p} \mu_i \, \mathbf{g}'_i\left(\underline{x}\right) = \mathbf{0}_{\mathbf{X}^*} \ .$$

and

$$\forall i \in \{1, \dots, p\} \quad \mu_i \mathbf{g}_i (\underline{x}) = \mathbf{0}_{\mathbf{X}^*}$$

2.2.4 Applications

2.2.5 Some examples in Hilbert spaces

Let **H** be a Hilbert space over the set of real numbers with the scalar product $\langle , \rangle_{\mathbf{H}}$ and the associated norm $\| \|_{\mathbf{H}}$.

Projection Theorem

Theorem 8 If **C** is a convex closed subset of **H**, then for every x belonging to **H** there exits one and only one element of **C** denoted by $\mathbf{P}_{\mathbf{C}}(x)$ such that :

$$||x - \mathbf{P}_{\mathbf{C}}(x)||_{\mathbf{H}} = \min_{y \in \mathbf{C}} ||x - y||_{\mathbf{H}}$$

In addition $\mathbf{P}_{\mathbf{C}}(x)$ is the unique element $z \in \mathbf{C}$ such that

$$\forall y \in \mathbf{C} \quad \langle x - z, y - z \rangle_{\mathbf{H}} \leq 0 \; .$$

Proof : We set

$$\forall y \in \mathbf{H} \ \mathbf{J}(y) = \frac{1}{2} \|x - y\|_{\mathbf{H}}^2$$

this gives :

$$\forall y \in \mathbf{H} \ \mathbf{J}(y) = \frac{1}{2} \langle y, y \rangle_{\mathbf{H}} - \langle x, y \rangle_{\mathbf{H}} + \langle x, x \rangle_{\mathbf{H}}$$
.

The problem $\min_{y \in \mathbf{C}} \mathbf{J}(y)$ is a quadratic optimization problem and the function \mathbf{J} is convex and coercive. Thus, this problem has one and only one solution $\mathbf{P}_{\mathbf{C}}(x) \in \mathbf{C}$. The function \mathbf{J} is differentiable and

$$\forall h \in \mathbf{H} < \mathbf{J}'(y), h \ge_{\mathbf{H}} = \langle y, h \ge_{\mathbf{H}} - \langle x, h \ge_{\mathbf{H}} .$$

Thus $z \in \mathbf{H}$ is solution of $\min_{y \in \mathbf{C}} \mathbf{J}(y)$ if and only if:

$$z \in \mathbf{C}$$
 and $\forall y \in \mathbf{C} \langle \mathbf{J}'(z) \rangle, y - z >_{\mathbf{H}} = \langle z - x, y - z >_{\mathbf{H}} \ge 0$,

then

$$\forall y \in \mathbf{C} \quad \langle x - z, y - z \rangle_{\mathbf{H}} \leq 0 .$$

Exercice :

Let \mathbf{C} be a non void convex closed subset of \mathbf{H} .

• Show that

$$\forall x \in \mathbf{H} \ \forall y \in \mathbf{H} \ \|\mathbf{P}_{\mathbf{C}}(x) - \mathbf{P}_{\mathbf{C}}(y)\|_{\mathbf{H}} \le \|x - y\|_{\mathbf{H}}$$

• Show that if C is a closed linear subspace of H then :

$$z = \mathbf{P}_{\mathbf{C}}(x)$$
 if and only if $z \in \mathbf{C}$ and $\forall y \in \mathbf{C} \quad \langle x - z, y \rangle_{\mathbf{H}} = 0$.

• Show that if C is a closed linear subspace of H then $\mathbf{P}_{\mathbf{C}}$ is linear and continuous and moreover,

$$\forall x \in \mathbf{H} ||x||_{\mathbf{H}}^{2} = ||\mathbf{P}_{\mathbf{C}}(x)||_{\mathbf{H}}^{2} + ||x - \mathbf{P}_{\mathbf{C}}(x)||_{\mathbf{H}}^{2}.$$

 \bullet Prove that if ${\bf C}$ is a closed linear subspace ${\bf H}$ and if

$$\mathbf{C}^{\perp} = \{ x \in \mathbf{H} \mid \forall y \in \mathbf{C} \quad \langle x, y \rangle_{\mathbf{H}} = 0 \}$$

then

$$\mathbf{H} = \mathbf{C} \oplus \mathbf{C}^{\perp}$$
 .

Stampacchia Theorem : the symmetric case

Lett ${\bf a}$ be a bilinear form on ${\bf H}$ which is continuous, coercive and symmetric . We have:

• the continuity of **a** is equivalent to

$$\exists M > 0 \mid \forall x \in \mathbf{X} \; \forall y \in \mathbf{X} \; \left| \mathbf{a} \left(x , y \right) \right| \le M \; \left\| x \right\|_{\mathbf{X}} \; \left\| y \right\|_{\mathbf{X}} \; ;$$

• the coercivity of **a** is equivalent to

$$\exists \alpha > 0 \mid \forall x \in \mathbf{X} \ \alpha \|x\|_{\mathbf{X}}^2 \le a(x, x) ;$$

• **a** is symmetric if and only if

$$\forall x \in \mathbf{H} \ \forall y \in \mathbf{H} \ \mathbf{a}(x, y) = \mathbf{a}(y, x) ;$$

Let ℓ be a linear continuous form on **H** . There exists L > 0 such that

$$\forall x \in \mathbf{H} \ \left| \ell \left(x \right) \right| \le M \ \left\| x \right\|_{\mathbf{H}}$$

We define on \mathbf{H} , the function denoted by \mathbf{J} by :

$$\mathbf{J}(x) = \frac{1}{2}\mathbf{a}(x, x) - \ell(x, x) \ \forall x \in \mathbf{H} .$$

Theorem 9 If **C** is a non void closed convex subset of the Hilbert space **H**, if **a** is a bilinear form on **H** which is symmetric, continuous and coercive; and if ℓ is a linear continuous form on **H** then the problem :

Findu
$$\in \mathbf{C}$$
 such that $\forall v \in \mathbf{C} \ \mathbf{a}(u, v - u) \geq \ell(v - u)$

has one and only one solution.

Proof : Let J be the proper convex continuous and coercive function which is defined by :

$$\mathbf{J}(v) = \frac{1}{2} \mathbf{a}(v, v) - \ell(v) .$$

The problem

$$\min_{x \in \mathbf{C}} \mathbf{J}\left(x\right)$$

is a quadratic optimization problem which has one and only one solution $u \in \mathbf{C}$ and which is characterized by :

$$\forall v \in \mathbf{C} \quad \mathbf{J}'(u) . (v-u) \ge 0 ;$$

or

$$\forall v \in \mathbf{C} \quad \mathbf{a} \left(u \, , v - u \right) \, - \, \ell \left(v - u \right) \, \geq \, 0 \; ,$$

thus $u \in \mathbf{C}$ verifies :

$$\forall v \in \mathbf{C} \quad \mathbf{a}(u, v-u) \geq \ell(v-u) \;.$$

Remark 16 The problem may be interpreted like a projection problem when we endow \mathbf{H} with the scalar product defined by \mathbf{a} . The theorem is also true if \mathbf{a} is not symmetric.

Lax Milgram Theorem

Theorem 10 If **H** is a Hilbert space, if **a** is a bilinear form on **H** which is symmetric, continuous and coercive and if ℓ is a linear form on **H** which is continuous then the problem :

Find $u \in \mathbf{H}$ such that $\forall v \in \mathbf{H} \ \mathbf{a}(u, v) = \ell(v)$

admits one and only one solution.

Proof : It is enough to prove the equivalence of the problem \mathcal{P}_1

Find
$$u \in \mathbf{H}$$
 such that $\forall v \in \mathbf{H} \ \mathbf{a}(u, v) = \ell(v)$

with the problem \mathcal{P}_2

Find
$$u \in \mathbf{H}$$
 such that $\forall v \in \mathbf{H} \ \mathbf{a}(u, v - u) \geq \ell(v - u)$.

We suppose that $u \in \mathbf{H}$ is a solution of \mathcal{P}_1 : Let $v \in \mathbf{H}$, we have

$$\mathbf{a}(u, v - u) = \mathbf{a}(u, v) - \mathbf{a}(u, u) = \ell(v) - \ell(u) ,$$

then

$$\mathbf{a}(u, v-u) = \ell(v-u) \; .$$

thus u is the solution of \mathcal{P}_2 .

Conversely, let $u \in \mathbf{H}$ be a solution of \mathcal{P}_2 : Let $v \in \mathbf{H}$ then w = u + v belong \mathbf{H} . Replacing v with w in \mathcal{P}_2 gives:

$$\mathbf{a}(u,v) \geq \ell(v) \ .$$

If we replace v by -v in this relation, we obtain :

$$\mathbf{a}\left(u\,,v\right)\,\leq\,\ell\left(v\right)\,,$$

 \mathbf{SO}

$$\mathbf{a}(u,v) = \ell(v) \; .$$

Thus u is a solution of \mathcal{P}_1 .

An example of application in solving partial differential equation

Let Ω be a non void open domain of \mathbf{R}^{N} . Let $\mathbf{f} \in \mathbf{L}^{2}(\Omega)$, we want to solve the problem : Find $\mathbf{u} \in \mathbf{H}_{0}^{1}(\Omega)$ such that

 $-\Delta \mathbf{u} = \mathbf{f} \text{ in } \Omega$

This problem is equivalent to the minimization problem which is defined by the function \mathbf{J} where:

$$\mathbf{J}(\mathbf{v}) = \frac{1}{2} \int_{\Omega} \langle \nabla \mathbf{v}, \nabla \mathbf{v} \rangle_{\mathbf{R}^{N}} dx - \int_{\Omega} \mathbf{f} \, \mathbf{v} \, dx \, \mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega)$$

and the minimization problem

$$\min_{\mathbf{v}\in \mathbf{H}_{0}^{1}\left(\Omega\right)} \mathbf{J}\left(\mathbf{v}\right)$$

This problem is a quadratic optimization problem, it has one and only one solution .

2.2.6 An example in a Banach space

Let p > 1 and q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$. Let $\mathbf{f} \in \mathbf{L}^{q}(\Omega)$, where Ω a non void bounded domain of \mathbf{R}^{N} . We want to solve the problem :

Find $\mathbf{u} \in \mathbf{W}_{0}^{1 p}(\Omega)$ such that

$$-\mathbf{div}\left(\|
abla \mathbf{u}\|_{\mathbf{R}^{N}}^{p-2} \nabla \mathbf{u}
ight) = \mathbf{f} \text{ in } \Omega$$

This problem is equivalent to the minimization problem which is defined by the function \mathbf{J} where:

$$\mathbf{J}(\mathbf{v}) = \frac{1}{p} \int_{\Omega} \|\nabla \mathbf{v}\|_{\mathbf{R}^{N}}^{p} dx - \int_{\Omega} \mathbf{f} \, \mathbf{v} \, dx \, \mathbf{v} \in \mathbf{W}_{0}^{1 \, p}(\Omega)$$

and the minimization problem

$$\min_{\mathbf{v}\in \mathbf{W}_{0}^{1\,p}\left(\Omega\right)} \, \mathbf{J}\left(\mathbf{v}\right) \; .$$

The function \mathbf{J} is strictly convex, lsc, proper and coercive on the Sobolev space $\mathbf{W}_0^{1\,p}$ which is a reflexive Banach space. The minimizing problem has one and only one solution.

2.2.7 An eigenvalue problem

Let Ω be a non void bounded domain of \mathbf{R}^{N} . We want to find a function $\mathbf{u} \in \mathbf{H}_{0}^{1}(\Omega) \setminus \{0\}$ such that there exists a real number λ with

$$-\Delta \mathbf{u} = \lambda \, \mathbf{u} \quad \text{on } \Omega \; .$$

This problem is an optimization problem with equality constraints

$$\min_{\mathbf{v}\in\mathbf{H}_{0}^{1}(\Omega)}\mathbf{g}(\mathbf{v}) = 0$$

$$\mathbf{J}(\mathbf{v})$$

 ${\bf J}$ and ${\bf g}$ are defined as follows:

$$\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) \quad \mathbf{J}(\mathbf{v}) = \frac{1}{2} \int_{\Omega} \|\nabla \mathbf{v}\|_{\mathbf{R}^{N}}^{2} dx ;$$
$$\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) \quad \mathbf{g}(\mathbf{v}) = \frac{1}{2} \int_{\Omega} |\mathbf{v}|^{2} dx - \frac{1}{2} .$$

We remark that if $\{\mathbf{v} \in \mathbf{H}_0^1(\Omega) : \mathbf{g}(\mathbf{v}) = 0\} \neq \emptyset$ then

$$\forall h \in \mathbf{H}_0^1(\Omega) \quad \mathbf{g}'(\mathbf{v}) . h = \int_{\Omega} \mathbf{v} h \, dx$$

and $\mathbf{g}'(\mathbf{v})$ is a continuous onto linear form on $\mathbf{H}_{0}^{1}(\Omega)$. The function \mathbf{J} is differentiable and :

$$\forall h \in \mathbf{H}_{0}^{1}(\Omega) \quad \mathbf{J}'(\mathbf{v}) . h = \int_{\Omega} \langle \nabla \mathbf{v}, \nabla h \rangle_{\mathbf{R}^{N}} dx .$$

Thus, if the minimization problem has a solution \mathbf{u} , there exists $\lambda \in \mathbf{R}$ such that $\forall h \in \mathbf{H}_{0}^{1}(\Omega) \ \mathbf{J}'(\mathbf{u}) . h = \lambda \mathbf{g}'(\mathbf{u}) . h$, then

$$\forall h \in \mathbf{H}_0^1(\Omega) \quad \int_{\Omega} < \nabla \mathbf{u} , \nabla h >_{\mathbf{R}^N} dx = \lambda \int_{\Omega} \mathbf{u} \, h \, dx$$

We deduce that $\mathbf{u} \in \mathbf{H}_0^1(\Omega)$ and $-\Delta \mathbf{u} = \lambda \mathbf{u}$.

Moreover, if $\lambda > 0$, it is enough to take $h = \mathbf{u}$. Now, we prove the existence of \mathbf{u} . The function \mathbf{J} is bounded below by 0 thus, it has a finite infimum. There exists a minimizing sequence $(\mathbf{u}_n)_{n \in \mathbf{N}}$ of elements of $\mathbf{H}_0^1(\Omega)$ such that $\forall n \in \mathbf{N} \ \|\mathbf{u}_n\|_{\mathbf{L}^2(\Omega)} = 1$.

The sequence $(\mathbf{u}_n)_{n \in \mathbf{N}}$ is bounded in $\mathbf{H}_0^1(\Omega)$ thus it has a subsequence $(\mathbf{u}_{n_k})_{k \in \mathbf{N}}$ which converges weekly in $\mathbf{H}_0^1(\Omega)$ to an element \mathbf{u} . The space $\mathbf{H}_0^1(\Omega)$ is included with compact inclusion in $\mathbf{L}^2(\Omega)$, then the sequence $(\mathbf{u}_{n_k})_{k \in \mathbf{N}}$

converges in $\mathbf{L}^{2}(\Omega)$ to \mathbf{u} . Thus, $\mathbf{g}(\mathbf{v}) = 0$ and $\|\mathbf{u}\|_{\mathbf{L}^{2}(\Omega)} = 1$, $\mathbf{u} \neq 0$. In addition, \mathbf{J} is weakly lsc, so

$$\mathbf{J}(\mathbf{u}) \leq \liminf_{k \to +\infty} \mathbf{J}(\mathbf{u}_{n_k}) = \inf_{\mathbf{v} \in \mathbf{H}_0^1(\Omega) \ \mathbf{g}(\mathbf{v}) = 0} \mathbf{J}(\mathbf{v}) .$$

The minimization problem has one solution .

2.3 A very short bibliography

V. Barbu, Mathematical Methods in Optimization of Differential Systems, 1994, Kluwer Academic Publishers

H. Brezis, Analyse fonctionnelle et applications, 1989, Masson

K.-C. Chang, Methods in nonlinear analysis, 2005, Springer

G. Dal Maso, An Introduction to Γ-Convergence, 1993, Burkhauser **Ng. Djitte**, Functions space and elliptic partial differential equations, 2006, Cours Diploma ICTP

I. Ekeland; R. Temam, Convex Analysis and Variational Problems, 1999, SIAM

R. T. Rockafellar, Convex Analysis, 1970, Princeton University Press

K. Yosida, Functional Analysis, 1980, Springer