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ON THE ONE-STEP-BRACKET-GENERATING
MOTION PLANNING PROBLEM

J.-P. GAUTHIER and V. ZAKALYUKIN

Abstract. We consider the general motion planning problem for
a sub-Riemannian metric with one-step bracket-generating distribu-
tion. Our results generalize earlier results in the corank-one case.
Mostly, we completely solve the problem in generic situation for
corank smaller or equal to 3. Our results are constructive: we ex-
plicitly construct the asymptotically optimal solutions.

1. Introduction. Statement of results

1.1. Basic concepts, statement of the problems. A “motion planning
problem” on an n-dimensional manifold Ξ is the data Σ = (∆, g,Γ) of a

smooth curve Γ : [0, 1] → Ξ, well parametrized, i.e.,
dΓ
dt

�= 0 for all t,

without double points, and a sub-Riemannian metric (∆, g) on Ξ. Here, ∆
is assumed to be a one-step-bracket-generating distribution over Ξ, and g is
a Riemannian metric over ∆.

In fact, we need only a germ along Γ of such an SR metric (∆, g). Then,
we may assume that Ξ ⊂ R

n is an open connected subset, and we denote by
S the set of such smooth (C∞) couples of a curve Γ and an SR metric on
Ξ, endowed with the C∞ topology (there is no need here for the Whitney
topology, since Γ is compact).

Along the paper, ε is a small parameter. Let d denote the SR distance
function, then Tε is the ε-sub-Riemannian tube Tε = {q ∈ R

n | d(q, Γ) ≤ ε},
and Cε = {q ∈ R

n | d(q, Γ) = ε} is the corresponding cylinder.
Two functions f1 and f2 in ε tending to +∞ as ε tends to zero are said

to be strongly equivalent, f1 �s f2 (respectively, f1 is “weakly equivalent”

to f2, f1 �w f2) if lim
ε→0

f1(ε)
f2(ε)

= 1 (respectively, k1 f1(ε) ≤ f2(ε) ≤ k2f1(ε)
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for sufficiently small ε and certain constants k1, k2 > 0). We also write

f1 ≥s f2 if lim inf
ε→0

f1(ε)
f2(ε)

≥ 1. This notation is consistent.

Let γ : [0, θγ ] → Tε be a (smooth, piecewise-smooth, Lipschitz) arclength-
parametrized admissible curve (i.e., almost everywhere tangent to ∆) con-
necting Γ(0) and Γ(1) : γ(0) = Γ(0), γ(θγ) = Γ(1). Then the SR length of
γ is θγ . The question is to find the minimum of this length θγ among all
the curves γ. This minimum is denoted by θ∗(ε).

Then the class of strong (respectively, weak) equivalence of the function

MCΣ(ε) =
1
ε
θ∗(ε) as ε tends to zero is called the strong (respectively, weak)

metric complexity of the given motion planning problem. This notion has
been introduced by F. Jean (see [12, 13, 14]). It is an important notion, com-
ing from practitioners in robotics. For T < 1, we also denote by MCΣ(ε, T )
the metric complexity of the piece of the curve Γ : {Γ(t)|t ≤ T}.

A strong (respectively, weak) asymptotic optimal synthesis is an (ε-
dependent) control strategy γε that realizes a strong (respectively, weak)
equivalence of the metric complexity as ε tends to zero, i.e., it is a family
{γε} of admissible curves, γε([0, θε]) ⊂ Tε, γε(0) = Γ(0), γε(θε) = Γ(1), such

that
1
ε
SR-length(γε) � MCΣ(ε). Here, we will construct an “approximate

asymptotic optimal synthesis,” i.e., a two-parameter family {γω
ε } of curves

such that MCΣ(ε) ≥s
1

ε(1 + ω)
SR-length(γω

ε ), for all ω > 0.

The case of a corank-one distribution (eventually, not one-step-bracket-
generating) has been addressed and solved in [7, 8]: explicit expressions for
the strong metric complexity were exhibited (at least in generic cases) in
terms of the basic invariants of the given motion planning problem Σ. Also,
explicit asymptotic optimal syntheses were constructed.

Our aim in this paper is to generalize these results for one-step-bracket-
generating distributions, i.e., ∆x + [∆,∆]x = TxR

n for all x ∈ Γ([0, 1]).

1.2. Statement of the results and organization of the paper. Along
the curve Γ : [0, 1] → Ξ, there is a well-defined function α : [0, 1] → R

∗
+,

which is a fundamental invariant of the given motion planning problem.
This invariant α(t) is defined in Sec. 2.7 below, and it is also denoted by
eig(Ω̃t).

In the paper, we will prove the following results.

1 (arbitrary corank). For any one-step-bracket-generating problem Σ
such that ∀t ∈ [0, 1], Γ̇(t) /∈ ∆(Γ(t)), the metric complexity satisfies the
following relation:

MCΣ(ε, T ) ≥s
2
ε2

T∫
0

dt

α(t)
.
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This is Theorem 3.1 proved in Sec. 3.

2 (corank 2 or 3). There is an open-dense subset S∗ of the set S of mo-
tion planning problems (one-step-bracket-generating), such that the metric
complexity satisfies the relation

MCΣ(ε, T ) 	s
2
ε2

T∫
0

dt

α(t)
.

This is Theorem 4.1. The purpose of Sec. 4 is to prove this theorem. More-
over, our proof is constructive: we exhibit an “approximate asymptotic
optimal synthesis.”

Of course, this expression of the metric complexity coincides with the
results of [7, 8] in the corank-one case.

Section 2 gives a certain number of preliminary results, in particular, the
definition of the set S∗ and of the invariant α.

In the appendix (Sec. 5), we give very elementary technical results that
we need in the paper.

2. Preliminaries

2.1. Notation and terminology.

1. Relevant motion planning problems. The distribution ∆ has corank
p ≥ 2.

Definition 2.1. A motion planning problem Σ = (∆, g,Γ) is said to be
relevant if for all t ∈ [0, 1], Γ̇(t) /∈ ∆(Γ(t)).

Clearly (by standard transversality arguments), this condition defines an
open-dense subset of S that we still denote by S. Note that in the corank-1
case, this set is not dense.

2. Frames. A motion planning problem can be specified by a couple (Γ, F ),
where F = (F1, . . . , Fn−p) is a frame of vector fields that generate ∆ and
that are orthonormal for g. Hence, we will also write Σ = (Γ, F ). If a global
coordinate system (x, y, w) is given on Ξ, where x ∈ R

n−p, y ∈ R
p−1, and

w ∈ R, then we write

Fj =
n−p∑
i=1

Qi,j(x, y, w)
∂

∂xi
+

p−1∑
i=1

Li,j(x, y, w)
∂

∂yi
+ Mj(x, y, w)

∂

∂w
,

j = 1, . . . , n − p.

Then the SR metric is specified by the triple (Q,L,M) of smooth x, y, w-
dependent matrices, and we write also Σ = (Γ,Q,L,M). It will often
happen that Γ, in coordinates, will be the curve: Γ(t) = (0, 0, t). In this
case, we will write Σ = (Q,L,M).
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2.2. Normal coordinates. Consider Σ ∈ S and fix a (well-) parametrized
surface S in Ξ, (y, w) → S(y, w), with the following properties: y and w are
coordinates on S that are global in a neighborhood of Γ (and we restrict
S to this neighborhood). Also, y ∈ R

p−1, w ∈ R, and S(0, w) = Γ(w) for
all w ∈ [0, 1]. Moreover, we require that S be transversal to ∆. This is
always possible, since Γ̇ /∈ ∆ (Σ is relevant). Let us define T S

ε = {q ∈ R
n |

d(q, S) ≤ ε} and CS
ε = {q ∈ R

n | d(q, S) = ε}, the sub-Riemannian S-tube
and cylinder.

Lemma 2.1 (normal coordinates with respect to S). There are map-
pings x : Ξ → R

n−p, y : Ξ → R
p−1, and w : Ξ → R such that ξ = (x, y, w)

is a coordinate system on Ξ (possibly, restricting Ξ to some neighborhood of
S) such that :

0. S(y, w) = (0, y, w);

1. ∆|S = ker dw ∩ ⋂
i=1,...,p−1

ker dyi, g|S =
n−p∑
i=1

(dxi)2;

2. CS
ε =

{
ξ

∣∣∣ n−p∑
i=1

xi
2 = ε2

}
;

3. geodesics (from the Pontryagin maximum principle [15]) satisfying
the transversality conditions with respect to S are the straight lines
through S, contained in the planes Py0,w0 = {ξ | (y, w) = (y0, w0)}
(hence, they are orthogonal to S).

These normal coordinates are unique up to changes of coordinates of the
form

x̃ = T (y, w)x, (ỹ, w̃) = (y, w), (2.1)

where T (y, w) ∈ O(n − p), the (n − p) orthogonal group.

The proof of this lemma is similar to proofs in [1, 2, 4, 5], where these
coordinates were introduced for a curve transversal to the distribution (not
for a surface). In [1], this is done in the three-dimensional case. In [2], in
the general contact case. In [4], this is done in quasi-contact case for even
dimension. The elder paper [5] introduces these coordinates in a “formal”
way. In fact, the proof is always the same, and works as soon as the curve
(surface) is transversal to the distribution.

2.3. Normal form. Consider Σ ∈ S and fix a surface S just as in Sec. 2.2.
Fix a normal coordinate system ξ = (x, y, w) given by Lemma 2.1.

Theorem 2.1 (normal form). There is a unique orthonormal frame
F = (Q,L,M) for (∆, g) with the following properties:

1. Q(x, y, w) is symmetric, Q(0, y, w) = Id (the identity matrix );
2. Q(x, y, w)x = x;
3. L(x, y, w)x = 0, M(x, y, w)x = 0.
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4. Conversely, if ξ = (x, y, w) is a coordinate system such that condi-
tions 1–3 hold, then ξ is a normal coordinate system for the SR metric
defined by the orthonormal frame F , with respect to the parametrized
surface {(0, y, w)}.

Clearly, this normal form is invariant with respect to the changes of
normal coordinates (2.1).

Let us write

Q(x, y, w) = Id +Q1(x, y, w) + Q2(x, y, w) + . . . ,

L(x, y, w) = 0 + L1(x, y, w) + L2(x, y, w) + . . . ,

M(x, y, w) = 0 + M1(x, y, w) + M2(x, y, w) + . . . ,

where Qi, Li, and Mi are matrices depending on ξ, the coefficients of which
have order i with respect to x (i.e., they are in the ith power of the ideal of
C∞(x, y, w) generated by xr, r = 1, . . . , n − p). Then, in particular, Q1 is
linear in x, Q2 is quadratic. We set u = (u1, . . . , un−p) ∈ R

n−p. Then
p−1∑
j=1

L1j
(x, y, w)uj = L1,y,w(x, u)

is quadratic in (x, u) and R
p−1-valued. Its ith component is the quadratic

expression denoted by L1,i,y,w(x, u). Similarly,
p−1∑
j=1

M1j
(x, y, w)uj = M1,y,w(x, u)

is a quadratic expression in (x, u). The corresponding matrices are denoted
by L1,i,y,w, i = 1, . . . , p − 1, and M1,y,w.

We have the following proposition.

Proposition 2.1. 1. Q1 = 0.
2. L1,i,y,w, i = 1, . . . , p − 1, and M1,y,w are skew-symmetric matrices.

Item 1 is, in fact, an SR-analog of a Bianchi identity in Riemannian
geometry.

The proof of Theorem 2.1 and Proposition 2.1 are given in [1, 2, 4, 5],
in different cases for corank-one distributions: contact for [2], quasi-contact
for [4], etc.

In fact, again, the proofs are easily (obviously) generalized to our case.
Again, it is not even necessary that the distribution be bracket-generating.
The only important point is still that the surface S is transversal to ∆.

2.4. Cylinder-box theorem in normal coordinates. The following the-
orem is a result that can be easily obtained from the normal form and the
ball-box Theorem of SR geometry (see, e.g., [10]).
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Let ξ = (x, y, w) be a normal coordinate system and F = (Q,L,M) be
the associated normal form. Assume that ∆ is one-step-bracket-generating.

Theorem 2.2 (normal cylinder-box theorem).
1. Let ξ = (x, y, w) ∈ Tε. Then

‖x‖2 ≤ ε, ‖y‖2 ≤ k2ε
2

for some k2 > 0.
2. We take 0 < ω < 1 and set

Kk1,ω
ε =

{
ξ = (x, y, w)

∣∣∣ ‖x‖2 ≤ ωε, ‖y‖2 ≤ k1ε
2
}

.

Then for sufficiently small k1, Kk1,ω
ε ⊂ Tε.

Item 1 of this theorem, together with Theorem 2.1 and Proposition 2.1,
immediately implies the following lemma.

Lemma 2.2. In normal coordinates restricted to the tubes Tε, the nor-
mal form of linear combinations of F = (F1, . . . , Fn−p) is as follows, with
u = (u1, . . . , un−p) ∈ R

n−p:

n−p∑
j=1

Fjuj =
n−p∑
j=1

uj
∂

∂xj
+

1
2

p−1∑
i=1

Li
w(x, u)

∂

∂yi
+

1
2
Mw(x, u)

∂

∂w
+O2(ε), (2.2)

where Li
w(x, u) and Mw(x, u) are skew-symmetric bilinear forms depending

smoothly on w and O2(ε) is a smooth vector field, the components of which
are bounded by Kε2 for some K > 0, independent of ε.

In the matrix form, we will write

Li
w(x, u) = x′Li

wu, i = 1, . . . , p − 1,

Mw(x, u) = x′Mwu,
(2.3)

where the prime denotes transposition and Li
w and Mw are smooth one-

parameter families of skew-symmetric matrices.
In this notation, w is not an index, and one should not confuse the

notation Mw and Mi. The matrix Mw is equal to M1,0,w in the notation of
Sec. 2.3.

In the following lemma and corollary, we give useful rough estimates that
are also consequences of the standard SR ball-box theorem.

Lemma 2.3. In the normal coordinates ξ = (x, y, w) on a compact
neighborhood N of the curve Γ: for all 0 < ω < 1, there are positive con-
stants k1(ω) and k2 such that the balls Bε,w0 of radius ε centered at points
(0, 0, w0) of Γ satisfy the following conditions:

a. Bε,w0 ⊂
{

ξ
∣∣∣ ‖x‖2 ≤ ε; |yi| ≤ k2ε

2, i = 1, . . . , p− 1; |w −w0| ≤ k2ε
2
}

;
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b.
{

ξ
∣∣∣ ‖x‖2 ≤ ωε; |yi| ≤ k1(ω)ε2, i = 1, . . . , p−1; |w−w0| ≤ k1(ω)ε2

}
⊂

Bε,w0 .

Lemma 2.3 implies the following assertion.

Corollary 2.1. In the normal coordinates ξ = (x, y, w) on a compact
neighborhood N of the curve Γ, there are constants h1, h2 > 0 such that if
ξ1, ξ2 ∈ Tε, then the time (or the arclength) to go from ξ1 to ξ2, remaining
inside Tε, is less than (w2 − w1)h1

ε + h2ε.

2.5. The affine space of fundamental 2-forms. Given Σ = (Γ,∆, g) ∈
S, we consider the 1-forms α defined on Ξ such that

α(∆) = 0, α(Γ̇) = 1.

This space of one-forms is invariant with respect to multiplication by a
function which is 1 on Γ. Now let us consider the space Ωt of 2-forms
obtained by taking the exterior derivative of α, and by restricting to ∆(Γ(t))
for all t ∈ [0, 1].

Then Ωt is the affine space of 2-forms on ∆(Γ(t)), and each ωt ∈ Ωt can
be written as follows:

ωt = ω0
t +

p−1∑
i=1

λiω
i
t, λi ∈ R,

and we will see below (Lemma 2.5) that, owing to the bracket-generating
assumption, ω0

t and ωi
t are independent.

We can also define an affine space Ω̄t, t ∈ [0, 1], of skew-symmetric endo-
morphisms ω̄t of ∆(Γ(t)), as follows:

Ω̄t =
{

ω̄t

∣∣∣ 〈ω̄t(X), Y 〉g = ωt(X,Y ) ∀X,Y ∈ ∆(Γ(t)), ωt ∈ Ωt

}
.

If, moreover, an orthonormal frame is specified on each ∆(Γ(t)) (for ex-
ample, this is the case where a normal coordinate system is fixed, with
respect to an arbitrary surface S), we call Ω̃t the affine space of matrices
obtained by taking the matrices of ω̄t ∈ Ω̄t with respect to this frame.
Then, Ω̃ = {Ω̃t, t ∈ [0, 1]} is a field along Γ of p-dimensional affine spaces
of skew-symmetric matrices At.

This field is well defined and unique if an orthonormal frame (or a normal
coordinate system) is chosen along Γ. It is easy to see that a change of
normal coordinates (2.1) acts on At by the transformation T (0, t)AtT (0, t)′.

This field Ω (respectively, Ω̄, Ω̃) of affine spaces of 2-forms (respectively,
endomorphisms of ∆(Γ(t)), skew-symmetric matrices), is called the field
of fundamental 2-forms (respectively, fundamental endomorphisms, funda-
mental matrices).

A simple computation (we omit it) proves the following assertion.
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Lemma 2.4 (fundamental matrices in normal coordinates). Let ξ =
(x, y, w) be a normal coordinate system. The field of fundamental matri-
ces is

Ω̃t =
{

Mt +
p−1∑
i=1

λiL
i
t, λi ∈ R

}
, (2.4)

where Mt, Li
t, i = 1, . . . , p − 1, are the matrices appearing in the normal

form (2.2) and (2.3).

Remark 2.1. Note that the matrices Mt and Li
t themselves depend on

the surface S, and even on its parametrization. They depend also on the
normal coordinates. However, the associated field Ω̄t of affine spaces of
skew-symmetric (with respect to g) endomorphisms of ∆(Γ(t)) does not. It
depends only on the given Σ ∈ S.

2.6. Brackets. For a 1-form α and vector fields X and X̃, the standard
formula

dα(X, X̃) = α([X, X̃]) − LXα(X̃) + LX̃α(X)

shows that the mapping ∆q × ∆q → TqΞ/∆q, (X, X̃) → [X, X̃] is well
defined.

Fix Σ ∈ S, together with a normal coordinate system ξ = (x, y, w). Then
at a point ξ0 = (0, 0, w0) ∈ Γ, the tangent plane Tξ0S ≈ S with coordinates
(y, w) is identified with Tξ0Ξ/∆ξ0 and ∆ξ0 is identified with the horizontal
plane P0,w0 = {ξ|y = 0, w = w0}, and finally, the mapping [·, ·] is just the
mapping

(x, x̃) → (x′L1
wx̃, . . . , x′Lp−1

w x̃, x′Mwx̃), (2.5)

where Mw, Li
w, i = 1, . . . , p− 1 are the skew-symmetric matrices appearing

in formulas (2.2) and (2.3).
Recall that all the normal forms are valid not only for bracket-generating

distributions (we need only that ∆ be transversal to Γ). In fact, for-
mula (2.5) implies the following lemma.

Lemma 2.5. The distribution ∆ is one-step-bracket-generating (in a
neighborhood of Γ) if and only if the skew-symmetric matrices Mw and Li

w,
i = 1, . . . , p − 1, are independent for all w.

2.7. Genericity. Consider the mapping Λ: S × [0, 1] → A(p, so(n − p)),
(Σ = (F,Γ), t) → Ω̃t, where Ω̃t is the affine space of skew-symmetric ma-
trices corresponding to the choice of F (Γ(t)) for an orthonormal frame in
∆(Γ(t)). Here, so(n− p) denotes as usual the set of skew-symmetric matri-
ces of size (n − p), and A(p, so(n − p)) denotes the set of affine spaces (of
dimension p − 1) of skew-symmetric matrices of size (n − p).

Proposition 2.2. The mapping Λ is a surjective submersion.
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The proof of this proposition is similar to the proof given in [7], in the
case where p = 1, i.e., the affine spaces are reduced to points (dimension
zero).

Denote by V the subset of so(n−p) formed by the matrices with distinct
nonzero eigenvalues, and with kernel of dimension at most 2. V is semi-
algebraic, and its complement has codimension 3 at least for n−p ≥ 3 (see,
e.g., [7]). Let E1 be the subset of A(p, so(n− p)) formed by affine subspaces
whose elements (matrices) belong to V.

Proposition 2.3. E1 is semi-algebraic, and its complement has codi-
mension at least 4 − p for n − p ≥ 3.

Let ω̃ ∈ A(p, so(n − p)) and let eig(ω̃) denote the minimum over the
affine space ω̃ of the maximum moduli of eigenvalues of the skew-symmetric
matrices A ∈ ω̃ (or of the norm ‖A‖2 of such matrices).

Lemma 2.6. The function eig : A(p, so(n − p)) → R+ is semi-algebraic
and continuous.

Proof. First,

A(p, so(n − p)) =

{{
A +

p−1∑
i=1

λiBi

∣∣∣ λi ∈ R

} ∣∣∣∣ Bi are independent

}
.

In the abbreviated notation, we write A+
p∑

i=1

λiBi = A+λB and we identify

A(p, so(n−p)) with the set of p-tuples of skew-symmetric matrices (A,B) =
(A,B1, . . . , Bp−1). We set

α(A,B, λ) = max{modulus of eigenvalues of A + λB} = ‖A + λB‖2.

The function α is continuous, proper in the restriction to any compact set
of the (A, B) space (if λ is not bounded, α(A + λB) is not bounded, since
the Bi’s are independent). By Lemma 5.1 (see Appendix 5), the function
eig is continuous.

The fact that eig is semi-algebraic follows from the Tarski–Seidenberg
theorem.

Let A+(p, so(n − p)) denote the set of affine spaces that are not vector
subspaces. The following lemma is obvious.

Lemma 2.7. The function eig is bounded from below by a strictly posi-
tive number aΩ, in restriction to any compact subset of A+(p, so(n − p)).

For ω ∈ A(p, so(n − p)), denote by Λ(ω) the set of A ∈ ω reaching the
minimum eig(ω). Let L be the set of all couples (ω,A), A ∈ Λ(ω), and let Π
be the projection on the first component, Π : L → A(p, so(n−p)). It is easy
to see that L is semi-algebraic, closed, and that L is bounded vertically (Π
is proper). Then, by the theorems on stratification of mappings (see [11]),
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there exists an analytic section s : U ⊂ A(p, so(n − p)) → L, where U is
open and dense. Let E2 denote the complement of U in A(p, so(n − p)). It
is subanalytic, closed, of codimension at least one. As a consequence, we
have the following lemma.

Lemma 2.8. A smooth curve γ : [0, 1] → A(p, so(n − p)) transversal to
E2 has the following property (P1), by construction: there is a (bounded)
section s over γ, Π ◦ s = Idγ , s(γ(t)) ∈ Λ(γ(t)), which is smooth except for
a finite number of points.

It follows from Propositions 2.2 and 2.3, Lemma 2.8, and transversality
theorems for closed Whitney-stratified subsets (see [9]) that there is an
open-dense subset S∗ ⊂ S of Σ = (Γ, F ) such that the mapping t → Ω̃t is
transversal to the closure of the subsets E2 and Complement(E1).

Hence, we have the following lemma.

Lemma 2.9. For Σ ∈ S∗, we have:

1. For p = 2 (n ≥ 5):
(a) all the matrices in Ω̃t have simple nonzero eigenvalues, and the

kernel of dimension at most 2;
(b) the mapping t → eig(Ω̃t) is continuous, piecewise-smooth (it is

not smooth at most on a finite set);1

(c) there is a section Λ of the field Ω̃ (Λ(t) ∈ Ω̃t) such that ‖Λ(t)‖2 =
eig(Ω̃t) and Λ is bounded and smooth except possibly for a finite
set.

2. For p = 3 (n ≥ 6), properties (b) and (c) still hold and property (a)
holds except for a finite set.

3. For arbitrary p, properties (b) and (c) still hold.

3. Minorant of the metric complexity

In this section, we will use the properties of the one-step-bracket-
generating motion planning problems described above: for Σ = (Γ, F ) ∈ S,
the function: [0, 1] → R+, t → eig(Ω̃t) is continuous (Lemma 2.6).

Also, the skew-symmetric matrices Mw, Li
w, i = 1, . . . , p − 1 are inde-

pendent (Lemma 2.5). By Lemma 2.4, they generate Ω̃t and, therefore,
Ω̃t ∈ A+(p, so(n − p)) for all t ∈ [0, 1]). Then eig(Ω̃t) is strictly positive by
Lemma 2.7.

We prove the following theorem.

1It can be verified that, for n = 6 and p = 2, this set of isolated points may actually
be nonempty, for an open set of systems.
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Theorem 3.1. For Σ = (Γ, F ) ∈ S, the metric complexity MCΣ(ε, T )
satisfies the inequality

MCΣ(ε, T ) ≥s
2
ε2

T∫
0

dt

eig(Ω̃t)
. (3.1)

Proof. To prove this, we will use the normal form on the tubes Tε (see (2.2)
and (2.3)).

Let us consider the control system

dξ

dt
=

n−p∑
j=1

Fjuj ,

where
n−p∑
j=1

(uj)2 = 1 and the time is the arclength.

Reading the expression of the fields Fj in (2.2), we obtain that, along
a trajectory ξ(t) = (x(t), y(t), w(t)) entirely contained in Tε, with w(0) =
w1 = 0 and w(T ) = w2, we have

dw

dt
=

1
2
x′Mwu + O2(ε) ≤ ε

2
||Mw||2 + +O2(ε). (3.2)

Let us make the following change of coordinates: w̃ = w +
p−1∑
i=1

λi(w)yi,

where λi(w) are arbitrary smooth functions. Such changes of variables are
changes of coordinates in the surface S that leave the w axis invariant, i.e.,
leave invariant the curve Γ together with its parametrization. Reading again
the normal form (2.2), we obtain:

dw̃

dt
=

1
2
x′

(
Mw +

p−1∑
i=1

λi(w)Li
w

)
u +

p−1∑
i=1

yi
dλi(w)

dw
ẇ + O2(ε).

By the cylinder-box theorem, the yi’s have order ε2. Also, ẇ has order ε.
Since Γ is compact (0 ≤ w ≤ 1), dλi(w)

dw are bounded (smooth). Therefore,
we obtain

dw̃

dt
= x′

(
Mw +

p−1∑
i=1

λi(w)Li
w

)
u + O2(ε).

We replace w by w̃ −
p−1∑
i=1

λi(w)yi, expand the result, and take again into

account the following facts:

(a) y has order O(ε2), x has order O(ε),
(b) ‖u‖2 = 1.
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Then we obtain

dw̃

dt
≤ ε

2

∥∥∥∥∥Mw̃ +
p−1∑
i=1

λi(w̃)Li
w̃

∥∥∥∥∥
2

+ ε2K̃(λ).

This shows that

2
ε

w2+λ(w2)y2∫
w1+λ(w1)y1

dw̃∥∥∥∥Mw̃ +
p−1∑
i=1

λi(w̃)Li
w̃

∥∥∥∥
2

≤ (1 + εK(λ))T,

where K(λ) is positive, depending on the choice of the arbitrary func-
tions λi(w).

As we have already said at the beginning of the section, the denominator
above is bounded from below by a strictly positive constant.

Then, using once more the fact that y has order O2(ε), we obtain

2
ε

w2∫
w1

dw̃∥∥∥∥Mw̃ +
p−1∑
i=1

λi(w̃)Li
w̃

∥∥∥∥
2

≤ (1 + εK(λ))T + εS(λ)

or

T ≥ 2
ε(1 + εK(λ))

w2∫
w1

dw̃∥∥∥∥Mw̃ +
p−1∑
i=1

λi(w̃)Li
w̃

∥∥∥∥
2

− εS̄(λ),

for sufficiently small ε (depending on λ) and for some positive values S̄(λ)
and K(λ).

Dividing this inequality by the quantity

Ψ =
2
ε

w2∫
w1

dw

eig(Ω̃w)
=

2
ε
Ψ̃

(which is also positive, as we have said at the beginning of the section), we
have

T (ξ(·))
Ψ

≥ 2
ε(1 + εK(λ))Ψ

w2∫
w1

dw̃∥∥∥∥Mw̃ +
p−1∑
i=1

λi(w̃)Li
w̃

∥∥∥∥
2

− ε

Ψ
S̄(λ).
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The right-hand side of this formula is independent of the trajectory ξ(·)
contained in Tε. Hence,

Φ(ε) =
inf

ξ(·)⊂Tε

(T (ξ(·)))

Ψ
≥ 1

(1 + εK(λ))Ψ̃

×
w2∫

w1

dw̃∥∥∥∥Mw̃ +
p−1∑
i=1

λi(w̃)Li
w̃

∥∥∥∥
2

− ε

Ψ
S̄(λ).

Therefore,

lim inf
ε→0

εMCΣ(ε, w2)
Ψ(ε)

= lim inf
ε→0

Φ(ε) ≥ 1
Ψ̃

w2∫
w1

dw∥∥∥∥Mw +
p−1∑
i=1

λi(w)Li
w

∥∥∥∥
2

.

Assume that for all δ > 0, we can find λ(w) such that
w2∫

w1

dw∥∥∥∥Mw +
p−1∑
i=1

λi(w)Li
w

∥∥∥∥
2

≥ (1 − δ)Ψ̃; (3.3)

then we see that

MCΣ(ε, w2) ≥s
Ψ
ε

=
2
ε2

w2∫
w1

dw

eig(Ω̃w)
,

as required.
Actually, it is not difficult to show that assumption (3.3) holds: by

Lemma 2.6, the set

E =

{
(λ, w)

∣∣∣
∥∥∥∥∥Mw +

p−1∑
i=1

λiL
i
w

∥∥∥∥∥
2

= eig(Ω̃w)

}

is closed (since the function eig(Ω̃w) is continuous). It is also bounded, and
for each w, there exists λ such that (λ,w) ∈ E (recall that boundedness
comes from the bracket-generating assumption, and the last claim follows
from this boundedness). There exists a measurable and bounded section
w → λ∗(w) such that (w, λ∗(w)) ∈ E (see, e.g., [6]). But by the Lusin the-
orem, λ∗ differs from a continuous (bounded by the same bounds) function
on a set of arbitrarily small measure ε. Then we can find continuous λ such
that Ψ̃ is arbitrarily close to

w2∫
w1

dw∥∥∥∥Mw +
p−1∑
i=1

λi(w)Li
w

∥∥∥∥
2

.
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Finally, we approximate this λ uniformly by an appropriate smooth section.

4. Majorant of the metric complexity for p = 2 and p = 3

First, let us fix Σ ∈ S∗ (defined at the end of Sec. 2) and normal coordi-
nates. Let us also fix 0 < ω < 1. As above, Γ = {(0, 0, w) | 0 = w1 ≤ w ≤
w2}.

By Lemma 2.9 at the end of Sec. 2, there exists a finite number of special
isolated points ξ1, . . . , ξr ∈ Γ such that Tε is the union of r small tubes of
height 1 − ω around ξi and of r + 1 tubes T i

ε , each of them of height hi,

such that w2 =
r+1∑
i=1

hi + r(1 − ω). By Corollary 2.1, the time to cross the r

small tubes is T1 = (1 − ω)
k1

ε
+ k2ε for some k1, k2 > 0.

Consider one of the closed tubes T i
ε , say T 1

ε , containing Γ̃ = {(0, 0, w) |
0 ≤ w ≤ h1}.

Now take the smooth function λ(w) given by Lemma 2.9(c). We can find
a smooth couple of vector fields (X1

w, X2
w) ∈ ∆w×∆w, which are orthogonal

with respect to the SR metric and which generate along Γ̃ the maximum real

eigenspace of
(

Mw +
p−1∑
i=1

λi(w)Liw

)
. By a change of normal coordinates

according to Lemma 2.1, we form a new normal coordinate system such
that

(X1
w, X2

w) =
(

∂

∂x1
,

∂

∂x2

)
.

Also, we change the parametrization of the surface S, leaving Γ̃ invariant,
setting:

w̃ = w +
p−1∑
i=1

λi(w)yi.

From now on, the new coordinate w̃ will be denoted simply by w. An
easy computation shows that the normal form (2.2), (2.3) has the follow-
ing property: the skew symmetric matrix Mw is block-diagonal: Mw =
blockdiag(M1

w,M2
w),

M1
w =

(
0 − 1

2α1(w)
1
2α1(w) 0

)
, (4.1)

where

α1(w) = eig(Ω̃w) = inf
λ

(∥∥∥∥∥Mw +
p−1∑
i=1

λiL
i
w

∣∣∣∣∣
2

)
.

Then we come to the crucial point: Proposition 5.1 (see Appendix 5) shows
that

Li
w1,2 = Li

w2,1 = 0 ∀i = 1, . . . , p − 1. (4.2)
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To summarize, we are at the following point:
(P) we have a normal coordinate system, with the normal form (2.2), (2.3),

which satisfies also relations (4.1) and (4.2).
The following “approximate asymptotic optimal synthesis” provides the

majoration. The synthesis is described in several recurrent steps.

Step 1. Start from (x, y, w) = (0, 0, 0), and go to (x = x1, 0, 0), where
x1 = (ωε, 0, . . . , 0). This step costs a length (or a time) less than ε.

Step 2. For ε > 0, consider the (p + 1)-dimensional cylinder:

Cε,ω =
{

ξ
∣∣∣ √

(x1)2 + (x2)2 = εω, (x3)2 + · · · + (xn−p)2 = 0
}

. (4.3)

For sufficiently small ε, Cε,ω is transversal to ∆. The intersection of ∆
with the tangent space to Cε,ω defines a field of tangent lines to Cε,ω. Then
it defines two opposite unitary vector fields. It is easy to calculate that the
w-component of these vector fields is

±ωε

2
α1(w)

∂

∂w
+ O2(ε)

(it never vanishes since ±α1(w) is also equal to ± eig(Ω̃w), which does not
vanish by Lemma 2.7). Again, O2(ε) is a function bounded by ε2K for some
K > 0. Denote by X the vector field along which w increases.

Step 2a. Now, follow the flow of X, till getting out of Tε. It costs a certain
length (or time) T1 that we will majorize at a moment to reach a certain
height w = W1 that we will bound from below later.

Step 2b. Follow a piece of radial admissible curve and return back to Γ̃.
This can be done in time (or length) ε (since we are still inside Tε), and
this makes eventually w decrease by hε2, for a certain h > 0, as we read
on normal form (2.2). This hε2 can be compensated in time h′ε > 0, by
Corollary 2.1. Finally, Step 2b costs h′′ε for some h′′ > 0.

Repeat Steps 1 and 2 until the end of the curve Γ̃, w = h1.
Now we estimate the time T1 and height W1.

Lemma 4.1.

T1 ≤ 2
ωε

W1∫
0

dw

α1(w)
(1 + εH)

for some constant H > 0, and the time T1 > 0 to stay inside Tε can be
taken independent of ε.

Proof. Normal form (2.2) and property (4.2) imply

X =
ωε

2
α1(w)

∂

∂w
+

x2

‖x‖2

∂

∂x1
− x1

‖x‖2

∂

∂x2
+ O2(ε) (4.4)
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(this is a straightforward computation). In particular, |ẏi| ≤ ε2K for some
K > 0. By item 2 of the cylinder-box theorem (Theorem 2.2), |yi| can grow
from 0 up to kε2, for some k > 0, when the trajectory stays in Tε. Hence
there is another constant K ′ > 0 such that T1 ≥ K ′.

Now (4.4) shows that

2
ωε

dw

α1(w)
= dt(1 + O(ε)),

or, for a certain constant K ′′,

2
εω

W1∫
0

dw

α1(w)
≥ T1(1 − εK ′′).

Recall that in these computations α1(w) is bounded from below by a
strictly positive constant.

Then, if we repeat Step 2 k times, where k = A/ε, we obtain a time T
satisfying, for some A′ > 0:

T ≤ 2
ωε

h1∫
0

dw

α1(w)
+ A′.

The constant A′ depends on the ω fixed at the beginning of the section.
Finally, we see that the time Tf (arclength) to reach w = w2 (the end of

the curve Γ) satisfies

Tf ≤ 2
ωε

w2∫
0

dw

α1(w)
+ A′(ω) + (1 − ω)

k1

ε
+ k2ε.

Then

inf
γ⊂Tε

γ(0)=Γ(0)
γ(Tγ)=Γ(w2)

(T (γ)) ≤ 2
ωε

w2∫
0

dw

α1(w)
+ A′(ω) + (1 − ω)

k1

ε
+ k2ε

and
εMCΣ(ε, w2)

2
ε

w2∫
0

dw

α1(w)

≤ 1
ω

+ εK1(ω) + (1 − ω)K2,

for some K1(ω),K2 > 0. Hence,

lim sup
ε→0

εMCΣ(ε, w2)

2
ε

w2∫
0

dw

α1(w)

≤ 1
ω

+ (1 − ω)K2.
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Since this is true for all 0 < ω < 1, we have

MCΣ(ε, w2) ≤s
2
ε2

w2∫
0

dw

α1(w)
.

Combining this with Theorem 3.1, we obtain the following assertion.

Theorem 4.1. For Σ ∈ S∗ (which is an open dense condition), for p = 2
or p = 3:

MCΣ(ε, w2) 	s
2
ε2

w2∫
0

dw

α1(w)
=

2
ε2

w2∫
0

dw

eig(Ω̃w)
.

5. Appendix

5.1. Continuity lemma. For completeness, we prove here a very elemen-
tary lemma (but, curiously, we were not able to find a reference). Hence,
we provide a simple proof.

Lemma 5.1. Let X be a manifold and f : R
p×X → R+ be a continuous

function such that, for each compact set K ⊂ X, the restriction fK =
f |Rp×K is proper. Then ϕ(x) = inf

t∈Rp
f(t, x) is a well-defined continuous

function on X.

Proof. Fix x∗ ∈ X. Consider t∗ such that f(t∗, x∗) = inf
t∈Rp

f(t, x∗). Since

f(t, x∗) is proper, the domain V = {t | f(t, x∗) ≤ f(0, x∗)} is compact, and
t∗ does exist, realizing the minimum over V .

Consider a sequence xn converging to x∗. It is entirely contained in a
compact set K ⊂ X, where K is a neighborhood of x∗. Also, a sequence tn
such that f(tn, xn) = inf

t∈Rp
f(t, xn) does exist for the same reason.

The sequence tn is bounded: if it is not so, by the properness of f over
R

p ×K, f(tn, xn) is also not bounded (if it is bounded, since fK is proper,
tn is also bounded). Then, there exists a subsequence, also denoted by
(tn, xn), such that f(tn, xn) > f(t∗, x∗)+1. But, for sufficiently large n, by
the continuity of f ,

f(t∗, xn) < f(t∗, x∗) + 1 < f(tn, xn).

This contradicts the fact that f(tn, xn) = inf
t∈Rp

f(t, xn).

Then, since tn is bounded, we extract again a sequence, still denoted by
(tn, xn), such that (tn, xn) → (t̄, x∗). If f(t̄, x∗) > f(t∗, x∗), then by the
convergence and continuity, for sufficiently large n,

f(tn, xn) >
1
2

(f(t∗, x∗) + f(t̄, x∗)) .
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On the other hand, by the continuity of f , we have

f(t∗, xn) <
1
2

(f(t∗, x∗) + f(t̄, x∗)) < f(tn, xn),

a contradiction since f(tn, xn) = inf
t∈Rp

f(t, xn). Then it is impossible that

f(t̄, x∗) > f(t∗, x∗).
Also, f(t̄, x∗) < f(t∗, x∗) is impossible, since

f(t∗, x∗) = inf
t∈Rp

f(t, x∗).

Hence f(t̄, x∗) = f(t∗, x∗) and

lim ϕ(xn) = lim f(tn, xn) = f(t̄, x∗) = f(t∗, x∗) = ϕ(x∗).

Therefore, the function ϕ is continuous.

5.2. Some properties of pencils of skew-symmetric matrices. As-
sume that A and Bi, i = 1, . . . , k, are independent, skew-symmetric (N×N)-

matrices such that the affine pencil P (·), P (λ) = A +
k∑

i=1

λiBi, λi ∈ R, has

no multiple nonzero eigenvalue and the kernel of dimension at most 2 for
all λ = (λ1, . . . , λk) ∈ R

k. For simplicity, we abuse the notation and write
P (λ) = A + λB.

Lemma 5.2. There are p analytic functions of λ, α1(λ), . . . , αp(λ),
p = [N/2] or [N/2] + 1 (depending on the parity of N) such that :

1. α1(λ), . . . , αp−1(λ) > 0 for all λ;
2. α1(λ) > · · · > αp(λ) and ±iα1(λ), . . . , ±iαp(λ) are the eigenvalues

of P (λ) for all λ.

In particular,

α1(λ) = ‖P (λ)‖2 = sup
‖x‖2=‖y‖2=1

y′P (λ)x. (5.1)

This shows that α1(λ) is a convex function (the supremum of affine func-
tions). Moreover, it is strictly convex: assume that the minimum of α1(λ)
is reached on a nontrivial segment I = {ωλ0 + (1 − ω)λ1 | ω ∈ [0, 1]} (the
minimum is attained on a convex set, compact since the Bi’s are indepen-
dent), then it is reached on the whole line containing I by analyticity, which
is impossible.

Also, it is easy to see that we can find an analytic family {X(λ), Y (λ)}
such that for all λ,

‖X(λ)‖2 = ‖Y (λ)‖2 = 1, 〈X(λ), Y (λ)〉 = 0,

α1(λ) = sup
‖x‖2=‖y‖2=1

y′P (λ)x = Y (λ)′P (λ)X(λ).

Let λ∗ be the unique λ such that inf
λ

α1(λ) = α1(λ∗). The following

proposition is crucial in Sec. 4.
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Proposition 5.1. For all i = 1, . . . , k, Y (λ∗)′BiX(λ∗) = 0.

Proof. Let us set

α1(λ) = α1(λ∗) + O(λ − λ∗),

X(λ) = X(λ∗) +
k∑

i=1

(λi − λ∗
i )X̃i(λ∗) + O2(λ − λ∗),

Y (λ) = Y (λ∗) +
k∑

i=1

(λi − λ∗
i )Ỹi(λ∗) + O2(λ − λ∗),

(5.2)

where Oi(λ − λ∗) has components in the ith power of the ideal of Cω(Rk)
generated by the functions (λr − λ∗

r), r = 1, . . . , k.
Let us express ‖X(λ)‖2 = ‖Y (λ)‖2 = 1. This means

1 = 〈X(λ∗), X(λ∗)〉 + 2
k∑

i=1

(λi − λ∗
i )

〈
X(λ∗), X̃i(λ∗)

〉
+ O2(λ − λ∗),

hence, since 1 = 〈X(λ∗), X(λ∗)〉,

∀i = 1, . . . , k,
〈
X(λ∗), X̃i(λ∗)

〉
= 0,

〈
Y (λ∗), Ỹi(λ∗)

〉
= 0. (5.3)

Now we have

α1(λ) = O2(λ − λ∗) +

(
Y (λ∗) +

k∑
i=1

(λi − λ∗
i )Ỹi(λ∗)

)′

×
(

A +
k∑

i=1

λ∗
i Bi +

k∑
i=1

(λi − λ∗
i )Bi

)(
X(λ∗) +

k∑
i=1

(λi − λ∗
i )X̃i(λ∗)

)
,

or

α1(λ) = O2(λ − λ∗) + Y (λ∗)′
(

A +
k∑

i=1

λ∗
i Bi

)
X(λ∗)

+Y (λ∗)′
(

k∑
i=1

(λi − λ∗
i )Bi

)
X(λ∗) + I,

where

I =

(
k∑

i=1

(λi − λ∗
i )Ỹi(λ∗)

)′ (
A +

k∑
i=1

λ∗
i Bi

)
X(λ∗)

+Y (λ∗)′
(

A +
k∑

i=1

λ∗
i Bi

) (
k∑

i=1

(λi − λ∗
i )X̃i(λ∗)

)
.

If we show that I = 0, it follows that

∀i = 1, . . . , k, Y (λ∗)′BiX(λ∗) = 0, (5.4)
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since for all λ, we have

α1(λ) ≥ α1(λ∗) = Y (λ∗)′
(

A +
k∑

i=1

λ∗
i Bi

)
X(λ∗).

Let us show that I = 0. By the definition of X and Y , we have(
A +

k∑
i=1

λ∗
i Bi

)
X(λ∗) = −α1(λ∗)Y (λ∗),

(
A +

k∑
i=1

λ∗
i Bi

)
Y (λ∗) = α1(λ∗)X(λ∗).

This implies

I = α1(λ∗)
k∑

i=1

(λi − λ∗
i )

(
− Ỹi(λ∗)′Y (λ∗) − X(λ∗)′X̃i(λ∗)

)
.

By (5.3), this is zero.
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