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Abstract: We prove existence of small amplitude, 2π/ω-periodic in time solutions of completely
resonant nonlinear wave equations with Dirichlet boundary conditions, for any frequency ω belonging to
a Cantor-like set of asymptotically full measure and for a new set of nonlinearities. The proof relies on a
suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.
In spite of the complete resonance of the equation we show that we can still reduce the problem to a finite
dimensional bifurcation equation. Moreover, a new simple approach for the inversion of the linearized
operators required by the Nash-Moser scheme is developed. It allows to deal also with nonlinearities
which are not odd and with finite spatial regularity.
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1 Introduction

We consider the completely resonant nonlinear wave equation{
utt − uxx + f(x, u) = 0
u(t, 0) = u(t, π) = 0 (1)

where the nonlinearity
f(x, u) = ap(x)up + O(up+1) , p ≥ 2

is analytic in u but is only H1 with respect to x.
We look for small amplitude, 2π/ω-periodic in time solutions of equation (1) for all frequencies ω in

some Cantor set of positive measure, actually of full density at ω = 1.
Equation (1) is an infinite dimensional Hamiltonian system possessing an elliptic equilibrium at u = 0.

The frequencies of the linear oscillations at 0 are ωj = j, ∀j = 1, 2, . . ., and therefore satisfy infinitely
many resonance relations. Any solution v =

∑
j≥1 aj cos(jt + θj) sin(jx) of the linearized equation at

u = 0, {
utt − uxx = 0
u(t, 0) = u(t, π) = 0 (2)

is 2π-periodic in time. For this reason equation (1) is called a completely resonant Hamiltonian PDE.
Existence of periodic solutions close to a completely resonant elliptic equilibrium for finite dimensional

Hamiltonian systems has been proved in the celebrated theorems of Weinstein [27], Moser [22] and Fadell-
Rabinowitz [14]. The proofs are based on the classical Lyapunov-Schmidt decomposition which splits the
problem into two equations: the range equation, solved through the standard Implicit Function Theorem,
and the bifurcation equation, solved via variational arguments.

For proving existence of small amplitude periodic solutions of completely resonant Hamiltonian PDEs
like (1) two main difficulties must be overcome:

(i) a “small denominators” problem which arises when solving the range equation;

(ii) the presence of an infinite dimensional bifurcation equation: which solutions v of the linearized
equation (2) can be continued to solutions of the nonlinear equation (1)?

The “small denominators” problem (i) is easily explained: the eigenvalues of the operator ∂tt − ∂xx

in the spaces of functions u(t, x), 2π/ω-periodic in time and such that, say, u(t, .) ∈ H1
0 (0, π) for all t,

are −ω2l2 + j2, l ∈ Z, j ≥ 1. Therefore, for almost every ω ∈ R, the eigenvalues accumulate to 0. As
a consequence, for most ω, the inverse operator of ∂tt − ∂xx is unbounded and the standard Implicit
Function Theorem is not applicable.

The appearence of small denominators is a common feature of Hamiltonian PDEs. This problem was
first solved by Kuksin [19] and Wayne [26] using KAM theory (other existence results of quasi-periodic
solutions with KAM theory were obtained e.g. in [21], [23], [10], see also [20] and references therein).

In [12] Craig-Wayne introduced for Hamiltonian PDEs the Lyapunov-Schmidt reduction method and
solved the range equation via a Nash-Moser Implicit function technique. The major difficulty concerns
the inversion of the linearized operators obtained at any step of the Nash-Moser iteration because the
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eigenvalues may be arbitrarily small (this is the small divisor problem (i)). The Craig-Wayne method
to control such inverses is based on the Frölich-Spencer technique [15] and (in the wave equation with
Dirichlet boundary conditions) works for nonlinearities f(x, u) which can be extended to analytic, odd,
periodic functions so that the Dirichlet problem on [0, π] is equivalent to the 2π-periodic problem within
the space of all odd functions. A key property exploited in this case is that the “off-diagonal” terms of
the linearized operator (seen as an infinite dimensional matrix in Fourier basis) decay exponentially fast
away from the diagonal. At the end of the Nash-Moser iteration, due to the “small divisor problem” (i),
the range equation is solved only for a Cantor set of parameters.

We mention that the Craig-Wayne approach has been extended by Su [25] to some case where the
nonlinearity has only low Sobolev regularity (for periodic conditions) and by Bourgain to find also quasi-
periodic solutions [7]-[8].

The previous results apply for example to non-resonant or partially resonant Hamiltonian PDEs like
utt−uxx+a1(x)u = f(x, u) where the bifurcation equation is finite dimensional (2 dimensional in [12] and
2m dimensional in [13]). With a non-degeneracy assumption (“twist condition”) the bifurcation equation
is solved in [12]-[13] by the Implicit function Theorem finding a smooth path of solutions which intersects
“transversally”, for a positive measure set of frequencies, the Cantor set where also the range equation
has been solved.

On the other hand, for completely resonant PDE like (1) where a1(x) ≡ 0, both small divisor dif-
fuculties and infinite dimensional bifurcation phenomena occur. It was quoted in [11] as an important
problem.

The first existence results for small amplitude periodic solutions of (1) have been obtained in2 [18]
for the nonlinearity f(x, u) = u3, and in [2] for f(x, u) = u3 + O(u5), imposing on the frequency ω the
“strongly non-resonance” condition |ωl − j| ≥ γ/l, ∀l �= j. For 0 < γ < 1/6, the frequencies ω satisfying
such condition accumulate to ω = 1 but form a set Wγ of zero measure. For such ω’s the spectrum of
∂tt − ∂xx does not accumulate to 0 and so the small divisor problem (i) is by-passed. Next, problem (ii)
is solved by means of the Implicit Function Theorem, observing that the 0th-order bifurcation equation
(which is an approximation of the exact bifurcation equation) possesses, for f(x, u) = u3, non-degenerate
periodic solutions, see [3].

In [5]-[6], for the same set Wγ of strongly non-resonant frequencies, existence and multiplicity of
periodic solutions has been proved for any nonlinearity f(u). The novelty of [5]-[6] was to solve the
bifurcation equation via a variational principle at fixed frequency which, jointly with min-max arguments,
enables to find solutions of (1) as critical points of the Lagrangian action functional. More precisely, the
bifurcation equation is, for any fixed ω ∈ Wγ , the Euler Lagrange equation of a “reduced Lagrangian
action functional” which possesses non trivial critical points of Mountain-pass type [1], see also remark
1.4.

Unlike [2]-[5]-[6], a new feature of the results of this paper is that the set of frequencies ω for which we
prove existence of 2π/ω-periodic in time solutions of (1) has positive measure, actually has full density
at ω = 1.

The existence of periodic solutions for a set of frequencies of positive measure has been proved in [9]
in the case of periodic boundary conditions in x and for the nonlinearity f(x, u) = u3 +

∑
4≤j≤d aj(x)uj

where the aj(x) are trigonometric cosine polynomials in x. The nonlinear equation utt − uxx + u3 = 0
possesses a continuum of small amplitude, analytic and non-degenerate periodic solutions in the form of
traveling waves u(t, x) = δp0(ωt + x) where ω2 = 1 + δ2 and p0 is a non-trivial 2π-periodic solution of
the ordinary differential equation p′′0 = −p3

0. With these properties at hand the small divisors problem
(i) is solved via a Nash-Moser Implicit function Theorem adapting the estimates of Craig-Wayne [12] for
non-resonant PDEs.

Recently, the existence of periodic solutions of (1) for frequencies ω in a set of positive measure has
been proved in [16] using the Lindstedt series method to solve the small divisor problem. [16] applies to
odd analytic nonlinearities like f(u) = au3 +O(u5) with a �= 0 (the term u3 guarantees a non-degeneracy
property). The reason for which f(u) is odd is that the solutions are obtained as analytic sine-series in
x, see remark 1.1.

2Actually [18] deals with the case of periodic boundary conditions in x, i.e. u(t, x + 2π) = u(t, x).
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We also quote the recent paper [17] on the standing wave problem for a perfect fluid under gravity
and with infinite depth which leads to a nonlinear and completely resonant second order equation.

In this paper we prove the existence of 2π/ω-periodic solutions of the completely resonant wave
equation (1) with Dirichlet boundary conditions for a set of frequencies ω’s with full density at ω = 1
and for a new set of nonlinearities f(x, u), including for example f(x, u) = u2.

We do not require that f(x, u) can be extended on (−π, π)×R to a function g(x, u), smooth w.r.t. u,
satisfying the oddness assumption g(−x,−u) = −g(x, u) and we assume only H1-regularity in the spatial
variable x, see assumption (H).

To deal with these cases we develop a new approach for the inversion of the linearized operators which
is different from the one of Craig-Wayne-Bourgain [12]-[7]-[8]. Our method -presented in section 4- is
quite elementary especially requiring that the frequencies ω satisfy the Diophantine first order Melnikov
non-resonance condition of Definition 3.3 with 1 < τ < 2, see comments regarding the (P )-equation in
subsection 1.2.2.

To handle the presence of an infinite dimensional bifurcation equation (and the connected problems
which arise in a direct application of the Craig-Wayne method, see subsection 1.2.2) we perform a further
finite dimensional Lyapunov-Schmidt reduction. Under the condition that the 0th-order bifurcation
equation possesses a non-degenerate solution we find periodic solutions of (1) for asymptotically full
measure sets of frequencies.

We postpone to subsection 1.2 a detailed description of our method of proof.

1.1 Main result

Normalizing the period to 2π, we look for solutions of{
ω2utt − uxx + f(x, u) = 0
u(t, 0) = u(t, π) = 0

(3)

in the Hilbert space

Xσ,s :=
{

u(t, x) =
∑
l∈Z

exp (ilt) ul(x)
∣∣∣ ul ∈ H1

0 ((0, π),R), ul(x) = u−l(x) ∀l ∈ Z,

and ‖u‖2
σ,s :=

∑
l∈Z

exp (2σ|l|)(l2s + 1)‖ul‖2
H1 < +∞

}
.

For σ > 0, s ≥ 0, the space Xσ,s is the space of all even, 2π-periodic in time functions with values
in H1

0 ((0, π),R), which have a bounded analytic extension in the complex strip |Im t| < σ with trace
function on |Im t| = σ belonging to Hs(T,H1

0 ((0, π),C)).
For 2s > 1, Xσ,s is a Banach algebra with respect to multiplication of functions, namely3

u1, u2 ∈ Xσ,s =⇒ u1u2 ∈ Xσ,s and ‖u1u2‖σ,s ≤ C‖u1‖σ,s‖u2‖σ,s.

It is natural to look for solutions of (3) which are even in time because equation (1) is reversible.
A weak solution u ∈ Xσ,s of (3) is a classical solution because the map x 
→ uxx(t, x) = ω2utt(t, x) −

f(x, u(t, x)) belongs to H1
0 (0, π) for all t ∈ T and hence u(t, ·) ∈ H3(0, π) ⊂ C2([0, π]).

Remark 1.1 Let us explain why we have chosen H1
0 ((0, π),R) as configuration space instead of Y :=

{u(x) =
∑

j≥1 uj sin(jx) | ∑
j exp (2aj)j2ρ|uj |2 < +∞} as in [12]-[16] which is natural if the nonlinearity

f(x, u) can be extended to an analytic in both variables odd function. For non odd nonlinearities f (even
analytic) it is not possible in general to find a non trivial, smooth solution of (1) with u(t, ·) ∈ Y for all
t. For example assume that f(x, u) = u2. Deriving twice the equation w.r.t. x and using that u(t, 0) = 0,
uxx(t, 0) = 0, uttxx(t, 0) = 0, we deduce −uxxxx(t, 0)+2u2

x(t, 0) = 0. Now uxxxx(t, 0) = 0, ∀t, because all
the even derivatives of any function in Y vanish at x = 0. Hence u2

x(t, 0) =0, ∀t. But this implies, using
again the equation, that ∂k

xu(t, 0) = 0, ∀k, ∀t. Hence, by the analyticity of u(t, ·) ∈ Y , u ≡ 0.
3The proof is as in [24] recalling that H1

0 ((0, π),R) is a Banach algebra with respect to multiplication of functions.
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The space of the solutions of the linear equation vtt − vxx = 0 that belong to H1
0 (T × (0, π),R) and

are even in time is

V :=
{

v(t, x) =
∑
l≥1

2 cos(lt)ul sin(lx)
∣∣∣ ul ∈ R ,

∑
l≥1

l2|ul|2 < +∞
}

.

V can also be written as

V :=
{

v(t, x) = η(t + x) − η(t − x)
∣∣∣ η ∈ H1(T,R) with η odd

}
.

We assume that the nonlinearity f satisfies

(H) f(x, u) =
∑

k≥p ak(x)uk, p ≥ 2, and ak(x) ∈ H1((0, π),R) verify
∑

k≥p ‖ak‖H1ρk < +∞ for some
ρ > 0.

Theorem 1.1 Assume that f(x, u) satisfies assumption (H) and

f(x, u) =

⎧⎨⎩
a2u

2 +
∑

k≥4 ak(x)uk a2 �= 0
or
a3(x)u3 +

∑
k≥4 ak(x)uk 〈a3〉 := (1/π)

∫ π

0
a3(x)dx �= 0.

Then, s > 1/2 being given, there exist δ0 > 0, σ > 0 and a C∞-curve [0, δ0) � δ → u(δ) ∈ Xσ/2,s with
the following properties:

• (i)
∥∥∥u(δ) − δv

∥∥∥
σ/2,s

= O(δ2) for some v ∈ V ∩ Xσ,s, v �= {0};

• (ii) There exists a Cantor set C ⊂ [0, δ0) of asymptotically full measure, i.e. satisfying

lim
η→0+

meas(C ∩ (0, η))
η

= 1 , (4)

such that, ∀ δ ∈ C, u(δ) is a 2π-periodic, even in time, classical solution of (3) with respectively

ω = ω(δ) =

⎧⎨⎩
√

1 − 2δ2

or√
1 + 2δ2sign〈a3〉.

As a consequence, ∀δ ∈ C, ũ(δ)(t, x) := u(δ)(ω(δ)t, x) is a 2π/ω(δ)-periodic, even in time, classical
solution of equation (1).

By (4) also the Cantor-like set {ω(δ) | δ ∈ C} has asymptotically full measure at ω = 1.

Remark 1.2 The same conclusions of Theorem 1.1 hold true also for f(x, u) = a4u
4 + O(u8) with

ω2 = 1 − 2δ6. This was recently proved in [4] as a further application of the techniques of the present
paper, see remark 1.5.

Theorem 1.1 is related to Theorem 1.2 stated in the next subsection.

Remark 1.3 Under the hypotheses of Theorem 1.1 we could also get multiplicity of periodic solutions
as a consequence of Theorem 1.2 and Lemmas 6.1 and 6.3. More precisely, there exist n0 ∈ N and a
Cantor-like set C of asymptotically full measure, such that ∀δ ∈ C, equation (1) has a 2π/(nω(δ))-periodic
solution un for any n0 ≤ n ≤ N(δ) with limδ→0 N(δ) = ∞ (un is in particular 2π/ω(δ)-periodic). This
can be seen as an analogue for (1) of the well known multiplicity results of Weinstein-Moser [27]-[22] and
Fadell-Rabinowitz [14] which hold in finite dimension. Multiplicity of solutions of (1) was also obtained
in [6], but only for the zero measure set of “strongly non-resonant” frequencies Wγ .
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1.2 The Lyapunov-Schmidt reduction

Instead of looking for solutions of (3) in a shrinking neighborhood of 0 it is a convenient devise to perform
the rescaling

u → δu , δ > 0

obtaining {
ω2utt − uxx + δp−1gδ(x, u) = 0
u(t, 0) = u(t, π) = 0

(5)

where

gδ(x, u) :=
f(x, δu)

δp
= ap(x)up + δap+1(x)up+1 + . . . .

To find solutions of (5) we try to implement the Lyapunov-Schmidt reduction according to the orthogonal
decomposition

Xσ,s = (V ∩ Xσ,s) ⊕ (W ∩ Xσ,s)

where

W :=
{

w =
∑
l∈Z

exp(ilt) wl(x) ∈ X0,s | w−l = wl and
∫ π

0

wl(x) sin(lx) dx = 0, ∀l ∈ Z
}

(6)

(the lth time-Fourier coefficient wl(x) must be orthogonal to sin(lx)).
Looking for solutions u = v + w with v ∈ V , w ∈ W , we are led to solve the bifurcation equation

(called the (Q)-equation) and the range equation (called the (P )-equation)⎧⎨⎩− (ω2 − 1)
2

∆v = δp−1ΠV gδ(x, v + w) (Q)

Lωw = δp−1ΠW gδ(x, v + w) (P )
(7)

where
∆v := vxx + vtt, Lω := −ω2∂tt + ∂xx

and ΠV : Xσ,s → V , ΠW : Xσ,s → W denote the projectors respectively on V and W .

1.2.1 The 0th order bifurcation equation

In order to find non-trivial solutions of (7) we impose a suitable relation between the frequency ω and
the amplitude δ (ω must tend to 1 as δ → 0).

The simplest situation occurs when

ΠV (ap(x)vp) �≡ 0 . (8)

Assumption (8) amounts to require that

∃v ∈ V such that
∫

Ω

ap(x)vp+1(t, x) dtdx �= 0, Ω := T × (0, π) (9)

which is verified iff ap(π − x) �≡ (−1)pap(x), see Lemma 7.1 in the Appendix.
When condition (8) (equivalently (9)) holds, we set the “frequency-amplitude” relation

ω2 − 1
2

= ε , |ε| := δp−1 ,

so that system (7) becomes{−∆v = ΠV g(δ, x, v + w) (Q)
Lωw = εΠW g(δ, x, v + w) (P ) (10)
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where

g(δ, x, u) := s∗gδ(x, u) = s∗
(
ap(x)up + δap+1(x)up+1 + . . .

)
and s∗ := sign(ε) .

When δ = 0 (and hence ε = 0), system (10) reduces to w = 0 and the “0th-order bifurcation equation”

−∆v = s∗ΠV (ap(x)vp) (11)

which is the Euler-Lagrange equation of the functional Φ0 : V → R

Φ0(v) =
‖v‖2

H1

2
− s∗

∫
Ω

ap(x)
vp+1

p + 1
dxdt (12)

where ‖v‖2
H1 :=

∫
Ω

v2
t + v2

x dx dt.
By the Mountain-pass theorem [1], taking

s∗ :=
{

1 i.e. ε > 0, ω > 1 , if ∃ v ∈ V such that
∫
Ω

ap(x)vp+1 > 0
−1 i.e. ε < 0, ω < 1 , if ∃ v ∈ V such that

∫
Ω

ap(x)vp+1 < 0 (13)

there exists at least one nontrivial critical point of Φ0, i.e. a solution of (11).
We shall say that a solution v ∈ V of equation (11) is non degenerate if 0 is the only solution of the

linearized equation at v, i.e. ker Φ′′
0(v) = {0}.

If condition (8) is violated (as for f(x, u) = a2u
2) the right hand side of equation (11) vanishes. In

this case the correct 0th-order non-trivial bifurcation equation will involve higher order nonlinear terms
and another “frequency-amplitude” relation is required, see subsection 1.2.3.

For the sake of clarity we shall develop all the details when the 0th order bifurcation equation is (11).
In subsection 6.2 we shall describe the changes for dealing with other cases.

We can also look for 2π/n-time-periodic solutions of the 0th order bifurcation equation (11) (they are
particular 2π-periodic solutions). Let

Vn :=
{

v ∈ V | v is 2π/n periodic in time
}

=
{

v(t, x) = η(nt + nx) − η(nt − nx) | η ∈ H1(T,R) with η odd
}

. (14)

If v ∈ Vn then ΠV (ap(x)vp) ∈ Vn, and the critical points of Φ0|Vn
are the solutions of equation (11) which

are 2π/n periodic. Also Φ0|Vn
possesses a Mountain pass critical point for any n, see [6].

We shall say that a solution v ∈ Vn of (11) is non degenerate in Vn if 0 is the only solution in Vn of
the linearized equation at v, i.e. ker Φ′′

0|Vn
(v) = {0}.

Theorem 1.2 Let f satisfy (8) and (H). Assume that v ∈ Vn is a non trivial solution of the 0th order
bifurcation equation (11) which is non degenerate in Vn.

Then the conclusions of Theorem 1.1 hold with ω = ω(δ) =
√

1 + 2s∗δp−1.

1.2.2 About the proof of Theorem 1.2

Sections 2-5 are devoted to the proof of Theorem 1.2. Without genuine loss of generality, the proof is
carried out for n = 1, and we shall explain why it works for n > 1 as well at the end of section 5.

The natural way to deal with (10) is to solve first the (P )-equation (for example through a Nash-
Moser procedure) and then to insert the solution w(δ, v) in the (Q)-equation. However, since here V is
infinite dimensional a serious difficulty arises: if v ∈ V ∩ Xσ0,s then the solution w(δ, v) of the range
equation, obtained with any Nash-Moser iteration scheme will have a lower regularity, e.g. w(δ, v) ∈
Xσ0/2,s. Therefore in solving next the bifurcation equation for v ∈ V , the best estimate we can obtain is
v ∈ V ∩ Xσ0/2,s+2, which makes the scheme incoherent. Moreover we have to ensure that the 0th-order
bifurcation equation (11) has solutions v ∈ V which are analytic, a necessary property to initiate an
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analytic Nash-Moser scheme (in [12]-[13] these problems do not arise since the bifurcation equation is
finite dimensional).

We overcome these difficulties thanks to a reduction to a finite dimensional bifurcation equation on
a subspace of V of dimension N independent of ω. This reduction can be implemented, in spite of the
complete resonance of equation (1), thanks to the compactness of the operator (−∆)−1.

We introduce the decomposition V = V1 ⊕ V2 where⎧⎨⎩ V1 :=
{

v ∈ V | v(t, x) =
∑N

l=1 2 cos(lt)ul sin(lx) , ul ∈ R
}

V2 :=
{

v ∈ V | v(t, x) =
∑

l≥N+1 2 cos(lt)ul sin(lx) , ul ∈ R
}

.

Setting v := v1 + v2, with v1 ∈ V1, v2 ∈ V2, system (10) is equivalent to⎧⎨⎩
−∆v1 = ΠV1g(δ, x, v1 + v2 + w) (Q1)
−∆v2 = ΠV2g(δ, x, v1 + v2 + w) (Q2)
Lωw = εΠW g(δ, x, v1 + v2 + w) (P )

(15)

where ΠVi : Xσ,s → Vi (i = 1, 2), denote the orthogonal projectors on Vi (i = 1, 2).
Our strategy to find solutions of system (15) - and hence to prove Theorem 1.2- is the following.

Solution of the (Q2) equation. We solve first the (Q2)-equation obtaining v2 = v2(δ, v1, w) ∈ V2 ∩
Xσ,s+2 when w ∈ W ∩ Xσ,s, by the Contraction Mapping Theorem provided we have chosen N large
enough and 0 < σ ≤ σ small enough, depending on the nonlinearity f but independent of δ, see section
2.
Solution of the (P ) equation. Next we solve the (P )-equation, obtaining w = w(δ, v1) ∈ W ∩ Xσ/2,s

by means of a Nash-Moser type Implicit Function Theorem for (δ, v1) belonging to some Cantor-like set
B∞ of parameters, see Theorem 3.1 in section 3.

Our approach for the inversion of the linearized operators at any step of the Nash-Moser iteration
is different from the Craig-Wayne-Bourgain method. We develop u(t, ·) ∈ H1

0 ((0, π),R) in time-Fourier
expansion only and we distinguish the “diagonal part” D = diag{Dk}k∈Z of the operator that we want to
invert. Next, using Sturm-Liouville theory (see Lemma 4.1), we diagonalize each Dk in a suitable basis of
H1

0 ((0, π),R) (close to, but different from (sin jx)j≥1). Assuming a “first order Melnikov non resonance
condition” (Definition 3.3) we prove that its eigenvalues are polynomially bounded away from 0 and so
we invert D with sufficiently good estimates (Corollary 4.2). The presence of the “off-diagonal” Toepliz
operators requires to analyze the “small divisors”: for our method it is sufficient to prove that the product
of two “small divisors” is larger than a constant if the corresponding “singular sites” are close enough,
see Lemma 4.5. This holds true if the Diophantine exponent τ ∈ (1, 2) by the lower bound of Lemma 4.3.
Moreover, for τ ∈ (1, 2) the non-resonance Diophantine conditions are particularly simple, see Definition
3.3 and the Cantor set B∞ in Theorem 3.1. This restriction for the values of the exponent τ simplifies
also the proof of Lemma 4.9 where the loss of derivatives due to the small divisors is compensated by the
regularizing property of the map v2.
Solution of the (Q1)-equation. Finally, in section 5 we consider the finite dimensional (Q1)-equation.

We could define a smooth functional Ψ : [0, δ0)×V1 → R such that any critical point v1 ∈ V1 of Ψ(δ, ·)
with (δ, v1) ∈ B∞ (≡ the Cantor-like set of parameters for which the (P )-equation is solved exactly) gives
rise to an exact solution of (3), see [5]. Moreover it would be possible to prove the existence of a critical
point v1(δ) of Ψ(δ, ·), ∀δ > 0 small enough, using the Mountain pass theorem [1].

However, since the section Eδ := {v1 | (δ, v1) ∈ B∞} has “gaps” (except for δ in a zero measure set,
see remark 1.4), the difficulty is to prove that (δ, v1(δ)) ∈ B∞ for a large set of δ’s. Although B∞ is in
some sense a “large” set, this property is not obvious. In this paper, we prove that it holds at least if the
path (δ 
→ v1(δ)) is C1 (Proposition 3.2) and so intersects “transversally” the Cantor set B∞.

This is why we require in Theorem 1.2 non-degenerate solutions of the 0th-order bifurcation equation
(11). This condition enables to use the Implicit function theorem, yielding a smooth path (δ → v1(δ)) of
solutions of the (Q1)-equation.
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Remark 1.4 The section Eδ has “no gaps” iff the frequency ω(δ) =
√

1 + 2s∗δp−1 belongs to the un-
countable zero-measure set Wγ := {|ωl − j| ≥ γ/l, ∀j �= l, l ≥ 0, j ≥ 1} of [2]. This explains why in
[5]-[6] we had been able to prove the existence of periodic solutions for any nonlinearity f , solving the
bifurcation equation with variational methods.

We lay the stress on the fact that the parts on the (Q2) and (P )-equations do not use the non-
degeneracy condition. We hope that we will be able to improve our results relaxing the non-degeneracy
condition in a subsequent work, using the variational formulation of the (Q1) equation and results on
properties of critical sets for parameter depending functionals.

1.2.3 About the proof of Theorem 1.1

To deduce Theorem 1.1 when f(x, u) = a3(x)u3 + O(u4) and 〈a3〉 �= 0 we just have to prove that the 0th
order bifurcation equation4

−∆v = s∗ΠV (a3(x)v3) (16)

possesses, at least for n large, a non-degenerate solution in Vn. Choosing s∗ ∈ {−1, 1} so that s∗〈a3〉 > 0
this is proved in Lemma 6.1.

In the case f(x, u) = a2u
2 + O(u4), condition (8) is violated because ΠV v2 ≡ 0, and we have to use a

development in δ of higher order, as in [5]. Imposing in (7) the frequency-amplitude relation

ω2 − 1
2

= −δ2 (17)

the correct 0th-order bifurcation equation turns out to be (see subsection 6.2)

−∆v + 2a2
2ΠV (vL−1(v2)) = 0 (18)

where L−1 : W → W is the inverse operator of −∂tt + ∂xx. (18) is the Euler-Lagrange equation of

Φ0(v) =
‖v‖2

H1

2
+

a2
2

2

∫
Ω

v2L−1v2 (19)

which again possesses Mountain pass critical points because
∫
Ω

v2L−1v2 < 0, ∀v ∈ V , see [5].
The existence of a non-degenerate critical point of (Φ0)|Vn

for n large enough is proved in Lemma 6.3.
This implies, as in Theorem 1.2, the conclusions of Theorem 1.1.

Remark 1.5 Also when f(x, u) = a4u
4 + O(u8) condition (8) is violated because ΠV v4 ≡ 0. Imposing

the frequency-amplitude relation ω2 − 1 = −2δ6, the correct 0th-order bifurcation equation turns out to be

−∆v + 4a2
4ΠV (v3L−1(v4)) = 0 . (20)

The existence of a solution of (20) which is non-degenerate in Vn for n large enough is proved in [4] .
This implies the conclusions of Theorem 1.1.

Acknowledgments: Part of this paper was written when the second author was visiting SISSA in
Trieste.

2 Solution of the (Q2)-equation

The main assumption of Theorem 1.2 says that at least one of the critical points of Φ0 defined in (12) or
of the restriction of Φ0 to some Vn, called v, is non-degenerate. For definiteness, we shall assume that v
is non-degenerate in the whole space V .

4Note that 〈a3〉 �= 0 implies condition (9) because a3(π − x) �≡ −a3(x) and so ΠV (a3(x)v3) �≡ 0.
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By the regularizing property

(−∆)−1 : V ∩ Hk(Ω) → V ∩ Hk+2(Ω) , ∀k ≥ 0 ,

and a direct bootstrap argument, v ∈ Hk(Ω) ∀k ≥ 0. Therefore5 v ∈ V ∩ C∞(Ω).
In the sequel of the paper s > 1/2 is fixed once for all. We also fix some R > 0 such that

‖v‖0,s < R . (21)

By the analyticity assumption (H) on the nonlinearity f and the Banach algebra property of Xσ,s,
there is a constant K0 > 0 such that∥∥∥g(δ, x, u)

∥∥∥
σ,s

=
∥∥∥ ∑

k≥p

ak(x)δk−puk
∥∥∥

σ,s
≤

∑
k≥p

‖ak‖H1δk−pKk−1
0 ‖u‖k

σ,s

≤ C‖u‖p
σ,s

∑
k≥p

‖ak‖H1(δK0‖u‖σ,s)k−p ≤ C ′‖u‖p
σ,s (22)

in the open domain Uδ := {u ∈ Xσ,s | δK0 ‖u‖σ,s < ρ} because the power series
∑

k≥p ‖ak‖H1ρk−p < +∞
by (H). The Nemitsky operator

Xσ,s � u → g(δ, x, u) ∈ Xσ,s is in C∞(Uδ, Xσ,s) .

We specify that all the norms ‖ ‖σ,s are equivalent on V1. In the sequel

B(ρ, V1) := {v1 ∈ V1 | ‖v1‖0,s ≤ ρ}.

The fact that v ∈ V ∩ Xσ,s for some σ > 0 is a consequence of the following Lemma.

Lemma 2.1 (Solution of the (Q2)-equation) There exists N ∈ N+, σ := ln 2/N > 0, δ0 > 0 such
that:

a) ∀0 ≤ σ ≤ σ, ∀‖v1‖0,s ≤ 2R, ∀‖w‖σ,s ≤ 1, ∀δ ∈ [0, δ0), there exists a unique v2 = v2(δ, v1, w) ∈
V2 ∩ Xσ,s with ‖v2(δ, v1, w)‖σ,s ≤ 1 which solves the (Q2)-equation.

b) v2(0, ΠV1v, 0) = ΠV2v.
c) v2(δ, v1, w) ∈ Xσ,s+2, the function6 v2(·, ·, ·) ∈ C∞

(
[0, δ0)×B(2R; V1)×B(1; W∩Xσ,s), V2∩Xσ,s+2

)
and Dkv2 is bounded on [0, δ0) × B(2R; V1) × B(1; W ∩ Xσ,s) for any k ∈ N.

d) If in addition ‖w‖σ,s′ < +∞ for some s′ ≥ s, then (provided δ0 has been chosen small enough)
‖v2(δ, v1, w)‖σ,s′+2 ≤ K(s′, ‖w‖σ,s′).

Proof. Fixed points of the nonlinear operator N (δ, v1, w, ·) : V2 → V2 defined by

N (δ, v1, w, v2) := (−∆)−1ΠV2g(δ, x, v1 + w + v2)

are solutions of equation (Q2). For w ∈ W ∩ Xσ,s, v2 ∈ V2 ∩ Xσ,s we have N (δ, v1, w, v2) ∈ V2 ∩ Xσ,s+2

since g(δ, x, v1 + w + v2) ∈ Xσ,s and because of the regularizing property of the operator (−∆)−1ΠV2 :
Xσ,s → V2 ∩ Xσ,s+2.
Proof of a). Let B := {v2 ∈ V2 ∩ Xσ,s | ‖v2‖σ,s ≤ 1}. We claim that there exists N ∈ N, σ > 0 and
δ0 > 0, such that ∀0 ≤ σ ≤ σ, ‖v1‖0,s ≤ 2R, ‖w‖σ,s ≤ 1, δ ∈ [0, δ0) the operator v2 → N (δ, v1, w, v2) is a
contraction in B, more precisely

• (i) ‖v2‖σ,s ≤ 1 ⇒ ‖N (δ, v1, w, v2)‖σ,s ≤ 1;

• (ii) v2, ṽ2 ∈ B ⇒ ‖N (δ, v1, w, v2) −N (δ, v1, w, ṽ2)‖σ,s ≤ (1/2)‖v2 − ṽ2‖σ,s.

5Even if ap(x) ∈ H1((0, π),R) only, because the projection ΠV has a regularizing effect in the variable x.
6“l ∈ C∞(A, Y )” means, if A is not open, that there is an open neighborhood U of A and an extension l̃ ∈ C∞(U, Y ) of

l.
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Let us prove (i). ∀u ∈ Xσ,s, ‖(−∆)−1ΠV2u‖σ,s ≤ (C/(N + 1)2)‖u‖σ,s and so, ∀‖w‖σ,s ≤ 1, ‖v1‖0,s ≤ 2R,
δ ∈ [0, δ0), using (22),

‖N (δ, v1, w, v2)‖σ,s ≤ C

(N + 1)2

∥∥∥g(δ, x, v1 + v2 + w)
∥∥∥

σ,s
≤ C ′

(N + 1)2
(
‖v1‖p

σ,s + ‖v2‖p
σ,s + ‖w‖p

σ,s

)
≤ C ′

(N + 1)2
(

exp (σpN)‖v1‖p
0,s + ‖v2‖p

σ,s + 1
)
≤ C ′

(N + 1)2
(
(4R)p + ‖v2‖p

σ,s + 1
)

for exp (σN) ≤ 2, where we have used that ‖v1‖σ,s ≤ exp (σN)‖v1‖0,s ≤ 4R.
For N large enough (depending on R) we get

‖v2‖σ,s ≤ 1 ⇒
∥∥∥N (δ, v1, w, v2)

∥∥∥
σ,s

≤ C ′

(N + 1)2
(
(4R)p + 1 + 1

)
≤ 1

and (i) follows, taking σ := ln 2/N . Property (ii) can be proved similarly and the existence of a unique
solution v2(δ, v1, w) ∈ B follows by the Contraction Mapping Theorem.
Proof of b). We may assume that N has been chosen so large that ‖ΠV2v‖0,s ≤ 1/2. Since v solves
equation (11), ΠV2v solves the (Q2)-equation associated with (δ, v1, w) = (0, ΠV1v, 0). Since ΠV2v =
N (0, ΠV1v, 0, ΠV2v) and ΠV2v ∈ B, we deduce ΠV2v = v2(0, ΠV1v, 0).
Proof of c). As a consequence of (ii) the linear operator I − Dv2N is invertible at the fixed point
of N (δ, v1, w, ·). Since the map (δ, v1, w, v2) 
→ N (δ, v1, w, v2) is C∞, by the Implicit function Theorem
v2 : {(δ, v1, w) | δ ∈ [0, δ0), ‖v1‖0,s ≤ 2R, ‖w‖σ,s ≤ 1} → V2∩Xσ,s is a C∞ map. Hence, since (−∆)−1ΠV2

is a continuous linear operator from Xσ,s to V2 ∩ Xσ,s+2 and

v2(δ, v1, w) = (−∆)−1ΠV2

(
g(δ, x, v1 + w + v2(δ, v1, w)

)
, (23)

by the regularity of the Nemitsky operator induced by g, v2(·, ·, ·) ∈ C∞([0, δ0) × B(2R; V1) × B(1; W ∩
Xσ,s), V2 ∩ Xσ,s+2). The estimates for the derivatives can be obtained similarly.
Proof of d). Let us firstly prove the following : if δ‖u‖σ,s is small enough then

u ∈ Xσ,r ⇒ g(δ, x, u) ∈ Xσ,r, ∀r ≥ s . (24)

We first observe that, since r ≥ s > 1/2, for u, v ∈ Hr(R/2πZ), we have ‖uv‖Hr ≤ Cr(‖u‖∞‖v‖Hr +
‖v‖∞‖u‖Hr ). This is a consequence of the Gagliardo-Nirenberg inequalities. Hence there is a positive
constant Kr such that

‖ul‖Hr ≤ Kl−1
r ‖u‖l−1

∞ ‖u‖Hr ≤ Kl−1
r ‖u‖l−1

Hs ‖u‖Hr , ∀u ∈ Hr(R/2πZ) ,∀l ≥ 1 .

Considering the extension of a function u ∈ Xσ,r to the complex strip of width σ and using that H1
0 (0, π)

is a Banach algebra, we can derive that ∀r ≥ s, ‖ul‖σ,r ≤ Kl−1
r ‖u‖l−1

σ,s ‖u‖σ,r. Therefore∥∥∥g(δ, x, u)
∥∥∥

σ,r
=

∥∥∥ ∑
k≥p

ak(x)δk−puk
∥∥∥

σ,r
≤ ‖u‖p

σ,r

∑
k≥p

‖ak‖H1

∥∥∥(δu)k−p
∥∥∥

σ,r

≤ ‖u‖p
σ,r

[
‖ap‖H1 +

∑
k>p

‖ak‖H1Ck−p
(
δ‖u‖σ,s

)k−p−1

(δ‖u‖σ,r)
]

< +∞

for δ‖u‖σ,s small enough.
Now, assume that ‖w‖σ,s′ < +∞ for some s′ ≥ s. Since v2(δ, v1, w) ∈ Xσ,s solves equation (23), by a

direct bootstrap argument using the regularizing properties of (−∆)−1ΠV2 : Xσ,r → V2∩Xσ,r+2 and that
‖v1‖σ,r < +∞, ∀r ≥ s, we derive that v2(δ, v1, w) ∈ Xσ,s′+2 and ‖v2(δ, v1, w)‖σ,s′+2 ≤ K(s′, ‖w‖σ,s′).

Remark 2.1 Lemma 2.1 implies, in particular, that the solution v of the 0th-order bifurcation equation
(11) is not only in V ∩C∞(Ω) but actually belongs to V ∩Xσ,s+2 and therefore is analytic in t and hence
in x.

We stress that we shall consider as fixed the constants N and σ obtained in Lemma 2.1, which depend
only on the nonlinearity f and on v. On the contrary, we shall allow δ0 to decrease in the next sections.
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3 Solution of the (P )-equation

By the previous section we are reduced to solve the (P )-equation with v2 = v2(δ, v1, w), namely

Lωw = εΠW Γ(δ, v1, w) (25)

where
Γ(δ, v1, w)(t, x) := g

(
δ, x, v1(t, x) + w(t, x) + v2(δ, v1, w)(t, x)

)
. (26)

The solution w = w(δ, v1) of the (P )-equation (25) will be obtained by means of a Nash-Moser Implicit
Function Theorem for (δ, v1) belonging to a Cantor-like set of parameters.

We consider the orthogonal splitting W = W (n) ⊕ W (n)⊥ where

W (n) =
{

w ∈ W
∣∣∣ w =

∑
|l|≤Ln

exp (ilt) wl(x)
}

, W (n)⊥ =
{

w ∈ W
∣∣∣ w =

∑
|l|>Ln

exp (ilt) wl(x)
}

(27)

and Ln are integer numbers (we will choose Ln = L02n with L0 ∈ N large enough). We denote by

Pn : W → W (n) and P⊥
n : W → W (n)⊥

the orthogonal projectors onto W (n) and W (n)⊥.
The convergence of the recursive scheme is based on properties (P1)-(P2)-(P3) below.

• (P1) (Regularity) Γ(·, ·, ·, ) ∈ C∞
(
[0, δ0)×B(2R; V1)×B(1; W ∩Xσ,s), Xσ,s

)
. Moreover, DkΓ is

bounded on [0, δ0) × B(2R, V1) × B(1;W ∩ Xσ,s) for any k ∈ N.

(P1) is a consequence of the C∞-regularity of the Nemitsky operator induced by g(δ, x, u) on Xσ,s

and of the C∞-regularity of the map v2(·, ·, ·) proved in Lemma 2.1.

• (P2) (Smoothing estimate) ∀ w ∈ W (n)⊥∩Xσ,s and ∀ 0 ≤ σ′ ≤ σ, ‖w‖σ′,s ≤ exp(−Ln(σ−σ′)) ‖w‖σ,s.

The standard property (P2) follows from

‖w‖2
σ′,s =

∑
|l|>Ln

exp (2σ′|l|)(l2s + 1)‖wl‖2
H1 =

∑
|l|>Ln

exp (−2(σ − σ′)|l|) exp (2σ|l|)(l2s + 1)‖wl‖2
H1

≤ exp (−2(σ − σ′)Ln)‖w‖2
σ,s .

The next property (P3) is an invertibility property of the linearized operator Ln(δ, v1, w) : D(Ln) ⊂
W (n) → W (n) defined by

Ln(δ, v1, w)[h] := Lωh − εPnΠW DwΓ(δ, v1, w)[h] . (28)

Throughout the proof, w will be the approximate solution obtained at a given step of the Nash-Moser
iteration.

The invertibility of Ln(δ, v1, w) is obtained excising the set of parameters (δ, v1) for which 0 is an
eigenvalue of Ln(δ, v1, w). Moreover, in order to have bounds for the norm of the inverse operator
L−1

n (δ, v1, w) which are sufficiently good for the recursive scheme, we also excise the parameters (δ, v1)
for which the eigenvalues of Ln(δ, v1, w) are too small.
We prefix some definitions.

Definition 3.1 (Mean value) For Ω := T × (0, π) we define

M(δ, v1, w) :=
1
|Ω|

∫
Ω

∂ug
(
δ, x, v1(t, x) + w(t, x) + v2(δ, v1, w)(t, x)

)
dxdt.

Note that M(·, ·, ·) : [0, δ0) × B(2R; V1) × B(1; W ∩ Xσ,s) → R is a C∞-function.

12



Definition 3.2 We define for 1 < τ < 2

[w]σ,s := inf
{ q∑

i=0

‖hi‖σi,s

(σi − σ)
2(τ−1)

β

; ∀q ≥ 1, σ ≥ σi > σ, hi ∈ W (i), w =
q∑

i=0

hi

}
where β := 2−τ

τ and we set [w]σ,s := ∞ if the above set is empty.

Definition 3.3 (First order Melnikov non-resonance condition) Let 0 < γ < 1 and 1 < τ < 2.
We define (recall that ω =

√
1 + 2s∗δp−1 and ε = s∗δp−1)

∆γ,τ
n (v1, w) :=

{
δ ∈ [0, δ0)

∣∣∣ |ωl − j| ≥ γ

(l + j)τ
,

∣∣∣ωl − j − ε
M(δ, v1, w)

2j

∣∣∣ ≥ γ

(l + j)τ

∀l ∈ N, j ≥ 1, l �= j,
1

3|ε| < l, l ≤ Ln, j ≤ 2Ln

}
.

The set ∆γ,τ
n (v1, w) contains a whole interval [0, ηn) for some ηn > 0 small enough (note that

∆γ,τ
n (v1, w) is defined by a finite set of inequalities).

Remark 3.1 The intersections of the sets ∆γ,τ
n (v1, w) over all possible (v1, w) in a neighborhood of 0

and over all n contains, for |ε|γ−1 small, the zero measure, uncountable set Wγ := {ω ∈ R| |ωl − j| ≥
γ/l, ∀l �= j, l ≥ 0, j ≥ 1}, 0 < γ < 1/6 introduced in [2]. See remark 1.4 for consequences on the
existence of periodic solutions.

We claim that:

• (P3) (Invertibility of Ln) There exist positive constants µ, δ0 such that, if [w]σ,s ≤ µ, ‖v1‖0,s ≤
2R and δ ∈ ∆γ,τ

n (v1, w) ∩ [0, δ0) for some 0 < γ < 1, 1 < τ < 2, then Ln(δ, v1, w) is invertible and
the inverse operator L−1

n (δ, v1, w) : W (n) → W (n) satisfies∥∥∥L−1
n (δ, v1, w)[h]

∥∥∥
σ,s

≤ C

γ
(Ln)τ−1‖h‖σ,s (29)

for some positive constant C > 0.

Property (P3) is the real core of the convergence proof and where the analysis of the small divisors
enters into play. Property (P3) is proved in section 4.

3.1 The Nash-Moser scheme

We are going to define recursively a sequence {wn}n≥0 with wn = wn(δ, v1) ∈ W (n), defined on smaller
and smaller sets of “non-resonant” parameters (δ, v1), An ⊆ An−1 ⊆ . . . ⊆ A1 ⊆ A0 := {(δ, v1) | δ ∈
[0, δ0), ‖v1‖0,s ≤ 2R}. The sequence (wn(δ, v1)) will converge to a solution w(δ, v1) of the (P )-equation
(25) for (δ, v1) ∈ A∞ := ∩n≥1An. The main goal of the construction is to show that, at the end of
the recurrence, the set of parameters A∞ := ∩n≥1An for which we have the solution w(δ, v1) remains
sufficiently large.

We define inductively the sequence {wn}n≥0. Define the “loss of analyticity” γn by

γn :=
γ0

n2 + 1
, σ0 = σ , σn+1 = σn − γn , ∀ n ≥ 0 ,

where we choose γ0 > 0 small such that the “total loss of analyticity”∑
n≥0

γn =
∑
n≥0

γ0

(n2 + 1)
≤ σ

2
, i.e. σn ≥ σ

2
> 0 , ∀n .

We also assume
Ln := L02n, ∀ n ≥ 0 ,

for some large integer L0 specified in the next Proposition.
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Proposition 3.1 (Induction) Let A0 := {(δ, v1) | δ ∈ [0, δ0), ‖v1‖0,s ≤ 2R}. ∃ L0 := L0(γ, τ) > 0,
ε0 := ε0(γ, τ) > 0, such that for δp−1

0 γ−1 < ε0, there exists a sequence {wn}n≥0, wn = wn(δ, v1) ∈ W (n),
of solutions of the equation

(Pn) Lωwn − εPnΠW Γ(δ, v1, wn) = 0 ,

defined inductively for (δ, v1) ∈ An ⊆ An−1 ⊆ . . . ⊆ A1 ⊆ A0 where

An :=
{

(δ, v1) ∈ An−1 | δ ∈ ∆γ,τ
n (v1, wn−1)

}
⊆ An−1 , (30)

wn(δ, v1) =
∑n

i=0 hi(δ, v1), and hi = hi(δ, v1) ∈ W (i) satisfy ‖h0‖σ0,s ≤ |ε|K0, ‖hi‖σi,s ≤ |ε|γ−1 exp (−χi)
∀1 ≤ i ≤ n for some 1 < χ < 2 and some constant K0 > 0.

We define
A∞ := ∩n≥0An .

Remark 3.2 For a given (δ, v1), the sequence (wn) may be finite because the iterative process stops after
wk−1 if δ /∈ ∆γ,τ

k (v1, wk−1), i.e. if (δ, v1) �∈ Ak. However, from this possibly finite sequences, we shall
define a C∞ map w̃(δ, v1) on the whole set A0 (Lemma 3.3) and Cantor-like set B∞, such that B∞ ⊂ A∞
and ∀(δ, v1) ∈ B∞, w̃(δ, v1) is an exact solution of the (P )-equation. It will be justified in Proposition 3.2
that B∞ is a “large” set. As a consequence also A∞ is “large”.

Proof. The proof proceeds by induction.

First step: initialization. Let L0 be given. If |ω − 1|L0 ≤ 1/2 then Lω|W (0) is invertible and
‖L−1

ω h‖σ0,s ≤ 2‖h‖σ0,s, ∀h ∈ W (0). Indeed the eigenvalues of Lω|W (0) are −ω2l2 + j2, ∀ 0 ≤ l ≤ L0,
j ≥ 1, j �= l, and

| − ω2l2 + j2| = | − ωl + j|(ωl + j) ≥
(
|j − l| − |ω − 1|L0

)
(ωl + j) ≥

(
1 − 1

2

)
.

By the Implicit function theorem, using Property (P1), there exist K0 > 0, ε1 := ε1(γ, L0) > 0 such that
if |ε|γ−1 < ε1 and ∀v1 ∈ B(2R, V1), equation (P0) has a unique solution w0(δ, v1) satisfying

‖w0(δ, v1)‖σ0,s ≤ K0|ε| .
Moreover, for δp−1

0 γ−1 < ε1, the map (δ, v1) 
→ w0(δ, v1) is in C∞(A0,W
(0)) and ‖Dkw0(δ, v1)‖σ0,s ≤

C(k).

Second step: iteration. Fix some χ ∈ (1, 2). Let ε2 := ε2(L0, γ, τ) ∈ (0, ε1(γ, L0)) be small enough
such that

ε2 max(1, eK0γ)
∑
i≥0

exp (−χi)
(1 + i2

γ0

) 2(τ−1)
β

< µ (31)

where µ is defined in property (P3) and β := (2 − τ)/τ .
Suppose we have already defined a solution wn = wn(δ, v1) ∈ W (n) of equation (Pn) satisfying the

properties stated in the Proposition. We want to define

wn+1 = wn+1(δ, v1) := wn(δ, v1) + hn+1(δ, v1), hn+1(δ, v1) ∈ W (n+1)

as an exact solution of the equation

(Pn+1) Lωwn+1 − εPn+1ΠW Γ(δ, v1, wn+1) = 0 .

In order to find a solution wn+1 = wn + hn+1 of equation (Pn+1) we write, for h ∈ W (n+1),

Lω(wn + h) − εPn+1ΠW Γ(δ, v1, wn + h) = Lωwn − εPn+1ΠW Γ(δ, v1, wn)
+ Lωh − εPn+1ΠW DwΓ(δ, v1, wn)[h] + R(h)
= rn + Ln+1(δ, v1, wn)[h] + R(h) (32)
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where, since wn solves equation (Pn),{
rn := Lωwn − εPn+1ΠW Γ(δ, v1, wn) = −εP⊥

n Pn+1ΠW Γ(δ, v1, wn) ∈ W (n+1)

R(h) := −εPn+1ΠW

(
Γ(δ, v1, wn + h) − Γ(δ, v1, wn) − DwΓ(δ, v1, wn)[h]

)
.

The term rn is “super-exponentially” small because, using properties (P2) and (P1),

‖rn‖σn+1,s ≤ |ε| C exp (−Lnγn)
∥∥∥Pn+1ΠW Γ(δ, v1, wn)

∥∥∥
σn,s

≤ |ε| C ′ exp (−Lnγn)
∥∥∥Γ(δ, v1, wn)

∥∥∥
σn,s

≤ |ε| C ′′ exp (−Lnγn) (33)

being ‖wn‖σn,s bounded independently of n since, by the induction hypothesis,

‖wn‖σn,s ≤
n∑

i=0

‖hi‖σi,s ≤ max(1, eK0γ)|ε|γ−1
∞∑

i=0

exp (−χi) , (34)

with h0 := w0. The term R(h) is “quadratic” in h, since, by property (P1) and (34),{ ‖R(h)‖σn+1,s ≤ C|ε| ‖h‖2
σn+1,s

‖R(h) − R(h′)‖σn+1,s ≤ C|ε| (‖h‖σn+1,s + ‖h′‖σn+1,s) ‖h − h′‖σn+1,s
(35)

for all h, h′ ∈ W (n+1) with ‖h‖σn+1,s, ‖h′‖σn+1,s small enough.
Since wn =

∑n
i=0 hi with ‖hi‖σi,s ≤ max(1, eK0γ)|ε|γ−1 exp (−χi), and σi−σn+1 ≥ γi := γ0/(1+i2),

∀i = 0, . . . , n

[wn]σn+1,s ≤
n∑

i=0

‖hi‖σi,s

(σi − σn+1)
2(τ−1)

β

≤ max(1, eK0γ)
|ε|
γ

∑
i≥0

exp (−χi)
(1 + i2

γ0

) 2(τ−1)
β

< µ

for |ε|γ−1 ≤ ε2 and by (31).
Hence, by property (P3), the linear operator Ln+1(δ, v1, wn) : D(Ln+1) ⊂ W (n+1) → W (n+1) is

invertible for (δ, v1) restricted to the set of parameters

An+1 :=
{

(δ, v1) ∈ An | δ ∈ ∆γ,τ
n+1(v1, wn)

}
⊆ An , (36)

and the inverse operator satisfies∥∥∥Ln+1(δ, v1, wn)−1
∥∥∥

σn+1,s
≤ C

γ
(Ln+1)τ−1, ∀(δ, v1) ∈ An+1 . (37)

By (32), equation (Pn+1) for wn+1 = wn + h is equivalent to find h ∈ W (n+1) solving

h = −Ln+1(δ, v1, wn)−1
(
rn + R(h)

)
,

namely to look for a fixed point

h = G(δ, v1, wn, h) , h ∈ W (n+1) , (38)

of the nonlinear operator

G(δ, v1, wn, ·) : W (n+1) → W (n+1) , G(δ, v1, wn, h) := −Ln+1(δ, v1, wn)−1
(
rn + R(h)

)
.

To complete the proof of the Proposition we need the following Lemma.

Lemma 3.1 (Contraction) There exist L0(γ, τ) > 0, ε0(L0, γ, τ), such that, ∀|ε|γ−1 < ε0, the operator
G(δ, v1, wn, ·) is, for any n ≥ 0, a contraction in the ball

B(ρn+1; W (n+1)) :=
{

h ∈ W (n+1) | ‖h‖σn+1,s ≤ ρn+1 :=
|ε|
γ

exp (−χn+1)
}

.
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Proof. We first prove that G(δ, v1, wn, ·) maps the ball B(ρn+1; W (n+1)) into itself.
By (37), (33) and (35),∥∥∥G(δ, v1, wn, h)

∥∥∥
σn+1,s

=
∥∥∥Ln+1(δ, v1, wn)−1

(
rn + R(h)

)∥∥∥
σn+1,s

≤ C

γ
(Ln+1)τ−1

(
‖rn‖σn+1,s + ‖R(h)‖σn+1,s

)
≤ C ′

γ
(Ln+1)τ−1

(
|ε| exp (−Lnγn) + |ε| ‖h‖2

σn+1,s

)
. (39)

By (39), if ‖h‖σn+1,s ≤ ρn+1 then∥∥∥G(δ, v1, wn, h)
∥∥∥

σn+1,s
≤ C ′

γ
(Ln+1)τ−1|ε|

(
exp (−Lnγn) + ρ2

n+1

)
≤ ρn+1

provided that

C ′ |ε|
γ

(Ln+1)τ−1 exp (−Lnγn) ≤ ρn+1

2
and C ′ |ε|

γ
(Ln+1)τ−1ρn+1 ≤ 1

2
. (40)

The first inequality in (40) becomes, for ρn+1 := |ε|γ−1 exp (−χn+1),

C ′(Ln+1)τ−1 exp (−Lnγn) ≤ 1
2

exp (−χn+1)

which, for Ln := L02n, γn := γ0/(1 + n2) and L0 := L0(γ, τ) > 0 large enough, is satisfied ∀n ≥ 0.
Next, the second inequality in (40) becomes

C ′ |ε|2
γ2

(
L0(γ, τ)2n+1

)τ−1

exp (−χn+1) ≤ 1
2

which is satisfied for |ε|γ−1 ≤ ε0(L0, γ, τ) (≤ ε2) small enough, ∀n ≥ 0.
With similar estimates, using (35), we can prove that ∀h, h′ ∈ B(ρn+1; W (n+1)),∥∥∥G(δ, v1, wn, h′) − G(δ, v1, wn, h)

∥∥∥
σn+1,s

≤ 1
2
‖h − h′‖σn+1,s

again for L0 large enough and |ε|γ−1 ≤ ε0(L0, γ, τ) small enough, uniformly in n, and we conclude that
G(δ, v1, wn, ·) is a contraction on B(ρn+1; W (n+1)).

By the standard Contraction Mapping Theorem we deduce the existence, for L0(γ, τ) large enough
and |ε|γ−1 < ε0(L0, γ, τ), of a unique hn+1 ∈ W (n+1) solving (38) and satisfying∥∥∥hn+1

∥∥∥
σn+1,s

≤ ρn+1 =
|ε|
γ

exp (−χn+1) .

Summarizing, wn+1(δ, v1) = wn(δ, v1) + hn+1(δ, v1) is a solution in W (n+1) of equation (Pn+1), defined
for (δ, v1) ∈ An+1 ⊆ An ⊆ . . . ⊆ A1 ⊆ A0, and wn+1(δ, v1) =

∑n+1
i=0 hi(δ, v1) where hi = hi(δ, v1) ∈ W (i)

satisfy ‖hi‖σi,s ≤ |ε|γ−1 exp (−χi) for some χ ∈ (1, 2), ∀i = 1, . . . , n + 1, ‖h0‖σ0,s ≤ K0|ε|.

Remark 3.3 A difference with respect to the usual “quadratic” Nash-Moser scheme, is that hn(δ, v1)
is found as an exact solution of equation (Pn), and not just a solution of the linearized equation rn +
Ln+1(δ, v1, wn)[h] = 0. It appears to be more convenient to prove the regularity of hn(δ, v1) with respect
to the parameters (δ, v1), see Lemma 3.2.

Corollary 3.1 (Solution of the (P )-equation) For (δ, v1) ∈ A∞ := ∩n≥0An,
∑

i≥0 hi(δ, v1) converges
in Xσ/2,s to a solution w(δ, v1) ∈ W ∩ Xσ/2,s of the (P )-equation (25) and ‖w(δ, v1)‖σ/2,s ≤ C|ε|γ−1.
The convergence is uniform in A∞.
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Proof. By Proposition 3.1, for (δ, v1) ∈ A∞ := ∩n≥0An,

∞∑
i=0

‖hi(δ, v1)‖σ/2,s ≤
∞∑

i=0

‖hi(δ, v1)‖σi,s ≤ max(1, eK0γ)
∞∑

i=0

|ε|
γ

exp (−χi) < +∞ . (41)

Hence the series of functions w =
∑

i≥0 hi : A∞ → W ∩ Xσ/2,s converges normally and, by (41),
‖w(δ, v1)‖σ/2,s ≤ C|ε|γ−1 with C := max(1, eK0γ)

∑∞
i=0 exp (−χi).

Let us justify that Lωw = εΠW Γ(δ, v1, w). Since wn solves equation (Pn) ,

Lωwn = εPnΠW Γ(δ, v1, wn) = εΠW Γ(δ, v1, wn) − εP⊥
n ΠW Γ(δ, v1, wn) . (42)

We have, by (P2), (P1) and since σn − (σ/2) ≥ γn := γ0/(n2 + 1),∥∥∥P⊥
n ΠW Γ(δ, v1, wn)

∥∥∥
σ/2,s

≤ C exp
(
− Ln(σn − (σ/2))

)
≤ C exp

(
− γ0

L02n

(n2 + 1)

)
.

Hence, by (P1), the right hand side in (42) converges in Xσ/2,s to Γ(δ, v1, w). Moreover, since (wn) → w
in Xσ/2,s, (Lωwn) → Lωw in the sense of distributions. Hence Lωw = εΠW Γ(δ, v1, w).

3.2 C∞ extension

Before proving the key property (P3) on the linearized operator we prove a “Whitney-differentiability”
property for w(δ, v1) extending w(·, ·) in a C∞-way on the whole A0.

For this, some bound on the derivatives of hn = wn − wn−1 is required.

Lemma 3.2 (Estimates for the derivatives of hn and wn) For ε0γ
−1 = δp−1

0 γ−1 small enough, the
function (δ, v1) → hn(δ, v1) is in C∞(An,W (n)), ∀n ≥ 0, and the kth-derivative Dkhn(δ, v1) satisfies∥∥∥Dkhn(δ, v1)

∥∥∥
σn,s

≤ K1(k, χ)n exp(−χn) (43)

for χ ∈ (1, χ) and a suitable positive constant K1(k, χ), ∀n ≥ 0.
As a consequence, the function (δ, v1) → wn(δ, v1) =

∑n
i=0 hi(δ, v1) is in C∞(An,W (n)) and the

kth-derivative Dkwn(δ, v1) satisfies ∥∥∥Dkwn(δ, v1)
∥∥∥

σn,s
≤ K2(k) (44)

for a suitable positive constant K2(k).

Proof. By the first step in the proof of Proposition 3.1, h0 = w0 depends smoothly on (δ, v1), and
‖Dkw0(δ, v1)‖σ0,s ≤ C(k).

Next, assume by induction that hn = hn(δ, v1) is a C∞ map defined in An. We shall prove that
hn+1 = hn+1(δ, v1) is C∞ too.

First recall that hn+1 = hn+1(δ, v1) is defined, in Proposition 3.1, for (δ, v1) ∈ An+1 as a solution in
W (n+1) of equation (Pn+1), namely

(Pn+1) Un+1

(
δ, v1, hn+1(δ, v1)

)
= 0

where
Un+1(δ, v1, h) := Lω(wn + h) − εPn+1ΠW Γ(δ, v1, wn + h) .

We claim that DhUn+1(δ, v1, hn+1) = Ln+1(δ, v1, wn+1) is invertible and∥∥∥(
DhUn+1(δ, v1, hn+1)

)−1∥∥∥
σn+1,s

=
∥∥∥Ln+1(δ, v1, wn+1)−1

∥∥∥
σn+1,s

≤ C ′

γ
(Ln+1)τ−1 . (45)

17



Now Equation (Pn+1) can be written as h + qn+1(δ, v1, h) = 0, where

qn+1(δ, v1, h) = (∆)−1[Lωwn − (ω2 + 1)htt − εPn+1ΠW Γ(δ, v1, wn + h)].

The map qn+1 : [0, δ0) × V1 × W (n+1) → W (n+1) is C∞ and the invertibility of Ln+1(δ, v1, wn+1)
implies the injectivity and hence (noting that Dhqn+1(δ, v1, hn+1) is compact) the invertibility of I +
Dhqn+1(δ, v1, hn+1). As a consequence, by the Implicit Function Theorem, the map (δ, v1) 
→ hn+1(δ, v1)
is in C∞(An+1,W

(n+1)).
Let us prove (45). Using (P1) and ‖wn+1 − wn‖σn+1,s = ‖hn+1‖σn+1,s ≤ |ε|γ−1 exp(−χn+1), we get∥∥∥Ln+1(δ, v1, wn+1) − Ln+1(δ, v1, wn)

∥∥∥
σn+1,s

=
∥∥∥εPn+1ΠW

(
DwΓ(δ, v1, wn+1) − DwΓ(δ, v1, wn)

)∥∥∥
σn+1,s

≤ C|ε| ‖hn+1‖σn+1,s ≤ C
ε2

γ
exp(−χn+1) . (46)

Therefore

Ln+1(δ, v1, wn+1) = Ln+1(δ, v1, wn)
[
Id + Ln+1(δ, v1, wn)−1

(
Ln+1(δ, v1, wn+1) − Ln+1(δ, v1, wn)

)]
(47)

is invertible whenever (recall (37) and (46))∥∥∥Ln+1(δ, v1, wn)−1
(
Ln+1(δ, v1, wn+1) − Ln+1(δ, v1, wn)

)∥∥∥
σn+1,s

≤ C

γ
(Ln+1)τ−1 ε2

γ
exp(−χn+1)

<
1
2

(48)

which is true, provided that |ε|γ−1 is small enough, for all n ≥ 0 (note that (Ln+1)τ−1 = (L02n+1)τ−1 <<
exp(χn+1) for n large). Furthermore, by (47), (37), (48), estimate (45) holds.

We now prove in detail estimate (43) for k = 1. Differentiating equation (Pn+1) with respect to some
coordinate λ of (δ, v1) ∈ An+1, we obtain

(P ′
n+1) Ln+1(δ, v1, wn+1)

[
∂λhn+1(δ, v1)

]
= −(∂λUn+1)

(
δ, v1, hn+1(δ, v1)

)
and therefore, by (45),∥∥∥∂λhn+1

∥∥∥
σn+1,s

≤ C

γ
(Ln+1)τ−1

∥∥∥(∂λUn+1)(δ, v1, hn+1)
∥∥∥

σn+1,s
. (49)

To estimate the right hand side of (49), first notice that since wn = wn(δ, v1) solves

Lωwn = εPnΠW Γ(δ, v1, wn) , ∀(δ, v1) ∈ An ,

we have
Un+1(δ, v1, h) = Lωh + ε(PnΠW Γ(δ, v1, wn) − Pn+1ΠW Γ(δ, v1, wn + h)).

Let us write

(∂λUn+1)(δ, v1, h) = (∂λUn+1)(δ, v1, 0) + r(δ, v1, h) (50)

where

(∂λUn+1)(δ, v1, 0) = (Pn − Pn+1)ΠW ∂λ[ε(δ)Γ(δ, v1, wn(δ, v1))]

= −εP⊥
n Pn+1ΠW

[
(∂λΓ)(δ, v1, wn) + (∂wΓ)(δ, v1, wn)[∂λwn]

]
−∂λ(ε(δ))P⊥

n Pn+1ΠW Γ(δ, v1, wn) (51)

18



and

r(δ, v1, h) := −εPn+1ΠW

[
(∂λΓ)(δ, v1, wn + h) − (∂λΓ)(δ, v1, wn)

]
−εPn+1ΠW

[
(∂wΓ)(δ, v1, wn + h) − (∂wΓ)(δ, v1, wn)

]
[∂λwn]

+∂λ(Lω(δ)h) + ∂λ(ε(δ))Pn+1ΠW (Γ(δ, v1, wn) − Γ(δ, v1, wn + h)) , (52)

with ∂λ(Lω(δ)h) = 0, ∂λ(ε(δ)) = 0 if λ �= δ and

∂δ(Lω(δ)h) = −2(p − 1)δp−2htt, ∂δ(ε(δ)) = (p − 1)δp−2. (53)

By (P1), (34), (52) and (53), for h ∈ W (n+1),∥∥∥r(δ, v1, h)
∥∥∥

σn+1,s
≤ C|ε| ‖h‖σn+1,s

(
1 + ‖∂λwn‖σn+1,s

)
+ CL2

n+1‖h‖σn+1,s. (54)

We now estimate (∂λUn+1)(δ, v1, 0). By (51), properties (P2), (P1)∥∥∥(∂λUn+1)(δ, v1, 0)
∥∥∥

σn+1,s
≤ exp(−Lnγn)

[
|ε|

∥∥∥(∂λΓ)(δ, v1, wn) + (∂wΓ)(δ, v1, wn)[∂λwn]
∥∥∥

σn,s

+
∥∥∥Γ(δ, v1, wn)

∥∥∥
σn,s

]
≤ C exp(−Lnγn)

(
1 + ‖∂λwn‖σn,s

)
. (55)

Combining (49), (50), (54), (55) and the bound ‖hn+1‖σn+1,s ≤ |ε|γ−1 exp (−χn+1), we get∥∥∥∂λhn+1

∥∥∥
σn+1,s

≤ C

γ
(Ln+1)τ+1

( |ε|
γ

exp(−χn+1) + exp(−Lnγn)
)(

1 + ‖∂λwn‖σn,s

)
≤ C(χ) exp(−χn+1)

(
1 +

n∑
i=0

‖∂λhi‖σi,s

)
(56)

for any χ ∈ (1, χ). By (56), the sequence an := ‖∂λhn‖σn,s satisfies

a0 ≤ C and an+1 ≤ C(χ) exp(−χn+1)
(
1 + a0 + . . . + an

)
which implies (by induction)∥∥∥∂λhn

∥∥∥
σn,s

= an ≤ K(χ)n exp(−χn) , ∀n ≥ 0,

provided that K(χ) has been chosen large enough. We can prove in the same way the general estimate
(43) from which (44) follows.

Since, by (43), hn(δ, v1) = O(εγ−1 exp (−χn)) and the “non-resonant” set An is obtained at each step
deleting strips of size O(γ/Lτ

n), we can define (by interpolation, say) a C∞-extension w̃(δ, v1) of w(δ, v1)
for all (δ, v1) ∈ A0.

Let
Ãn :=

{
(δ, v1) ∈ An | dist((δ, v1), ∂An) ≥ 2ν

L3
n

}
⊂ An

where νγ−1 > 0 is some small constant to be specified later, see Lemma 3.4.

Lemma 3.3 (Whitney C∞ Extension w̃ of w on A0) There exists a function w̃(δ, v1) ∈ C∞(A0,W ∩
Xσ/2,s) satisfying∥∥∥w̃(δ, v1)

∥∥∥
σ/2,s

≤ |ε|
γ

C,
∥∥∥Dkw̃(δ, v1)

∥∥∥
σ/2,s

≤ C(k)
νk

, ∀(δ, v1) ∈ A0 , ∀k ≥ 1 , (57)

19



for some C(k) > 0, such that,

∀ (δ, v1) ∈ Ã∞ := ∩n≥0Ãn , w̃(δ, v1) solves the (P ) − equation (25) .

Moreover there exists a sequence w̃n ∈ C∞(A0, W (n)) such that

w̃n(δ, v1) = wn(δ, v1) , ∀(δ, v1) ∈ Ãn (58)

and ∥∥∥w̃(δ, v1) − w̃n(δ, v1)
∥∥∥

σ/2,s
≤ |ε|C

γ
exp(−χ̃n), (59)∥∥∥Dkw̃(δ, v1) − Dkw̃n(δ, v1)

∥∥∥
σ/2,s

≤ C(k)
νk

exp(−χ̃n) , ∀(δ, v1) ∈ A0 , (60)

for some χ̃ ∈ (1, χ).

Proof. Let ϕ : R×V1 → R+ be a C∞ function supported in the open ball B(0, 1) of center 0 and radius
1 with

∫
R×V1

ϕ dµ = 1. Here µ is the Borelian positive measure of R×V1 defined by µ(E) = m(L−1(E))
where L is some automorphism from RN+1 to R × V1 and m is the Lebesgue measure in RN+1.

Let ϕn : R × V1 → R+ be the “mollifier”

ϕn(λ) :=
(L3

n

ν

)N+1

ϕ
(L3

n

ν
λ
)

(here λ := (δ, v1)) which is a C∞ function satisfying

supp ϕn ⊂ B
(
0,

ν

L3
n

)
and

∫
R×V1

ϕn dµ = 1 . (61)

Next we define ψn : R × V1 → R+ as

ψn(λ) :=
(
ϕn ∗ χA∗

n

)
(λ) =

∫
R×V1

ϕn(λ − η) χA∗
n
(η) dµ(η)

where χA∗
n

is the characteristic function of the set

A∗
n :=

{
λ = (δ, v1) ∈ An | dist(λ, ∂An) ≥ ν

L3
n

}
⊂ An ,

namely χA∗
n
(λ) := 1 if λ ∈ A∗

n, and χA∗
n
(λ) := 0 if λ /∈ A∗

n.
The function ψn is C∞ and, ∀k ∈ N, ∀λ ∈ R × V1,

|Dkψn(λ)| =
∣∣∣ ∫

R×V1

Dkϕn(λ − η) χA∗
n
(η) dµ(η)

∣∣∣
≤

∫
R×V1

∣∣∣(L3
n

ν

)k(L3
n

ν

)N+1

(Dkϕ)
(L3

n

ν
(λ − η)

)∣∣∣ dµ(η)

=
(L3

n

ν

)k
∫
R×V1

|Dkϕ| dµ =
(L3

n

ν

)k

C(k) (62)

where C(k) :=
∫
R×V1

|Dkϕ| dµ. Furthermore, by (61) and the definition of A∗
n and Ãn,

0 ≤ ψn(λ) ≤ 1 , suppψn ⊂ intAn and ψn(λ) = 1 if λ ∈ Ãn .

Finally we can define w̃n : A0 → W (n) by

w̃0(λ) := w0(λ) , w̃n+1(λ) := w̃n(λ) + h̃n+1(λ) ∈ W (n+1) ,
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where

h̃n+1(λ) :=
{

ψn+1(λ)hn+1(λ) if λ ∈ An+1

0 if λ /∈ An+1

is in C∞(A0,W
(n+1)) because supp ψn+1 ⊂ int An+1 and, by Lemma 3.2, hn+1 ∈ C∞(An+1,W

(n+1)).
Therefore we have

w̃n(λ) =
n∑

i=0

h̃i(λ) , w̃n ∈ C∞(A0,W
(n))

and (58) holds.
By the bounds (62) and (43) we obtain, ∀k ∈ N, ∀λ ∈ A0, ∀n ≥ 0,∥∥∥h̃n+1(λ)

∥∥∥
σn+1,s

≤ |ε|K
γ

exp(−χn),
∥∥∥Dkh̃n+1(λ)

∥∥∥
σn+1,s

≤ C(k, χ)n
(L3

n+1

ν

)k

exp(−χn) ≤ K(k)
νk

exp(−χ̃n)

for some 1 < χ̃ < χ and some positive constant K(k) large enough. As a consequence, the sequence
(w̃n) (and all its derivatives) converges uniformly in A0 for the norm ‖ ‖σ/2,s on W , to some function
w̃(δ, v1) ∈ C∞(A0,W ∩ Xσ/2,s) which satisfies (57), (59) and (60).

Finally, note that if λ /∈ A∞ := ∩n≥0An then the series w̃(λ) =
∑

n≥1 h̃n(λ) is a finite sum. On the
other hand, if λ ∈ Ã∞ := ∩n≥0Ãn then w̃(λ) = w(λ) solves the (P )-equation (25).

Remark 3.4 If (δ, v1) �∈ Ã∞ we claim that w̃(δ, v1) solves the (P )-equation up to exponentially small
remainders: there exists α > 0, δ0(γ, τ) > 0 such that, ∀0 < δ ≤ δ0(γ, τ)∥∥∥Lωw̃(δ, v1) − εΠW Γ

(
δ, v1, w̃(δ, v1)

)∥∥∥
σ/4,s

≤ |ε|
γ

exp
(
− 1

δα

)
.

Since we shall not use this property in the present paper we do not give here the proof.

3.3 Measure estimate

We now replace the set Ã∞ with a smaller Cantor-like set B∞ which has the advantage of being inde-
pendent of the iteration steps. This is more convenient for the measure estimates required in section 5
(this issue is discussed differently in [12]).

Define
Bn :=

{
(δ, v1) ∈ Ã0 | δ ∈ ∆2γ,τ

n (v1, w̃(δ, v1))
}

(63)

where we have replaced γ with 2γ in the definition of ∆γ,τ
n , see Definition 3.3. Note that Bn does not

depend on the approximate solution wn but only on the fixed function w̃.

Lemma 3.4 If νγ−1 > 0 and |ε|γ−1 are small enough, then

Bn ⊂ Ãn, ∀n ≥ 0 .

Hence B∞ := ∩n≥1Bn ⊂ Ã∞ ⊂ A∞ and so, if (δ, v1) ∈ B∞ then w̃(δ, v1) solves the (P )-equation (25).

Proof. We shall prove the Lemma by induction. First B0 ⊂ Ã0. Suppose next that Bn ⊂ Ãn

holds. In order to prove that Bn+1 ⊂ Ãn+1, take any (δ, v1) ∈ Bn+1. We have to justify that the ball
B((δ, v1), 2ν/L3

n+1) ⊂ An+1.
First, since Bn+1 ⊂ Bn ⊂ Ãn, (δ, v1) ∈ Ãn. Hence, since Ln+1 > Ln, B((δ, v1), 2ν/L3

n+1) ⊂ An.
Let (δ′, v′

1) ∈ B((δ, v1), 2ν/L3
n+1). Since (δ, v1) ∈ Ãn we have w̃n(δ, v1) = wn(δ, v1). Moreover by (44)

‖Dwn‖σ/2,s ≤ C. By (59) we can derive∥∥∥wn(δ′, v′
1) − w̃(δ, v1)

∥∥∥
σ/2,s

≤
∥∥∥wn(δ′, v′

1) − wn(δ, v1)
∥∥∥

σ/2,s
+

∥∥∥wn(δ, v1) − w̃(δ, v1)
∥∥∥

σ/2,s

≤ 2νC

L3
n+1

+
C|ε|
γ

exp(−χ̃n) .
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Hence, by (63), setting ω′ :=
√

1 + 2(δ′)p−1 and ε′ := (δ′)p−1 (for simplicity of notation suppose s∗ = 1)∣∣∣ω′l − j − ε′
M(δ′, v′

1, wn(δ′, v′
1))

2j

∣∣∣ ≥
∣∣∣ωl − j − ε

M(δ, v1, w̃(δ, v1))
2j

∣∣∣ − l
Cν

L3
n+1

− C
|ε|ν
L3

n+1

− C
|ε|2
γ

exp(−χ̃n)

≥ 2γ

(l + j)τ
− Cν

L2
n+1

− C
|ε|2
γ

exp(−χ̃n) ≥ γ

(l + j)τ

for all 1/3|ε| < l < Ln+1, l �= j, j ≤ 2Ln+1, whenever

γ

(3Ln+1)τ
≥ C

( ν

L2
n+1

+
|ε|2
γ

exp(−χ̃n)
)
. (64)

(64) holds true, for |ε|γ−1 and νγ−1 small, for all n ≥ 0, because τ < 2 and limn→∞ Lτ
n+1 exp(−χ̃n) = 0.

It results that B((δ, v1), 2ν/L3
n+1)) ⊂ An+1.

Up to now, we have not justified that

B∞ ⊂ Ã∞ ⊂ A∞ (65)

are not reduced to {δ = 0}×B(2R, V1). It is a consequence of the following result which shall be applied
in section 5.

Proposition 3.2 (Measure estimate of B∞) Let V1 : [0, δ0) → V1 be a C1 function. Then

lim
η→0+

meas{δ ∈ [0, η) | (δ,V1(δ)) ∈ B∞}
η

= 1 . (66)

Proof. Let 0 < η < δ0. Define

CV1,η :=
{

δ ∈ (0, η) | (δ,V1(δ)) ∈ B∞
}

and DV1,η := (0, η)\CV1,η .

By the definition B∞ := ∩n≥1Bn (see also the expression of B∞ in the statement of Theorem 3.1 where
for simplicity of notation we suppose s∗ = 1)

DV1,η =
{

δ ∈ (0, η)
∣∣∣ ∣∣∣ω(δ)l − j − δp−1m(δ)

2j

∣∣∣ <
2γ

(l + j)τ
or

∣∣∣ω(δ)l − j
∣∣∣ <

2γ

(l + j)τ

for some l >
1

3δp−1
, l �= j

}
where m(δ) := M(δ,V1(δ), w̃(δ,V1(δ))) is a function in C1([0, δ0),R) since w̃(·, ·) is in C∞(A0,W∩Xσ/2,s))
and V1 is C1. This implies, in particular,

|m(δ)| + |m′(δ)| ≤ C, ∀δ ∈ [0, δ0/2] (67)

for some positive constant C.
We claim that, for any interval [δ1/2, δ1] ⊂ [0, η] ⊂ [0, δ0/2] the following measure estimate holds:

meas
(
DV1,η ∩

[δ1

2
, δ1

])
≤ K1(τ)γη(p−1)(τ−1)meas

([δ1

2
, δ1

])
(68)

for some constant K1(τ) > 0.
Before proving (68) we show how to conclude the proof of the Lemma. Writing (0, η] = ∪n≥0 [η/2n+1,

η/2n] and applying the measure estimate (68) to any interval [δ1/2, δ1] = [η/2n+1, η/2n], we get

meas(DV1,η ∩ [0, η]) ≤ K1(τ)γη(p−1)(τ−1)η ,

whence limη→0+ meas (CV1,η ∩ (0, η))/η = 1, proving Proposition 3.2.
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We now prove (68). We have

DV1,η

⋂ [δ1

2
, δ1

]
⊂

⋃
(l,j)∈IR

Rl,j(δ1) (69)

where

Rl,j(δ1) :=
{

δ ∈
[δ1

2
, δ1

]
|
∣∣∣ω(δ)l − j − δp−1m(δ)

2j

∣∣∣ <
2γ

(l + j)τ
or

∣∣∣ω(δ)l − j
∣∣∣ <

2γ

(l + j)τ

}
and

IR :=
{

(l, j) | l >
1

3δp−1
1

, l �= j,
j

l
∈ [1 − c0δ

p−1
1 , 1 + c0δ

p−1
1 ]

}
(note indeed that Rj,l(δ1) = ∅ unless j/l ∈ [1−c0δ

p−1
1 , 1+c0δ

p−1
1 ] for some constant c0 > 0 large enough).

Next, let us prove that
meas(Rlj(δ1)) = O

( γ

lτ+1δp−2
1

)
. (70)

Define flj(δ) := ω(δ)l − j − (δp−1m(δ)/2j) and Sj,l(δ1) := {δ ∈ [δ1/2, δ1] : |fl,j(δ)| < 2γ/(l + j)τ}.
Provided δ0 has been chosen small enough (recall that j, l ≥ 1/3δp−1

0 ),

|∂δflj(δ)| =
∣∣∣ l(p − 1)δp−2

√
1 + 2δp−1

− (p − 1)δp−2m(δ)
2j

− δp−1m′(δ)
2j

∣∣∣
≥ (p − 1)δp−2

2

(
l − C

j

)
≥ (p − 1)δp−2l

4

and therefore |∂δflj(δ)| ≥ (p − 1)δp−2
1 l/2p for any δ ∈ [δ1/2, δ1]. This implies

meas(Slj(δ1)) ≤ 4γ

(l + j)τ
×

(
min

δ∈[δ1/2,δ1]
|∂δflj(δ)|

)−1

≤ 4γ

(l + j)τ
× 2p

(p − 1)lδp−2
1

= O
( γ

lτ+1δp−2
1

)
.

Similarly we can prove

meas
({

δ ∈
[δ1

2
, δ1

]
: |ω(δ)l − j| <

2γ

(l + j)τ

})
= O

( γ

lτ+1δp−2
1

)
and the measure estimate (70) follows.

Now, by (69), (70) and since, for a given l, the number of j for which (l, j) ∈ IR is O(δp−1
1 l),

meas
(
DV1,η ∩

[δ1

2
, δ1

])
≤

∑
(l,j)∈IR

meas(Rj,l(δ1)) ≤ C
∑

l≥1/3δp−1
1

δp−1
1 l × γ

lτ+1δp−2
1

≤ K2(τ)γδ
1+(p−1)(τ−1)
1

whence we obtain (68) since 0 < δ1 < η.

We summarize the main result of this section as follows:

Theorem 3.1 (Solution of the (P )-equation) For δ0 := δ0(γ, τ) > 0 small enough, there exist a
C∞-function w̃ : A0 := {(δ, v1) | δ ∈ [0, δ0), ‖v1‖0,s ≤ 2R} → W ∩Xσ/2,s satisfying (57), and a “large”
-see (66)- Cantor set

B∞ :=
{

(δ, v1) ∈ A0 :
∣∣∣ω(δ)l − j − s∗δp−1 M(δ, v1, w̃(δ, v1))

2j

∣∣∣ ≥ 2γ

(l + j)τ
,∣∣∣ω(δ)l − j

∣∣∣ ≥ 2γ

(l + j)τ
, ∀l ≥ 1

3δp−1
, l �= j

}
⊂ A0 ,

where ω(δ) =
√

1 + 2s∗δp−1 and M(δ, v1, w) is defined in Definition 3.1, such that

∀(δ, v1) ∈ B∞ , w̃(δ, v1) solves the (P ) − equation (25) .
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4 Analysis of the linearized problem: proof of (P3)

We prove in this section the key property (P3) on the inversion of the linear operator Ln(δ, v1, w) defined
in (28).

Through this section we shall use the notations

Fk :=
{

f ∈ H1
0 ((0, π);R) |

∫ π

0

f(x) sin(kx) dx = 0
}

= 〈sin(kx)〉⊥

whence the space W , defined in (6), writes

W =
{

h =
∑
k∈Z

exp (ikt)hk ∈ X0,s | hk = h−k, hk ∈ Fk , ∀k ∈ Z
}

and the corresponding projector ΠW : Xσ,s → W is

(ΠW h)(t, x) =
∑
k∈Z

exp (ikt)(πkhk)(x) (71)

where πk : H1
0 ((0, π);R) → Fk := 〈sin(kx)〉⊥ is the L2-orthogonal projector onto Fk

(πkf)(x) := f(x) −
( 2

π

∫ π

0

f(x) sin(kx)dx
)

sin(kx) .

Note that π−k = πk. Hence, since hk = h−k, πkhk = π−kh−k.

4.1 Decomposition of Ln(δ, v1, w)

Recalling (26), the operator Ln(δ, v1, w) : D(Ln) ⊂ W (n) → W (n) writes

Ln(δ, v1, w)[h] := Lωh − εPnΠW DwΓ(δ, v1, w)[h]

= Lωh − εPnΠW

(
∂ug(δ, x, v1 + w + v2(δ, v1, w))

(
h + ∂wv2(δ, v1, w)[h]

))
= Lωh − εPnΠW

(
a(t, x) h

)
− εPnΠW

(
a(t, x) ∂wv2(δ, v1, w)[h]

)
(72)

where, for brevity, we have set

a(t, x) := ∂ug
(
δ, x, v1(t, x) + w(t, x) + v2(δ, v1, w)(t, x)

)
. (73)

In order to invert Ln it is convenient to perform a Fourier expansion and represent the operator Ln as a
matrix, distinguishing a “diagonal” matrix D and a “off-diagonal Toepliz” matrix. The main difference
with respect to the analogue procedure of Craig-Wayne-Bourgain [12]-[8] is that we shall develop Ln

only in time-Fourier basis and not also in the spatial fixed basis formed by the eigenvectors sin(jx) of
the linear operator −∂xx. The reason is that this is more convenient to deal with nonlinearities f(x, u)
with finite regularity in x and without oddness assumptions. Each diagonal element Dk is a differential
operator acting on functions of x. Next, using Sturm-Liouville theory, we shall diagonalize each Dk in a
suitable basis of eigenfunctions close, but different, from sin jx, see Lemma 4.1 and Corollary 4.1.

Performing a time-Fourier expansion, the operator Lω := −ω2∂tt + ∂xx is diagonal since

Lω

( ∑
|k|≤Ln

exp(ikt)hk

)
=

∑
|k|≤Ln

exp(ikt)(ω2k2 + ∂xx)hk . (74)

The operator h → PnΠW (a(t, x) h) is the composition of the multiplication operator for the function
a(t, x) =

∑
l∈Z exp(ilt)al(x) with the projectors ΠW and Pn. As usual, in Fourier expansion, the multi-

plication operator is described by a “Toepliz matrix”

a(t, x) h(t, x) =
∑

|k|≤Ln,l∈Z

exp(ilt)al−k(x)hk(x)
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and, recalling (71) and (27),

PnΠW (a(t, x) h) =
∑

|k|,|l|≤Ln

exp(ilt)πl(al−k(x)hk)

=
∑

|k|≤Ln

exp(ikt)πk(a0(x)hk) +
∑

|k|,|l|≤Ln,k 	=l

exp(ilt)πl(al−khk) (75)

where we have distinguished the “diagonal” term∑
|k|≤Ln

exp(ikt)πk(a0(x)hk) = PnΠW (a0(x) h) (76)

with a0(x) := 1
2π

∫ 2π

0
a(t, x) dt, from the “off-diagonal Toepliz” term∑

|k|,|l|≤Ln,k 	=l

exp(ilt)πl(al−khk) = PnΠW (a(t, x) h) (77)

where
a(t, x) := a(t, x) − a0(x)

has zero time-average.
By (72), (75), (76) and (77), we can decompose

Ln(δ, v1, w) = D −M1 −M2

where D, M1, M2 are the linear operators⎧⎨⎩
Dh := Lωh − εPnΠW (a0(x) h)
M1h := εPnΠW (a(t, x) h)
M2h := εPnΠW (a(t, x) ∂wv2[h]) .

(78)

To invert Ln we first (Step 1) prove that, assuming the “first order Melnikov non-resonance condition
δ ∈ ∆γ,τ

n (v1, w) (see Definition 3.3) the diagonal (in time) linear operator D is invertible, see Corollary
4.2. Next (Step 2) we prove that the “off-diagonal Toepliz” operator M1 (Lemma 4.8) and M2 (Lemma
4.9) are small enough with respect to D, yielding the invertibility of the whole Ln (note that we do
not decompose the term M2 in a diagonal and “off-diagonal term”). More precisely, the crucial bounds
of Lemma 4.5 enable us to prove via Lemma 4.6 that the operator |D|−1/2M1|D|−1/2 has small norm,
whereas the norm of |D|−1/2M2|D|−1/2 is controlled thanks to the regularizing properties of the map v2.

4.2 Step 1: Inversion of D

The first aim is to diagonalize (both in time and space) the linear operator D, see Corollary 4.1.
By (74) and (76), the operator D is yet diagonal in time-Fourier basis, and, ∀ h ∈ W (n), the kth time
Fourier coefficient of Dh is

(Dh)k = (ω2k2 + ∂xx)hk − επk(a0(x)hk) ≡ Dkhk

where Dk : D(Dk) ⊂ Fk → Fk is the operator

Dku = ω2k2u − Sku and Sku := −∂xxu + επk(a0(x) u) .

Note that Sk = S−k.
We now have to diagonalize (in space) each Sturm-Liouville type operator Sk and to study its spectral

properties.
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In the next Lemma 4.1 we shall find a basis of eigenfunctions vk,j of Sk : D(Sk) ⊂ Fk → Fk which are
orthonormal for the scalar product of Fk,

〈u, v〉ε :=
∫ π

0

uxvx + εa0(x)uv dx .

For |ε||a0|∞ < 1, 〈 , 〉ε actually defines a scalar product on Fk ⊂ H1
0 ((0, π);R) and its associated norm

is equivalent to the H1-norm defined by ‖u‖2
H1 :=

∫ π

0
u2

x(x) dx, since

‖u‖2
H1

(
1 − |ε| |a0|∞

)
≤ ‖u‖2

ε ≤ ‖u‖2
H1

(
1 + |ε| |a0|∞

)
∀u ∈ Fk . (79)

(79) follows from7
∫ π

0
u(x)2 dx ≤ ∫ π

0
ux(x)2 dx, ∀u ∈ H1

0 (0, π), and∣∣∣ ∫ π

0

εa0(x)u2 dx
∣∣∣ ≤ |ε| |a0|∞

∫ π

0

u2 dx .

Lemma 4.1 (Sturm-Liouville) The operator Sk : D(Sk) ⊂ Fk → Fk possesses a 〈 , 〉ε-orthonormal
basis (vk,j)j≥1,j 	=|k| of eigenvectors with positive, simple eigenvalues

0 < λk,1 < . . . < λk,|k|−1 < λk,|k|+1 < . . . < λk,j < . . . with lim
j→∞

λk,j = +∞

and λk,j = λ−k,j, v−k,j = vk,j.
Moreover, (vk,j)j≥1,j 	=|k| is an orthogonal basis also for the L2-scalar product in Fk.

The asymptotic expansion as j → +∞ of the eigenfunctions ϕk,j := vk,j/‖vk,j‖L2 of Sk and its
eigenvalues λk,j is ∣∣∣ϕk,j −

√
2
π

sin(jx)
∣∣∣
L2

= O
(ε|a0|∞

j

)
and

λk,j = λk,j(δ, v1, w) = j2 + εM(δ, v1, w) + O
(ε‖a0‖H1

j

)
(80)

where M(δ, v1, w), introduced in Definition 3.1, is the mean value of a0(x) on (0, π).

Proof. In the Appendix. We remark that we do not directly apply some known result for Sturm-
Liouville operators because of the projection πk.

By Lemma 4.1, each linear operator Dk : D(Dk) ⊂ Fk → Fk possesses a 〈 , 〉ε-orthonormal basis
(vk,j)j≥1,j 	=|k| of real eigenvectors with real eigenvalues (ω2k2 − λk,j)j≥1,j 	=|k|.

As a consequence

Corollary 4.1 (Diagonalization of D) The operator D (acting in W (n)) is the diagonal operator
diag{ω2k2 − λk,j} in the basis {cos(kt)ϕk,j ; k ≥ 0, j ≥ 1, j �= k} of W (n).

By Lemma 4.1,
min

|k|≤Ln

|ω2k2 − λk,j | → +∞ as j → +∞ ,

and so, by Corollary 4.1, the linear operator D is invertible iff all its eigenvalues {ω2k2−λk,j}|k|≤Ln,j≥1,j 	=|k|
are different from zero.

In this case, we can define D−1 as well as |D|−1/2 : W (n) → W (n) by

|D|−1/2h :=
∑

|k|≤Ln

exp (ikt)|Dk|−1/2hk , ∀h =
∑

|k|≤Ln

exp (ikt)hk

7Because the least eigenvalue of −∂xx with Dirichlet B.C. on (0, π) is 1.
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where |Dk|−1/2 : Fk → Fk is the diagonal operator defined by

|Dk|−1/2vk,j :=
vk,j√|ω2k2 − λk,j |

, ∀j ≥ 1, j �= |k| . (81)

The “small divisor problem” (i) is that some of the eigenvalues of D, ω2k2−λk,j , can become arbitrarily
small for (k, j) ∈ Z2 sufficiently large and therefore the norm of |D|−1/2 can become arbitrarily large as
Ln → ∞.

In order to quantify this phenomenon we define for all |k| ≤ Ln

αk := min
j 	=|k|

|ω2k2 − λk,j |. (82)

Note that α−k = αk.

Lemma 4.2 Suppose αk �= 0. Then Dk is invertible and, for ε small enough,∥∥∥|Dk|−1/2u
∥∥∥

H1
≤ 2√

αk
‖u‖H1 . (83)

Proof. For any u =
∑

j 	=|k| ujvk,j ∈ Fk, by (81), and using that (vk,j)j 	=|k| is an orthonormal basis for
the 〈 , 〉ε scalar product on Fk,∥∥∥ |Dk|−1/2u

∥∥∥2

ε
=

∥∥∥ ∑
j 	=|k|

uj vk,j√|ω2k2 − λk,j |
∥∥∥2

ε
=

∑
j 	=|k|

|uj |2
|ω2k2 − λk,j | ≤

1
αk

∑
j 	=|k|

|uj |2 =
‖u‖2

ε

αk
.

Hence, since, by (79), the norms ‖ · ‖ε and ‖ · ‖H1 are equivalent, (83) follows (for ε small enough).

The condition “αk �= 0, ∀|k| ≤ Ln” depends very sensitively on the parameters (δ, v1). Assuming
the “first order Melnikov non-resonance condition” δ ∈ ∆γ,τ

n (v1, w) (see Definition 3.3) with τ ∈ (1, 2),
we obtain, in Lemma 4.3, a lower bound of the form cγ/|k|τ−1 for the moduli of the eigenvalues of Dk

(namely αk ≥ cγ/|k|τ−1) and, therefore, in Corollary 4.2, sufficiently good estimates for the inverse of D.

Lemma 4.3 (Lower bound for the eigenvalues of D) There is c > 0 such that if δ ∈ ∆γ,τ
n (v1, w) ∩

[0, δ0) and δ0 is small enough (depending on γ), then

αk := min
j≥1,j 	=|k|

|ω2k2 − λk,j | ≥ c γ

|k|τ−1
> 0, ∀ 0 < |k| ≤ Ln . (84)

Moreover α0 ≥ 1/2.

Proof. Since α−k = αk it is sufficient to consider k ≥ 0. By the asymptotic expansion (80) for the
eigenvalues λk,j , using that ‖a0‖H1 , |M(δ, v1, w)| ≤ C,

|ω2k2 − λk,j | =
∣∣∣ω2k2 − j2 − εM(δ, v1, w) + O

(ε‖a0‖H1

j

)∣∣∣
=

∣∣∣(ωk −
√

j2 + εM(δ, v1, w)
)(

ωk +
√

j2 + εM(δ, v1, w)
)

+ O
( |ε|

j

)∣∣∣
≥

∣∣∣ωk − j − ε
M(δ, v1, w)

2j
+ O

(ε2

j3

)∣∣∣ωk − C
|ε|
j

≥
∣∣∣ωk − j − ε

M(δ, v1, w)
2j

∣∣∣ ωk − C ′
(ε2k

j3
+

|ε|
j

)
≥ γωk

(k + j)τ
− C

(ε2k

j3
+

|ε|
j

)
, (85)

since δ ∈ ∆γ,τ
n (v1, w). If αk := minj≥1,j 	=k |ω2k2 − λk,j | is attained at j = j(k), i.e. αk = |ω2k2 − λk,j |,

then |ωk − j| ≤ 1 (provided |ε| is small enough). Therefore, using that 1 < τ < 2 and |ω − 1| ≤ 2|ε|, we
can derive (84) from (85), for |ε| small enough.
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Corollary 4.2 (Estimate of |D|−1/2) If δ ∈ ∆γ,τ
n (v1, w) ∩ [0, δ0) and δ0 is small enough, then D :

D(D) ⊂ W (n) → W (n) is invertible and ∀s′ ≥ 0∥∥∥|D|−1/2h
∥∥∥

σ,s′
≤ C√

γ
‖h‖σ,s′+ τ−1

2
∀h ∈ W (n). (86)

Proof. Since |D|−1/2h :=
∑

|k|≤Ln
exp(ikt)|Dk|−1/2hk, we get, using (83) and (84),∥∥∥|D|−1/2h

∥∥∥2

σ,s′
=

∑
|k|≤Ln

exp(2σ|k|)(1 + k2s′
)
∥∥∥|Dk|−1/2hk

∥∥∥2

H1

≤
∑

|k|≤Ln

exp(2σ|k|)(1 + k2s′
)

4
αk

‖hk‖2
H1

≤ 8‖h0‖2
H1 + C

∑
0<|k|≤Ln

exp(2σ|k|)(1 + k2s′
)
|k|(τ−1)

γ
‖hk‖2

H1

≤ C ′

γ
‖h‖2

σ,s′+ τ−1
2

proving (86).

4.3 Step 2: Inversion of Ln

To show the invertibility of Ln : D(Ln) ⊂ W (n) → W (n) it is a convenient devise to write

Ln = D −M1 −M2 = |D|1/2
(
U −R1 −R2

)
|D|1/2

where

U := |D|−1/2D|D|−1/2 = |D|−1D and Ri := |D|−1/2Mi|D|−1/2, i = 1, 2 .

We shall prove the invertibility of U −R1 −R2 showing that, for ε small enough, R1 and R2 are small
perturbations of U .

Lemma 4.4 (Estimate of ‖U−1‖) U : W (n) → W (n) is an invertible operator and its inverse U−1

satisfies, ∀s′ ≥ 0, ∥∥∥U−1h
∥∥∥

σ,s′
= ‖h‖σ,s′

(
1 + O(ε‖a0‖H1)

)
∀ h ∈ W (n). (87)

Proof. Uk := |Dk|−1Dk : Fk → Fk being orthogonal for the 〈 , 〉ε scalar product, it is invertible and
∀u ∈ Fk, ‖U−1

k u‖ε = ‖u‖ε. Hence, by (79),

∀u ∈ Fk, ‖U−1
k u‖H1 = ‖u‖ε(1 + O(ε‖a0‖H1)) .

Therefore, U = |D|−1D, being defined by (Uh)k = Ukhk, ∀ |k| ≤ Ln, U is invertible, (U−1h)k = U−1
k hk

and (87) holds.

The estimate of the “off-diagonal” operator R1 : W (n) → W (n) requires a careful analysis of the
“small divisors” and the use of the “first order Melnikov non-resonance condition” δ ∈ ∆γ,τ

n (v1, w), see
Definition 3.3. For clarity, we enounce such property separately.

Lemma 4.5 (Analysis of the Small Divisors) Let δ ∈ ∆γ,τ
n (v1, w) ∩ [0, δ0), with δ0 small. There

exists C > 0 such that, ∀l �= k,

1
αkαl

≤ C
|k − l|2 τ−1

β

γ2|ε|τ−1
where β :=

2 − τ

τ
. (88)
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Proof. To obtain (88) we distinguish different cases.

• First case: |k − l| ≥ (1/2)[max(|k|, |l|)]β . Then (αkαl)−1 ≤ C|k − l|2 τ−1
β /γ2.

Indeed we can estimate both αk, αl with the lower bound (84), αk ≥ cγ/|k|τ−1, αl ≥ cγ/|l|τ−1. Using
that 0 < β < 1, we obtain

1
αkαl

≤ C
|k|τ−1|l|τ−1

γ2
≤ C

[max(|k|, |l|)]2(τ−1)

γ2
≤ C ′ |k − l|2 τ−1

β

γ2
.

In the other cases we have 0 < |k − l| < (1/2)[max(|k|, |l|)]β . We observe that in this situation, sign(l) =
sign(k) and, to fix the ideas, we assume in the sequel that l, k ≥ 0 (the estimate for k, l < 0 is the same,
since αkαl = α−kα−l). Moreover, since β ≤ 1, we have max(k, l) = k or l − k ≤ (1/2)lβ ≤ (1/2)l. Hence
l ≤ 2k; similarly k ≤ 2l.

• Second case: 0 < |k−l| < (1/2)[max(|k|, |l|)]β and (|k| ≤ 1/3|ε| or |l| ≤ 1/3|ε|). Then (αkαl)−1 ≤
C/γ.

Suppose, for example, that 0 ≤ k ≤ 1/3|ε|. We claim that if ε is small enough, then αk ≥ (k + 1)/8.
Indeed, ∀j �= k,

|ωk − j| =
∣∣∣ωk − k + k − j

∣∣∣ ≥ |k − j| − |ω − 1| |k| ≥ 1 − 2|ε| k ≥ 1
3
.

Therefore ∀1 ≤ k < 1/3|ε|, ∀j �= k, j ≥ 1, |ω2k2 − j2| = |ωk− j| |ωk + j| ≥ (ωk +1)/3 ≥ (k +1)/6 and so

αk := min
j≥1,k 	=j

∣∣∣ω2k2 −λk,j

∣∣∣ = min
j≥1,k 	=j

∣∣∣ω2k2 − j2 − εM(δ, v1, w) + O
(ε‖a0‖H1

j

)∣∣∣ ≥ k + 1
6

− |ε| C ≥ k + 1
8

.

Next, we estimate αl. If 0 ≤ l ≤ 1/3|ε| then αl ≥ 1/8 and therefore (αkαl)−1 ≤ 64. If l > 1/3|ε|, we
estimate αl with the lower bound (84) and so, since l ≤ 2k and 1 < τ < 2

1
αkαl

≤ C
lτ−1

kγ
≤ C ′

k2−τγ
≤ C ′

γ
.

In the remaining cases we consider |k − l| < (1/2)[max(|k|, |l|)]β and both |k|, |l| > 1/3|ε|. We have
to distinguish two sub-cases. For this, ∀k ∈ Z, let j = j(k) ≥ 1 be an integer such that αk :=
minn 	=|k| |ω2k2 − λk,n| = |ω2k2 − λk,j |. Analogously let i = i(k) ≥ 1 be an integer such that αl =
|ω2l2 − λl,i|.

• Third case: 0 < |k− l| < (1/2)[max(|k|, |l|)]β , |k|, |l| > 1/3|ε| and k− l = j − i. Then (αkαl)−1 ≤
C/γ|ε|τ−1.

Indeed |(ωk− j)− (ωl− i)| = |ω(k− l)− (j − i)| = |ω− 1||k− l| ≥ |ε|/2 and therefore |ωk− j| ≥ |ε|/4
or |ωl − i| ≥ |ε|/4. Assume for instance that |ωk − j| ≥ |ε|/4. Then |ω2k2 − j2| = |ωk − j| |ωk + j| ≥
|ε|ωk/2 ≥|ε|(1 − 2|ε|)k/2 and so, for ε small enough, |αk| ≥ |ε|k/4. Hence, since l ≤ 2k and k > 1/3|ε|,

1
αkαl

≤ C
lτ−1

γ|ε|k ≤ C

γk2−τ |ε| ≤
C

γ|ε|τ−1
.

• Fourth case: 0 < |k−l| < (1/2)[max(k, l)]β , k, l > 1/3|ε| and k−l �= j−i. Then (αkαl)−1 ≤ C/γ2.

Using that ω is γ-τ -Diophantine, we get∣∣∣(ωk − j) − (ωl − i)
∣∣∣ =

∣∣∣ω(k − l) − (j − i)
∣∣∣ ≥ γ

|k − l|τ ≥ Cγ

[max(k, l)]βτ
≥ C

2

( γ

kβτ
+

γ

lβτ

)
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so that |ωk − j| ≥ Cγ/2kβτ or |ωl − i| ≥ Cγ/2lβτ . Therefore |ω2k2 − j2| ≥ C ′γk1−βτ = C ′γkτ−1, since
β := (2 − τ)/τ . Hence, for ε small enough, αk ≥ C ′γkτ−1/2. We estimate αl with the worst possible
lower bound and so, using also l ≤ 2k, we obtain

1
αkαl

≤ Clτ−1

γ2kτ−1
≤ C

γ2
.

Collecting the estimates of all the previous cases, (88) follows.

Remark 4.1 The analysis of the small divisors in the Cases II)-III)-IV) of the previous Lemma corre-
sponds, in the language of [12], to the property of “separation of the singular sites”.

Lemma 4.6 (Bound of an off-diagonal operator) Assume that δ ∈ ∆γ,τ
n (v1, w) ∩ [0, δ0) and let, for

some s′ ≥ s, b(t, x) ∈ Xσ,s′+ τ−1
β

satisfy b0(x) = 0, i.e.
∫ 2π

0
b(t, x) dt ≡ 0, ∀x ∈ (0, π). Define the operator

Tn : W (n) → W (n) by
Tnh := |D|−1/2PnΠW

(
b(t, x) |D|−1/2h

)
.

There is a constant C̃, independent of b(t, x) and of n, such that∥∥∥Tnh
∥∥∥

σ,s′
≤ C̃

|ε| τ−1
2 γ

‖b‖σ,s′+ τ−1
β

‖h‖σ,s′ ∀h ∈ W (n) .

Proof. For h ∈ W (n), we have (Tnh)(t, x) =
∑

|k|≤Ln
(Tnh)k(x) exp(ikt), with

(Tnh)k = |Dk|−1/2πk

(
b |D|−1/2h

)
k

= |Dk|−1/2πk

[ ∑
|l|≤Ln

bk−l|Dl|−1/2hl

]
. (89)

Set Bm := ‖bm(x)‖H1 . From (89) and (83), using that B0 := ‖b0(x)‖H1 = 0,∥∥∥(Tnh)k

∥∥∥
H1

≤ C
∑

|l|≤Ln,l 	=k

Bk−l√
αk

√
αl

‖hl‖H1 . (90)

Hence, by (88) ∥∥∥(Tnh)k

∥∥∥
H1

≤ C

γ|ε| τ−1
2

sk where sk :=
∑

|l|≤Ln

Bk−l|k − l| τ−1
β ‖hl‖H1 . (91)

By (91), setting s̃(t) :=
∑

|k|≤Ln
sk exp(ikt) (with s−k = sk),∥∥∥Tnh

∥∥∥2

σ,s′
=

∑
|k|≤Ln

exp (2σ|k|)(k2s′
+ 1)

∥∥∥(Tnh)k

∥∥∥2

H1

≤ C2

γ2|ε|τ−1

∑
|k|≤Ln

exp (2σ|k|)(k2s′
+ 1)s2

k =
C2

γ2|ε|τ−1
‖s̃‖2

σ,s′ . (92)

It turns out that s̃ = Pn(̃bc̃) where b̃(t) :=
∑

l∈Z |l| τ−1
β Bl exp(ilt) and c̃(t) :=

∑
|l|≤Ln

‖hl‖H1 exp(ilt).
Therefore, by (92) and since s′ > 1/2,∥∥∥Tnh

∥∥∥
σ,s′

≤ C

γ|ε| τ−1
2

‖b̃c̃‖σ,s′ ≤ C

γ|ε| τ−1
2

‖b̃‖σ,s′‖c̃‖σ,s′ ≤ C

γ|ε| τ−1
2

‖b‖σ,s′+ τ−1
β

‖h‖σ,s′

since ‖b̃‖σ,s′ ≤ ‖b‖σ,s′+ τ−1
β

and ‖c̃‖σ,s′ = ‖h‖σ,s′ .

Before proving the smallness of the “off-diagonal” operator R1 and of R2 we need the following
preliminary Lemma which gives a suitable estimate of the multiplicative function a(t, x).
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Lemma 4.7 There are µ > 0, δ0 > 0 and C > 0 with the following property : if ‖v1‖0,s ≤ 2R, [w]σ,s ≤ µ
and δ ∈ [0, δ0), then ‖a‖

σ,s+
2(τ−1)

β

≤ C.

Proof. By the Definition 3.2 of [w]σ,s there are hi ∈ W (i), 0 ≤ i ≤ q, and a sequence (σi)0≤i≤q with
σi > σ, such that w = h0 + h1 + . . . + hq and

q∑
i=0

‖hi‖σi,s

(σi − σ)
2(τ−1)

β

≤ 2[w]σ,s ≤ 2µ . (93)

An elementary calculus, using that maxk≥1 kα exp{−(σi − σ)k} ≤ C(α)/(σi − σ)α, gives

‖hi‖σ,s+
2(τ−1)

β

≤ C(τ)
‖hi‖σi,s

(σi − σ)
2(τ−1)

β

. (94)

Hence, by (93)-(94)

‖w‖
σ,s+

2(τ−1)
β

≤
q∑

i=0

‖hi‖σ,s+
2(τ−1)

β

≤
q∑

i=0

C(τ)
‖hi‖σi,s

(σi − σ)
2(τ−1)

β

≤ C(τ)2µ .

By Lemma 2.1-d), provided δ0 is small enough, also ‖v2(δ, v1, w)‖
σ,s+

2(τ−1)
β

≤ C ′ and therefore

‖a‖
σ,s+

2(τ−1)
β

=
∥∥∥(∂ug)

(
δ, x, v1 + w + v2(δ, v1, w)

)∥∥∥
σ,s+

2(τ−1)
β

≤ C.

This bound is a consequence of the analyticity assumption (H) on the nonlinearity f , the Banach algebra
property of Xσ,s+2(τ−1)/β , and can be obtained as in (22).

Lemma 4.8 (Estimate of R1) Under the hypotheses of (P3), there exists a constant C > 0 depending
on µ such that ∥∥∥R1h

∥∥∥
σ,s+ τ−1

2

≤ |ε| 3−τ
2

C

γ
‖h‖σ,s+ τ−1

2
∀h ∈ W (n).

Proof. Recalling the definition of R1 := |D|−1/2M1|D|−1/2 and M1, and using Lemma 4.6 since
a(t, x) has zero time-average,∥∥∥R1h

∥∥∥
σ,s+ τ−1

2

=
∥∥∥ |D|−1/2M1|D|−1/2h

∥∥∥
σ,s+ τ−1

2

= |ε|
∥∥∥|D|−1/2PnΠW

(
a |D|−1/2h

)∥∥∥
σ,s+ τ−1

2

≤ |ε| C̃

|ε| τ−1
2 γ

‖a‖σ,s+ τ−1
2 + τ−1

β
‖h‖σ,s+ τ−1

2
≤ |ε| 3−τ

2
C̃

γ
‖a‖

σ,s+
2(τ−1)

β

‖h‖σ,s+ τ−1
2

≤ |ε| 3−τ
2

C

γ
‖h‖σ,s+ τ−1

2

since 0 < β < 1 and, by Lemma 4.7, ‖a‖
σ,s+

2(τ−1)
β

≤ ‖a‖
σ,s+

2(τ−1)
β

≤ C.

The “smallness” of R2 := |D|−1/2M2|D|−1/2 w.r.t. U , is just a consequence of Lemma 4.7 and of the
regularizing property of ∂wv2 : Xσ,s → Xσ,s+2 proved in Lemma 2.1: by (86) the “loss of τ−1 derivatives”
due to |D|−1/2 applied twice, is compensated by the gain of 2 derivatives due to ∂wv2 : Xσ,s → Xσ,s+2.

Lemma 4.9 (Estimate of R2) Under the hypotheses of (P3), there exists a constant C > 0 depending
on µ such that ∥∥∥R2h

∥∥∥
σ,s+ τ−1

2

≤ C
|ε|
γ

‖h‖σ,s+ τ−1
2

∀h ∈ W (n).
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Proof. By (86) and the regularizing estimates ‖∂wv2[u]‖σ,s+2 ≤ C‖u‖σ,s of Lemma 2.1 we get∥∥∥R2h
∥∥∥

σ,s+ τ−1
2

≤ C√
γ

∥∥∥M2|D|−1/2h
∥∥∥

σ,s+τ−1
= C

|ε|√
γ

∥∥∥PnΠW

(
a ∂wv2

[
|D|−1/2h

])∥∥∥
σ,s+τ−1

≤ C
|ε|√
γ

‖a‖σ,s+τ−1

∥∥∥∂wv2

[
|D|−1/2h

]∥∥∥
σ,s+τ−1

≤ C ′ |ε|√
γ

‖a‖σ,s+τ−1

∥∥∥∂wv2

[
|D|−1/2h

]∥∥∥
σ,s+2

≤ C
|ε|√
γ

‖a‖σ,s+τ−1

∥∥∥|D|−1/2h
∥∥∥

σ,s
≤ C ′ |ε|

γ
‖h‖σ,s+ τ−1

2

since τ < 3 and by Lemma 4.7, ‖a‖σ,s+τ−1 ≤ ‖a‖
σ,s+

2(τ−1)
β

≤ C.

Proof of property (P3) completed. Under the hypothesis of (P3), the linear operator U is
invertible by Lemma 4.4 and, by Lemmas 4.9 and 4.8, provided δ is small enough,∥∥∥U−1R1

∥∥∥
σ,s+ τ−1

2

,
∥∥∥U−1R2

∥∥∥
σ,s+ τ−1

2

<
1
4

.

Therefore also the linear operator U −R1 −R2 is invertible and its inverse satisfies∥∥∥(U −R1 −R2)−1h
∥∥∥

σ,s+ τ−1
2

=
∥∥∥(I − U−1R1 − U−1R2)−1U−1h

∥∥∥
σ,s+ τ−1

2

(95)

≤ 2‖U−1h‖σ,s+ τ−1
2

≤ C‖h‖σ,s+ τ−1
2

∀h ∈ W (n). (96)

Hence Ln is invertible, L−1
n = |D|−1/2(U −R1 −R2)−1|D|−1/2 : W (n) → W (n), and by (86), (95),

‖L−1
n h‖σ,s =

∥∥∥|D|−1/2(U −R1 −R2)−1|D|−1/2h
∥∥∥

σ,s
≤ C√

γ

∥∥∥(U −R1 −R2)−1|D|−1/2h
∥∥∥

σ,s+ τ−1
2

≤ C ′
√

γ

∥∥∥|D|−1/2h
∥∥∥

σ,s+ τ−1
2

≤ C ′′

γ
‖h‖σ,s+τ−1 ≤ C ′′

γ
(Ln)τ−1‖h‖σ,s

because h ∈ W (n). This completes the proof of property (P3).

5 Solution of the (Q1)-equation

Once the (Q2) and (P )-equations are solved (with “gaps” for the latter), the last step is to find solutions
of the finite dimensional (Q1)-equation

−∆v1 = ΠV1G(δ, v1) (97)

where
G(δ, v1)(t, x) := g

(
δ, x, v1(t, x) + w̃(δ, v1)(t, x) + v2(δ, v1, w̃(δ, v1))(t, x)

)
.

We are interested in solutions (δ, v1) which belong to the Cantor set B∞.

5.1 The (Q1)-equation for δ = 0

For δ = 0 the (Q1)-equation (97) reduces to

−∆v1 = ΠV1G(0, v1) = s∗ΠV1

(
ap(x)(v1 + v2(0, v1, 0))p

)
(98)

which is the Euler-Lagrange equation of Ψ0 : B(2R, V1) → R,

Ψ0(v1) := Φ0(v1 + v2(0, v1, 0)) , (99)
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where Φ0 : V → R is defined in (12).
In fact, since v2(0, v1, 0) solves the (Q2)-equation (for δ = 0, w = 0), dΦ0(v1 + v2(0, v1, 0))[k] = 0,

∀k ∈ V2. Moreover, since ∀h ∈ V1, Dv1v2(0, v1, 0)[h] ∈ V2,

dΨ0(v1)[h] = dΦ0(v1 + v2(0, v1, 0))
[
h + Dv1v2(0, v1, 0)[h]

]
= dΦ0(v1 + v2(0, v1, 0))[h]

=
∫

Ω

[
− ∆v1 − s∗ΠV1

(
ap(x)(v1 + v2(0, v1, 0))

)p]
h . (100)

Hence v1 is a critical point of Ψ0 iff it is a solution of equation (98).

Lemma 5.1 Let v be the non-degenerate solution of equation (11) introduced in Theorem 1.2. Then
v1 := ΠV1v ∈ B(R; V1) is a non-degenerate solution of (98).

Proof. By Lemma 2.1-b), ΠV2v = v2(0, v1, 0). Hence, since v solves (11), v1 solves (98). Now assume
that h1 ∈ V1 is a solution of the linearized equation at v1 of (98). This means

−∆h1 = s∗ΠV1

(
pap(x)(v1 + v2(0, v1, 0))p−1(h1 + h2)

)
(101)

where h2 := Dv1v2(0, v1, 0)[h1] ∈ V2. Now, by the definition of the map v2, we have

−∆v2(0, v1, 0) = s∗ΠV2

(
ap(x)(v1 + v2(0, v1, 0))p

)
, ∀v1 ∈ B(2R, V1) ,

from which we derive, taking the differential at v1,

−∆h2 = s∗ΠV2

(
pap(x)(v1 + v2(0, v1, 0))p−1(h1 + h2)

)
. (102)

Summing (101) and (102), we obtain that h = h1 +h2 is a solution of the linearized form at v of equation
(11). Since v is a non-degenerate solution of (11), h = 0, hence h1 = 0. As a result, v1 = ΠV1v is a
non-degenerate solution of (98).

5.2 Proof of Theorem 1.2

By assumption, v is a non-degenerate solution of equation (11). Hence, by Lemma 5.1, v1 = ΠV1v ∈
B(R, V1) is a non degenerate solution of (98).

Since the map (δ, v1) → −∆v1 − ΠV1G(δ, v1) is in C∞([0, δ0) × V1; V1), by the Implicit Function
Theorem, there is a C∞ path

δ 
→ v1(δ) ∈ B(2R, V1)

such that v1(δ) is a solution of (97) and v1(0) = v1.
By Theorem 3.1, the function

ũ(δ) := δ
[
v1(δ) + v2

(
δ, v1(δ), w̃(δ, v1(δ))

)
+ w̃(δ, v1(δ))

]
∈ Xσ/2,s (103)

is a solution of equation (3) if δ belongs to the Cantor-like set

C :=
{

δ ∈ [0, δ0) | (δ, v1(δ)) ∈ B∞
}

.

By Proposition 3.2, the smoothness of v1(·) implies that the Cantor set C has full density at the origin,
i.e. satisfies the measure estimate (4).

Finally, by (103), since v = v1 + v2(0, v1, 0),∥∥∥ũ(δ) − δv
∥∥∥

σ/2,s
= δ

∥∥∥(v1(δ) − v1) +
(
v2(δ, v1(δ), w̃(δ, v1(δ))) − v2(0, v1, 0)

)
+ w̃(δ, v1(δ))

∥∥∥
σ/2,s

≤ δ
(
‖v1(δ) − v1‖σ/2,s +

∥∥∥v2(δ, v1(δ), w̃(δ, v1(δ))) − v2(0, v1, 0)
∥∥∥

σ/2,s

+ ‖w̃(δ, v1(δ))‖σ/2,s

)
= O(δ2)
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by (57).
This proves Theorem 1.2 in the case when v is non-degenerate in the whole space V .

Now, we can look for 2π/n time-periodic solutions of (3) as well (they are particular 2π periodic solutions).
Let

Xσ,s,n :=
{

u ∈ Xσ,s | u is
2π

n
time − periodic

}
= Vn ⊕ Wn

where Vn (defined in (14)) and Wn are the subspaces of V and W formed by the functions 2π/n-periodic
in t.

Introducing an appropriate finite dimensional subspace V1,n ⊂ Vn we split Vn = V1,2 ⊕ V2,n and we
obtain associated (Q1),(Q2),(P )-equations as in (15).

With the arguments of sections 2 and 3 we can solve the (Q2) and (P )-equations exactly as in the
case n = 1.

The 0th-order bifurcation equation is again equation (11), but in Vn, and the corresponding functional
is just the restriction of Φ0 to Vn.

The main assumption of Theorem 1.2 -that at least one of the critical points of (Φ0)|Vn
, called v, is

non-degenerate- allows to find a C∞-path δ 
→ v1(δ) ∈ V1,n of solutions of equation (97).
As above this implies the conclusions of Theorem 1.2.

6 Proof of Theorem 1.1

For this section we define the linear map Hn : V → V by:

for v(t, x) = η(t + x) − η(t − x) ∈ V , (Hnv)(t, x) := η(n(t + x)) − η(n(t − x))

so that Vn = HnV .

6.1 Case f(x, u) = a3(x)u3 + O(u4)

Lemma 6.1 Let 〈a3〉 := (1/π)
∫ π

0
a3(x) �= 0. Taking s∗ = sign〈a3〉, ∃ n0 ∈ N such that ∀n ≥ n0 the 0th

order bifurcation equation (16) has a solution v ∈ Vn which is non degenerate in Vn.

Proof. Equation (16) is the Euler-Lagrange equation of

Φ0(v) =
‖v‖2

H1

2
− s∗

∫
Ω

a3(x)
v4

4
. (104)

The functional Φn(v) := Φ0(Hnv) has the following development: for v(t, x) = η(t + x) − η(t − x) ∈ V
we obtain, using that

∫
Ω

v4 =
∫
Ω
(Hnv)4,

Φn(v) = 2πn2

∫
T

η̇2(t)dt − s∗〈a3〉
∫

Ω

v4

4
− s∗

∫
Ω

(
a3(x) − 〈a3〉

) (Hnv)4

4
.

We choose s∗ = sign〈a3〉 so that s∗〈a3〉 > 0. To simplify notations take 〈a3〉 > 0 so s∗ = 1.

Φn

( √
2n√〈a3〉

v
)

=
8πn4

〈a3〉
[1
2

∫
T

η̇2(s)ds − 1
8π

∫
Ω

v4 +
1
8π

∫
Ω

(a3(x)
〈a3〉 − 1

)
(Hnv)4 dt dx

]
=

8πn4

〈a3〉 [Ψ(η) + Rn(v)]

where
Ψ(η) :=

1
2

∫
T

η̇2(s)ds − 1
4

∫
T

η4(s)ds − 3
8π

( ∫
T

η2(s)ds
)2

,

Rn(v) :=
1
8π

∫
Ω

b(x)(Hnv)4 dt dx, b(x) :=
a3(x)
〈a3〉 − 1.
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Let E := {η ∈ H1(T) | η is odd}. It is enough to prove that Ψ : E → R has a non-degenerate critical
point η and that Rn is small for large n, see Lemma 6.2. Indeed the operator Ψ′′(η) has the form
Id+Compact so that if its kernel is 0 then Ψ′′(η) is invertible. Hence, by the implicit function theorem,
for n large enough, Φn too (hence Φ0|Vn

) has a non-degenerate critical point.
The critical points of Ψ in E are the 2π-periodic odd solutions of

η̈ + η3 + 3〈η2〉η = 0 . (105)

By [2] it is known that there exists a solution of (105) which is a non-degenerate critical point of Ψ in E.
It remains to prove Lemma 6.2.

Lemma 6.2 There holds

‖DRn(v)‖, ‖D2Rn(v)‖ → 0 as n → +∞ (106)

uniformly for v in bounded sets of E.

Proof. We shall prove the estimate only for D2Rn. We have

D2Rn(v)[h, k] =
3
2π

∫
Ω

b(x)(Hnv)2(Hnh) (Hnk) =
3
2π

∫ π

0

b(x)g(nx) dx

where g(y) is the π-periodic function defined by

g(y) :=
∫
T

(η(t + y) − η(t − y))2(β(t + y) − β(t − y))(γ(t + y) − γ(t − y))dt ,

β and γ being associated with h and k as η is with v. Developing in Fourier series g(y) =
∑

l∈Z gl exp(i2ly)
we have g(nx) =

∑
l∈Z gl exp(i2lnx). Extending b(x) to a π-periodic function, we also write b(x) =∑

l∈Z bl exp(i2lx), with b0 = 〈b〉 = 0. Therefore

|D2Rn(vn)[h, k]| =
3
2

∣∣∣ ∑
l 	=0

glb−ln

∣∣∣ ≤ 3
2

( ∑
l 	=0

g2
l

)1/2( ∑
l 	=0

b2
ln

)1/2

≤ 3
2
‖g‖L2(0,π)

( ∑
l 	=0

b2
ln

)1/2

≤ C‖η‖2
∞‖β‖∞‖γ‖∞

( ∑
l 	=0

b2
ln

)1/2

≤ C‖v0‖2
H1‖h‖H1‖k‖H1

( ∑
l 	=0

b2
ln

)1/2

.

Since (
∑

l 	=0 b2
ln)1/2 → 0 as n → ∞ it proves (106). With a similar calculus we can prove that DRn(v) → 0

as n → +∞.

6.2 Case f(x, u) = a2u
2 + O(u4)

With the frequency-amplitude relation (17) system (7) with p = 2 becomes{ −∆v = −δ−1ΠV gδ(x, v + w) (Q)
Lωw = δΠW gδ(x, v + w) (P ) (107)

where

gδ(x, u) =
f(x, δu)

δ2
= a2u

2 + δ2a4(x)u4 + ... . (108)

With the further rescaling
w → δw

and since v2 ∈ W , system (107) is equivalent to⎧⎨⎩ −∆v = ΠV

(
− 2a2vw − a2δw

2 − δr(δ, x, v + δw)
)

(Q)

Lωw = a2v
2 + δΠW

(
2a2vw + δa2w

2 + δr(δ, x, v + δw)
)

(P )
(109)
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where r(δ, x, u) = δ−4(f(x, δu) − a2δ
2u2) = a4(x)u4 + ....

For δ = 0 system (109) reduces to { −∆v = −2a2ΠV (vw)
Lw = a2v

2 (110)

where L := −∂tt + ∂xx, and it is equivalent to w = a2L
−1v2, −∆v = −2a2

2ΠV (vL−1v2), namely to the
0th order bifurcation equation (18).

Lemma 6.3 If a2 �= 0, ∃ n0 ∈ N such that ∀n ≥ n0 the 0th order bifurcation equation (18) has a solution
v ∈ Vn which is non-degenerate in Vn.

Proof. We have to prove that Φn(v) := Φ0(Hnv), where Φ0 is defined in (19), possesses non-degenerate
critical points at least for n large.

Φn admits the following development (Lemmas 3.7 and 3.8 in [6]): for v(t, x) = η(t + x) − η(t − x)

Φn(v) = 2πn2

∫
T

η̇2(t)dt − π2a2
2

12

( ∫
T

η2(t) dt
)2

+
a2
2

2n2

( ∫
Ω

v2L−1v2 +
π2

6

( ∫
T

η2(t) dt
)2)

.

Hence we can write

Φn

(√
12n√
πa2

v
)

=
48n4

a2
2

[1
2

∫
T

η̇2(s) ds − 1
4

( ∫
T

η2(s) ds
)2

+
1
n2

R(η)
]

=
48n4

a2
2

[
Ψ(η) +

1
n2

R(η)
]

(111)

where
Ψ(η) =

1
2

∫
T

η̇2(s) ds − 1
4

( ∫
T

η2(s) ds
)2

and R : E → R is a smooth functional defined on E := {η ∈ H1(T) | η odd}. By (111), in order to
prove that Φn has a non-degenerate critical point for n large enough, it is enough to prove the following
Lemma.

Lemma 6.4 Ψ : E → R possesses a non degenerate critical point.

Proof. The critical points of Ψ in E are the 2π-periodic odd solutions of the equation

η̈ +
( ∫

T

η2(t) dt
)
η = 0 . (112)

Equation (112) has a 2π-periodic solution of the form η̄(t) = (1/
√

π) sin t.
We claim that η̄ is non-degenerate. The linearized equation of (112) at η̄ is

ḧ + h +
2
π

( ∫
T

sin t h(t) dt
)

sin t = 0. (113)

Developing in time-Fourier series h(t) =
∑

k≥1 ak sin kt we find out that any solution of the linearized
equation (113) satisfies

−k2ak + ak = 0, ∀k ≥ 2, a1 = 0

and therefore h = 0.

As in Theorem 1.2, the existence of a solution v of the 0th order bifurcation equation which is non
degenerate in some Vn entails the conclusions of Theorem 1.2. To avoid cumbersome notations, we still
give the main arguments assuming that n = 1.

Since for δ = 0 the solution of the (P )-equation in (110) is w = a2L
−1v2, it is convenient to perform

the change of variable
w = a2L

−1v2 + y , y ∈ W . (114)
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System (109) is then written⎧⎨⎩ −∆v = −2a2
2ΠV (vL−1v2) + ΠV

(
− 2a2vy − a2δw

2 − δr(δ, x, v + δw)
)

(Q′)

Lωy = 2a2δ
2R(v2) + δΠW

(
2a2vw + δa2w

2 + δr(δ, x, v + δw)
)

(P ′)
(115)

where w is a function of v and y through (114), and the linear operator in W

R := (1 − ω2)−1(I − LωL−1) = (2δ2)−1(I − LωL−1)

does not depend on ω and can be expressed as

R
( ∑

l 	=j

wl,j cos(lt) sin(jx)
)

=
∑
l 	=j

l2

l2 − j2
wl,j cos(lt) sin(jx) .

Since l2|l2 − j2|−1 = l2|l + j|−1|l − j|−1 ≤ |l|, the operator R satisfies the estimate

∀w ∈ W, ‖Rw‖σ,s ≤ ‖w‖σ,s+1 . (116)

Splitting V = V1 ⊕ V2, the (Q′)-equation is divided in two parts: the (Q′1) and the (Q′2)-equations.
Setting

R := ‖v‖0,s

the analogue of Lemma 2.1 is:

Lemma 6.5 There exist N ∈ N+, σ = ln 2/N > 0, δ0 > 0, such that, ∀ 0 ≤ σ ≤ σ, ∀ ‖v1‖0,s ≤ 2R,
∀ ‖y‖σ,s ≤ 1, ∀ δ ∈ [0, δ0), there exists a unique solution v2(δ, v1, y) ∈ V2 ∩Xσ,s of the (Q′2)-equation with
‖v2(δ, v1, y)‖σ,s ≤ 1. Moreover v2(0, ΠV1v, 0) = ΠV2v, v2(δ, v1, y) ∈ Xσ,s+2 and the regularizing property∥∥∥Dwv2(δ, v1, y)[h]

∥∥∥
σ,s+2

≤ C‖h‖σ,s (117)

holds, where C is some positive constant.

Substituting v2 = v2(δ, v1, y) into the (P ′)-equation yields

Lωy = δΓ(δ, v1, y) := δΓ̃(δ, v1 + v2(δ, v1, y), y) (118)

where

Γ̃(δ, v, y) := 2δa2R(v2) + ΠW

(
2a2v(a2L

−1(v2) + y) + δa2(a2L
−1(v2) + y)2

+δr(δ, x, v + δ(a2L
−1(v2) + y))

)
.

The (P ′)-equation (118) can be solved as in sections 3-4 with slight changes that we specify.

Theorem 6.1 (Solution of the (P ′)-equation) For δ0 > 0 small enough, there exists a C∞-function
ỹ : [0, δ0) × B(2R, V1) → W ∩ Xσ/2,s satisfying ỹ(0, v1) = 0, ‖ỹ‖σ/2,s = O(δ), ‖Dkỹ‖σ/2,s = O(1), and
verifying the following property : let

B∞ :=
{

(δ, v1) ∈ [0, δ0) × B(2R, V1) :
∣∣∣ω(δ)l − j − δ

M(δ, v1, ỹ(δ, v1))
2j

∣∣∣ ≥ 2γ

(l + j)τ
,∣∣∣ω(δ)l − j

∣∣∣ ≥ 2γ

(l + j)τ
, ∀l ≥ 1

3δ2
, l �= j

}
,

where ω(δ) =
√

1 − 2δ2 and M(δ, v1, y) is defined in (119). Then ∀(δ, v1) ∈ B∞, ỹ(δ, v1) solves the
(P ′)-equation (118).
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Proof. As before, the key point is the inversion, at each step of the iterative process, of a linear
operator

Ln(δ, v1, y)[h] = Lωh − δPnΠW DyΓ(δ, v1, y)[h] , h ∈ W (n) .

We have

DyΓ(δ, v1, y)[h] = DyΓ̃(δ, v1 + v2(δ, v1, y), y)[h] + DvΓ̃(δ, v1 + v2(δ, v1, y), y)Dyv2(δ, v1, y)[h]

and, as it can be directly verified,

DyΓ̃(δ, v, y)[h] = ΠW

(
(∂ugδ)(x, v + δw)h

)
where gδ is defined in (108) and w is given by (114). As in section 4, setting a(t, x) := (∂ugδ)(x, v(t, x) +
δw(t, x)), we can decompose Ln(δ, v1, y) = D −M1 −M2 where (with the notations of section 4)⎧⎨⎩

Dh := Lωh − δPnΠW (a0(x)h)
M1h := δPnΠW (a(t, x)h)
M2h := δPnΠW DvΓ̃(δ, v1 + v2(δ, v1, y), y)Dyv2(δ, v1, y)[h] .

As in Lemma 4.1, the eigenvalues of the similarly defined operator Sk satisfy λk,j = j2 + δM(δ, v1, y) +
O(δ/j), where

M(δ, v1, y) :=
1
|Ω|

∫
Ω

(∂ugδ)
(
x, v1 + v2(δ, v1, y) + δw(t, x)

)
dxdt, w = a2L

−1(v2) + y . (119)

The bounds for the operator D (Lemma 4.3, Corollary 4.2) still hold assuming an analogous non res-
onance condition, and we can define in the same way the operators U , R1, R2, with ‖U−1h‖σ,s′ =
(1 + O(δ))‖h‖σ,s′ . With the same arguments we obtain for R1 the bound∥∥∥R1h

∥∥∥
σ,s+ τ−1

2

≤ δ2−τ C

γ
‖h‖σ,s+ τ−1

2

which is enough since τ < 2.
For the estimate of R2 the most delicate term to deal with is δ2|D|−1/2DyF |D|−1/2, where

F (δ, v1, y) := R
(
(v1 + v2(δ, v1, y))2

)
,

because the operator R induces a loss of regularity, see (116). However, again the regularizing property
(117) of the map v2 enables to obtain the bound∥∥∥R2h

∥∥∥
σ,s+ τ−1

2

≤ C
δ

γ
‖h‖σ,s+ τ−1

2
. (120)

The key point is that the loss of (τ − 1) derivatives due to |D|−1/2 applied twice, added to the loss of 1
derivative due to R in (116) is compensated by the gain of 2 derivatives with v2, whenever τ < 2. Let us
enter briefly into details.∥∥∥DyF (δ, v1, y)[h]

∥∥∥
σ,s+1

=
∥∥∥2R

(
(v1 + v2)Dyv2(δ, v1, y)[h]

)∥∥∥
σ,s+1

≤ 2
∥∥∥(v1 + v2)Dyv2(δ, v1, y)[h]

∥∥∥
σ,s+2

≤ C‖(v1 + v2)‖σ,s+2

∥∥∥Dyv2(δ, v1, y)[h]
∥∥∥

σ,s+2

≤ K(N,R, ‖y‖σ,s)‖h‖σ,s

by the regularizing property (117) of v2. We can then derive (120) as in the proof of Lemma 4.9, using
that τ < 2.
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Finally, inserting ỹ(δ, v1) in the (Q1′)-equation, we get

−∆v1 = G(δ, v1) (121)

where
G(0, v1) := −ΠV1

(
2a2(v1 + v2(0, v1, 0))L−1(v1 + v2(0, v1, 0))2

)
.

As in subsection 5.2, since Φ0 : V → R possesses a non-degenerate critical point v, the equation −∆v1 =
G(0, v1) has the non-degenerate solution v1 := ΠV1v ∈ B(R, V1) and, by the Implicit function theorem,
there exists a smooth path δ 
→ v1(δ) ∈ B(2R, V1) of solutions of (121) with v1(0) = v. As in Proposition
3.2 this implies that the set C = {δ ∈ (0, δ0) | (δ, v1(δ)) ∈ B∞} has asymptotically full measure at 0.

7 Appendix

Lemma 7.1 If q is an even integer, then∫
Ω

a(x)vq(t, x) dt dx = 0, ∀v ∈ V ⇐⇒
{

a(π − x) = −a(x), ∀x ∈ [0, π]
}

.

If q ≥ 3 is an odd integer, then∫
Ω

a(x)vq(t, x) dt dx = 0, ∀v ∈ V ⇐⇒
{

a(π − x) = a(x), ∀x ∈ [0, π]
}

.

Proof. We first assume that q = 2s is even. If a(π − x) = −a(x) ∀x ∈ (0, π), then, for all v ∈ V ,∫
Ω

a(x)v2s(t, x) dt dx =
∫

Ω

a(π − x)v2s(t, π − x) dt dx =
∫

Ω

−a(x)(−v(t + π, x))2s dt dx

= −
∫

Ω

a(x)v2s(t, x) dt dx

and so
∫
Ω

a(x)v2s(t, x) dt dx = 0.
Now assume that Σ(v) :=

∫
Ω

a(x)v2s(t, x) dt dx = 0 ∀v ∈ V . Writing that D2sΣ = 0, we get∫
Ω

a(x)v1(t, x) . . . v2s(t, x) dt dx = 0, ∀(v1, . . . , v2s) ∈ V 2s.

Choosing v2s(t, x) = v2s−1(t, x) = cos (lt) sin(lx), we obtain

1
4

∫
Ω

a(x)v1(t, x) . . . v2(s−1)(t, x)(cos(2lt) + 1)(1 − cos(2lx)) dt dx = 0

Taking limits as l → ∞, there results
∫
Ω

a(x)v1(t, x) . . . v2(s−1)(t, x) dt dx = 0 ∀(v1, . . . , v2(s−1)) ∈ V 2(s−1).
Iterating this operation, we finally get

∀(v1, v2) ∈ V 2

∫
Ω

a(x)v1(t, x)v2(t, x) dt dx = 0, and
∫ π

0

a(x) dx = 0.

Choosing v1(t, x) = v2(t, x) = cos(lt) sin(lx) in the first equality, we derive that
∫ π

0
a(x) sin2(lx) dx = 0.

Hence ∀l ∈ N
∫ π

0
a(x) cos(2lx) dx = 0. This implies that a is orthogonal in L2(0, π) to F = {b ∈

L2(0, π) | b(π − x) = b(x) a.e.}. Hence a(π − x) = −a(x) a.e., and, since a is continuous, the identity
holds everywhere.
We next assume that q = 2s + 1 is odd, q ≥ 3. The first implication is derived in a similar way. Now
assume that

∫
Ω

a(x)vq(t, x) dt dx = 0 ∀v ∈ V . We can prove exactly as in the first part that

∀(v1, v2, v3) ∈ V 3

∫
Ω

a(x)v1(t, x)v2(t, x)v3(t, x) dt dx = 0.
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Choosing v1(t, x) = cos(l1t) sin(l1x), v2(t, x) = cos(l2t) sin(l2x), v3(t, x) = cos((l1 + l2)t) sin((l1 + l2)x)
and using the fact that

∫ 2π

0
cos(l1t) cos(l2t) cos((l1 + l2)t) dt �= 0, we obtain∫ π

0

a(x)
[
sin2(l1x) sin(l2x) cos(l2x) + sin2(l2x) sin(l1x) cos(l1x)

]
dx =∫ π

0

a(x) sin(l1x) sin(l2x) sin
(
(l1 + l2)x

)
dx = 0.

(122)

Letting l2 go to infinity and taking limits, (122) yields
∫ π

0
(1/2)a(x) sin(l1x) cos(l1x) dx = 0. Hence∫ π

0
a(x) sin(2lx) = 0, ∀l > 0. This implies that, in L2(0, π), a is orthogonal to G = {b ∈ L2(0, π) | b(π −

x) = −b(x) a.e.}. Hence a(π − x) = a(x) ∀x ∈ (0, π).

Proof of Lemma 4.1. Let Kk(ε) = S−1
k (ε) be the self-adjoint compact operator of Fk defined by

〈Kk(ε)u, v〉ε = (u, v)L2 , ∀u, v ∈ Fk

(in other words Kk(ε)u is the unique weak solution z ∈ Fk of Skz := u).
Note that Kk(ε) is a positive operator, i.e. 〈Kk(ε)u, u〉ε > 0, ∀u �= 0, and that Kk(ε) is also self-adjoint

for the L2-scalar product.
By the spectral theory of compact self-adjoint operators in Hilbert spaces, there is a 〈 , 〉ε-orthonormal

basis (vk,j)j≥1,j 	=k of Fk, such that vk,j is an eigenvector of Kk(ε) associated to a positive eigenvalue
νk,j(ε), the sequence (νk,j(ε))j is non-increasing and tends to 0 as j → +∞. Each vk,j(ε) belongs to
D(Sk) and is an eigenvector of Sk with associated eigenvalue λk,j(ε) = 1/νk,j(ε), with (λk,j(ε))j≥1 → +∞
as j → +∞.

The map ε 
→ Kk(ε) ∈ L(Fk, Fk) is differentiable and K ′
k(ε) = −Kk(ε)MKk(ε), where Mu :=

πk(a0u).
For u =

∑
j 	=k αjvk,j(ε) ∈ Fk,

〈u, u〉ε =
∑
j 	=k

|αj |2 and (u, u)L2 =
∑
j 	=k

|αj |2
λk,j(ε)

.

As a consequence,

λk,j(ε) = min
{

max
u∈F,‖u‖L2=1

〈u, u〉ε ; F subspace of Fk of dimension j (if j < k) , j−1 (if j > k)
}

. (123)

It is clear by inspection that λk,j(0) = j2 and that we can choose vk,j(0) =
√

2/π sin(jx)/j. Hence, by
(123), |λk,j(ε) − j2| ≤ |ε| ‖a0‖∞ < 1, from which we derive

∀l �= j |λk,l(ε) − λk,j(ε)| ≥ (l + j) − 2 ≥ 2 min(l, j) − 1 (≥ 1). (124)

In particular, the eigenvalues λk,j(ε) (νk,j(ε)) are simple. By the variational characterization (123) we also
see that λk,j(ε) depends continuously on ε, and we can assume without loss of generality that ε 
→ vk,j(ε)
is a continuous map to Fk.

Let ϕk,j(ε) :=
√

λk,j(ε)vk,j(ε). (ϕk,j(ε))j 	=k is a L2-orthogonal family in Fk and

∀ε

{
Kk(ε)ϕk,j(ε) = νk,j(ε)ϕk,j(ε)
(ϕk,j(ε), ϕk,j(ε))L2 = 1

We observe that the L2-orthogonality w.r.t. ϕk,j(ε) is equivalent to the 〈 , 〉ε-orthogonality w.r.t. ϕk,j(ε),
and that Ek,j(ε) := [ϕk,j(ε)]⊥ is invariant under Kk(ε). Using that Lk,j := (Kk(ε) − νk,j(ε)I)|Ek,j(ε) is
invertible, it is easy to derive from the Implicit Function Theorem that the maps (ε 
→ νk,j(ε)) and
(ε 
→ ϕk,j(ε)) are differentiable.

Denoting by P the orthogonal projector onto Ek,j(ε), we have

ϕ′
k,j(ε) = L−1(−PK ′

k(ε)ϕk,j(ε)) = L−1(PKkMKkϕk,j(ε)) = νk,j(ε)L−1KkPMϕk,j(ε),
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ν′
k,j(ε) =

(
K ′

k(ε)ϕk,j(ε), ϕk,j(ε)
)

L2
= −

(
KkMKkϕk,j(ε), ϕk,j(ε)

)
L2

= −
(
MKkϕk,j(ε),Kkϕk,j(ε)

)
L2

= −ν2
k,j(ε)

(
Mϕk,j(ε), ϕk,j(ε)

)
L2

.
(125)

We have
νk,jL

−1Kk

( ∑
l 	=j

αlvk,l

)
=

∑
l 	=j

νk,jνk,l

νk,l − νk,j
αlvk,l =

∑
l 	=j

αl

λk,j − λk,l
vk,l.

Hence, by (124), |νk,jL
−1KkPu|L2 ≤ |u|L2/j. We obtain |ϕ′

k,j(ε)|L2 = O(|a0|∞/j). Hence

∣∣∣ϕk,j(ε) −
√

2
π

sin(jx)
∣∣∣
L2

= O
(ε|a0|∞

j

)
.

Hence, by (125),

λ′
k,j(ε) =

(
Mϕk,j(ε), ϕk,j(ε)

)
L2

=
∫ π

0

a0(x)(ϕk,j)2 dx

=
2
π

∫ π

0

a0(x)(sin(jx))2 dx + O
(ε|a0|2∞

j

)
Writing sin2(jx) = (1 − cos(2jx))/2, and since

∫ π

0
a0(x) cos(2jx) dx = − ∫ π

0
(a0)x(x) sin(2jx)/2j dx, we

get

λ′
k,j(ε) =

1
π

∫ π

0

a0(x) dx + O
(‖a0‖H1

j

)
= M(δ, v1, w) + O

(‖a0‖H1

j

)
.

Hence λk,j(ε) = j2+ εM(δ, v1, w)+ O(ε‖a0‖H1/j), which is the first estimate in (80).
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