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ON THE CODIMENSION ONE
MOTION PLANNING PROBLEM

J.-P. GAUTHIER and V. ZAKALYUKIN

Abstract. In this paper, we improve the results of [5] related to

motion planning problems for corank one sub-Riemannian (SR) met-

rics. First, we give the exact estimate of the metric complexity, in

the generic 3-dimensional case. (Only bounds from above and from

below were given in [5].) Second, we show that the general expression

for the metric complexity (that was proven to hold generically in the

C∞ case, or under certain nonvanishing condition (C) in the analytic

case) is, in fact, always true under condition (C), on the complement

of a subset of codimension infinity, in the set of C∞ “motion plan-

ning problems.” Both results are constructive, i.e., an “asymptotic

optimal synthesis” is exhibited in both cases.

1. Introduction

1.1. Practical motivation. There are so many possible references for the
questions we discuss in this section that it is not realistic to give an ex-
haustive list of them. We have chosen a single one: [11], but this choice is
completely arbitrary.

For us, a robot is a device described by a kinematic motion with non-
holonomic constraints (linear constraints in our case). Engineers in robotics
consider the “motion planning problem”: given a source and a target, find
an “admissible path” for the robot, connecting the source and the target
and satisfying further requirements, e.g., avoiding certain obstacles, etc.

Moreover, the path to be found is required to have a “reasonable cost,”
the cost being usually specified by a quadratic form on the space of admis-
sible velocities. Under very weak nonintegrability assumptions, such a cost
defines a distance d, called the sub-Riemannian, or Carnot–Carathéodory
distance.

The problem is usually solved in two steps.
Step 1: the purely geometric problem of finding a (nonadmissible) path

Γ satisfying the additional requirements;
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Step 2: approximating this nonadmissible path by an admissible path γ.
In this paper, we address only the second step of the problem, i.e., we

assume that the nonadmissible path Γ to be approximated by the nonholo-
nomic motion is already chosen.

Whenever the “cost” is specified as the Carnot–Carathéodory distance
d, one may define, following, e.g., Jean [7–9] the “metric complexity” of the
given nonadmissible path Γ as follows: find the minimum length l(γε) of an
admissible path γε connecting the source and the target, and remaining at
distance at most ε from the given Γ. Then the complexity is the asymptotic
equivalent MC(ε) (as ε tends to zero) of l(γε)/ε.

Another crucial notion is the notion of an “asymptotic optimal synthesis”:
it is an explicit ε-dependent family of admissible curves γε that realizes an
equivalent of the metric complexity as ε tends to zero. Finding such an
asymptotic optimal synthesis is equivalent, roughly speaking, to solving the
motion planning problem “in practice.”

1.2. Contents of the paper. The purpose of this paper, after [5], is to
solve for corank one sub-Riemannian metrics (step 2 of) the motion plan-
ning problem in a constructive way, i.e., computing metric complexity and
finding asymptotic optimal syntheses.

In [5], this was done for generic metrics of corank one in a space of
dimension more than 3, and almost done in dimension 3. We recall these
results (Theorems 1 and 2) in the next section of this introduction.

Our main results in this paper are as follows.
1. For the 3-dimensional case, we will give in Theorem 3 an explicit

exact expression of the metric complexity together with a corresponding
asymptotic optimal synthesis. Proofs of these results are given in Sec. 3.

2. For other dimensions, Theorem 4 proved in Sec. 4 contains much more
than the generic statement of Theorem 1: it solves the motion planning
problem in the C∞ category, outside of a set of codimension infinity.

Section 2 is devoted to the precise statement and comments of these
results.

For the purpose of proving these results, we will give (Sec. 4) some other
complements to the paper [5], related to normal forms that are crucial for
motion planning problems. These normal forms are important by them-
selves. For instance, they were used in studying sub-Riemannian balls of
small radius in [1, 3].

1.3. Definitions and preliminary results. For us, as we explained in
Sec. 1.1, a “motion planning problem” over a smooth n-dimensional mani-
fold Ξ is a triple Σ = (∆, g,Γ) formed by a sub-Riemannian metric (∆, g)
over Ξ and Γ : [0, 1] → Ξ, a smooth compact curve, well parametrized,

i.e.,
dΓ(t)

dt
�= 0 for all t without double point. Here, ∆ is a codimension
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one distribution on Ξ, completely nonintegrable, g is a Riemannian metric
over ∆.

If the curve Γ is everywhere transversal to ∆, the motion planning prob-
lem has been called relevant in [5]. If a motion planning problem is not
relevant at a point t0 ∈ [0, 1], then it is easy to deal with it in a neigh-
borhood of t0. The set of smooth (respectively, analytic) relevant motion
planning problems is denoted by S∞ (respectively, Sω), and we endow it
with the topology of C∞ uniform convergence on compact sets. In the whole
paper, we restrict the consideration to this set.

Given two functions f1 and f2 of a small parameter ε > 0 tending to +∞
as ε tends to zero, let us say that f1 is “strongly equivalent” to f2, f1 �s f2

(respectively, f1 is “weakly equivalent” to f2, f1 �w f2) if

lim
ε→0

f1(ε)
f2(ε)

= 1

(respectively, k1f1(ε) ≤ f2(ε) ≤ k2f1(ε), for sufficiently small ε and certain
constants k1, k2 > 0).

Let d denote the sub-Riemannian distance over Ξ and let Tε denote the
ε-sub-Riemannian tube around Γ: Tε = {x ∈ Ξ | d(x,Γ) ≤ ε}.

The fundamental “motion planning problem” is as follows: find an admis-
sible (i.e., almost everywhere tangent to ∆) Lipschitz curve γ : [0, Tγ ] → Tε,
γ(0) = Γ(0), γ(Tγ) = Γ(1), with minimum SR length. We may take γ
parametrized by the arc length, so that the SR length is the time Tγ, and
Tγ is minimum possible. Let T ∗(ε) denote this minimum value.1

The class of strong (respectively, weak) equivalence of the function MCΣ :
ε → 1

εT ∗(ε) is called the strong (respectively, weak) metric complexity of
the problem Σ. This notion has been introduced by Jean [7–9].

In the same way, for T < 1, we denote by MCΣ(ε, T ) the metric com-
plexity of the piece Γ([0, T ]) of Γ.

Let us now define what we mean by a (weak or strong) asymptotic optimal
synthesis: it is an (ε-dependent) control strategy γε that realizes a (weak
or strong) equivalent of the metric complexity as ε tends to zero, i.e., it is
a family {γε} of admissible curves, γε([0, θε]) ⊂ Tε, γε(0) = Γ(0), γε(θε) =
Γ(1), such that 1

εSR-length(γε) � MCΣ(ε).
In order to state our results, we need the notion of the fundamental 2-form

α associated with a motion planning problem Σ = (∆, g,Γ). Let ω be any
one-form such that ∆ = Ker(ω) and ω(dΓ/dt) = 1 ∀t ∈ [0, 1]. Then α = dω
is uniquely defined along Γ, and is called the fundamental 2-form associated

1Recall that: (a) the nonintegrability assumption warrants the existence of admissible

curves joining any couple of arbitrary points (the Rachevski–Chow theorem); (b) the sub-

Riemannian length of an admissible curve is just the length measured via the metric g;

(c) the sub-Riemannian distance between two points is the infimum of the SR length of

admissible curves joining the two points.
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with Σ. This 2-form α defines an associated field of linear endomorphisms
A(t) of ∆(Γ(t)) by g(A(t)X,Y ) = α(t)(X,Y ) for all X,Y ∈ ∆(Γ(t)).

We set

κ(t) = sup |eigenvalues of A(t)|.
In [5], the following results have been proved.

Theorem 1 (n ≥ 4). For (a) Σ in a generic (open, dense) subset of
S∞, or (b) Σ in Sω with the additional assumption (c) α(t) �= 0 ∀t ∈ [0, 1],

MCΣ(ε, T ) �s
2
ε2

∫ T

0

1
κ(t)

dt, (1.1)

and the function

T →
∫ T

0

1
κ(t)

dt

is C∞-smooth in the case (a) and C1-smooth and piecewise analytic in the
case (b).

Remark 1. Note that formula (1.1) also makes sense if Σ is not relevant:
in this case, the only thing that happens is that κ(t) tends to ∞ at points
where Γ is tangent to ∆. The integral is convergent and actually gives the
right expression of the metric complexity.

Assume now that n = 3 and Γ(ti), i = 1, . . . , s, are isolated Martinet
points for ∆. Then κ(ti) = 0 and κ(t) is continuous and differentiable on
the right and left side at t = ti, and∣∣∣∣dκ

dt
(t+i )

∣∣∣∣ =
∣∣∣∣dκ

dt
(t−i )

∣∣∣∣ = κi.

The constants κi are invariants of Σ.

Theorem 2 (n = 3). For a generic (open dense) subset of S∞, either
(1.1) holds, or there is a finite set of times t1, . . . , tm, ti ∈ [0, T ], and asso-
ciated positive constants c1, . . . , cm, where Γ(ti), i = 1, . . . , m, is a Martinet
point for ∆, and

MCΣ(ε, T ) �s

m∑
i=1

−ci
log ε

ε2
. (1.2)

Moreover,
4
κi

≤ ci.

In both cases, these theorems are constructive: in the case of Theorem 1
(respectively, Theorem 2), a strong (respectively, weak) asymptotic optimal
synthesis has been exhibited.
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2. Statement of the results

We will show first the following final result, in the 3-dimensional case:

Theorem 3. In Theorem 2, formula (1.2), ci =
4
κi

.

To state our result in arbitrary dimension, it will be easier to consider
the curve Γ as fixed. Then, such a curve Γ : [0, 1] → Ξ being given (well
parametrized and without double points), we consider the set GS∞ of germs
along Γ of SR metrics (∆, g) such that ∆ is transversal to Γ. Let JkSR∞ be
the bundle of k-jets of SR metrics over Ξ, and let JkGS∞ be the restriction
of this bundle to Γ. Diffeomorphisms Φ : V (Γ(t1)) → V (Γ(t2)), mapping a
neighborhood V (Γ(t1)) of Γ(t1) in Ξ to a neighborhood V (Γ(t2)) of Γ(t2)
in Ξ, induce diffeomorphisms of the fibers of JkGS∞ over Γ(t1) and Γ(t2).

For each positive integer k, let Bk denote a subbundle (invariant with
respect to the diffeomorphisms of the fibers just considered) of JkGS∞, the
typical fiber of which is a stratified subset of the typical fiber of the ambient
bundle JkGS∞, of codimension bk in this fiber, and bk → +∞ as k → +∞.

A subset S of GS∞ is said to have infinite codimension (in GS∞) if it
consists of SR structures (∆, g) such that at some point t ∈ [0, 1], the k-jets
jk
Γ(t)(∆, g) ∈ Bk, for all k.

Theorem 4. There is a subset S of GS∞ of codimension ∞ in GS∞

such that Theorem 1 still holds for (∆, g) /∈ S (again under the additional
assumption (C) that α(t) �= 0 ∀t ∈ [0, 1]).

In this case, the leading term

1
ε2

∫ T

0

1
κ(t)

dt

of MCΣ(ε, T ) is a C1 smooth function of T , piecewise C∞.

In both cases, our proofs are constructive. The construction of the
asymptotic optimal synthesis for Theorem 4 is exactly the same as for The-
orem 1 in [5]. We do not re-explain it here.

Let us consider now the asymptotic optimal synthesis in the case of The-
orem 3.

2.1. The asymptotic optimal synthesis in the Martinet case.

2.1.1. Preliminaries. We denote by Cε = {x|d(x,Γ) = ε} the boundary of
the smooth tube Tε. We define a vector field Xε up to the sign on Cε, for
sufficiently small ε.

If the distribution ∆ is transversal to Γ, it is also transversal to Cε

provided that ε is small. Then we may define Xε as follows:

Xε(x) ∈ ∆(x) ∩ TxCε, ‖Xε(x)‖g = 1.
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We reparametrize Γ for Γ : [−A,A] → Ξ, and t = 0 is a Martinet point.
As was pointed out in [5], the vector field Xε has a limit cycle near Γ(0).
This limit cycle is centered at a point pc = (0, 0, wc) of Γ, of order ε2 (i.e.,
wc �w ε2) and its size has order ε3 (in the generic situation).

To describe the asymptotic optimal synthesis, we need the “normal co-
ordinates” and the normal form that have been introduced in [1].

2.1.2. Normal coordinates and normal form. It follows from [1] that the
following two results hold, in the 3-dimensional case.

Proposition 1. (normal coordinates for a relevant motion planning
problem). There is a neighborhood of Γ and coordinates (x, y, w) in this
neighborhood with the following properties:

(a) Γ(t) = (0, 0, t), ∆(Γ(t)) = Ker(dw), g|Γ(t) = dx2 + dy2;
(b) geodesics through Γ satisfying the Pontryagin maximum principle

transversality conditions w.r.t. Γ are straight lines contained in the
planes w = const;

(c) the sub-Riemannian cylinder Cε is equal to the Riemannian cylinder
{x2 + y2 = ε2}.

These coordinates are unique modulo changes of coordinates of the form

(x̃, ỹ) = Rotϕ(w)(x, y), (2.1)

where Rotϕ(w) is the smooth rotation by the angle ϕ(w).

We associate cylindrical normal coordinates (ρ, θ, w) with (Euclidean)
normal coordinates (x, y, w).

Theorem 5 (normal form for relevant motion planning problems). If a
normal coordinate system (x, y, w) for Σ is given, then there exists a unique
orthonormal frame (F,G) for (∆, g) of the form

F = (1 + y2)β
∂

∂x
− xyβ

∂

∂y
+

y

2
γ

∂

∂w
,

G = −xyβ
∂

∂x
+ (1 + x2)β

∂

∂y
− x

2
γ

∂

∂w
,

(2.2)

where β and γ are real smooth functions. Moreover, this normal form is in-
variant with respect to the changes of coordinates of type (2.1) from Propo-
sition 1.

Note that in this normal form, κ(t) = |γ(0, 0, t)|.
First, as was said above, we assume a single isolated Martinet point at

Γ(0), which means, in particular, that 0 = κ(0) = γ(0), and we replace

the parametrization along Γ for γ(0, 0, w)
∂

∂w
by αw

∂

∂w
, where α is the

invariant
dκ

dt
(0+). This is possible and does not affect the normal form
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(2.2). Of course, we assume that α �= 0, which is a generic property for Σ
(open dense for the C∞ topology, in fact).

In cylindrical normal coordinates (ε, θ, w), it is easy to compute that the
vector field Xε can be written, up to the sign, as follows:

Xε =
1 − ε2β

ε

∂

∂θ
+

ε

2

(
αw + ε cos θγ̃1 + ε sin θγ̃2

) ∂

∂w
, (2.3)

where γ̃i are smooth functions of ε cos θ, ε sin θ, w, i = 1, 2. We choose the

sign of Xε for α > 0, and we eventually replace θ by −θ, to keep
1 − ε2β

ε
in expression (2.3). We choose a constant rotation in the (x, y) planes for
γ̃1(0, 0, 0) = 0. Then, γ̃2(0, 0, 0) = a. Again, generically (open, dense in
fact), a �= 0, and up to a rotation by another angle π, we may assume
a > 0.

It suffices to restrict the tube Tε to some compact piece {|w| ≤ W0}
for some arbitrary W0 > 0. If ε is sufficiently small, then the following
properties hold on this (compact) tube Tε, for the trajectories of Xε:

(a) dθ/dt > 0;
(b)

dw

dθ
=

ε2

2
αw + ε3L(ε, θ, w), (2.4)

where L(ε, θ, w) is a smooth function such that |L(ε, θ, w)| < A for
some constant A > 0;

(c) we set K = 3A/α. For |w| ≤ εK,

dw

dθ
=

ε2

2

(
αw + εa sin θ + ε2F (ε, θ, w)

)
(2.5)

for some function F , smooth w.r.t. θ, w, and bounded independently
of ε.

2.1.3. The synthesis. We give only one half of the asymptotic optimal syn-
thesis, corresponding to the piece w ≥ 0 of Γ. The piece w ≤ 0 is similar
(replacing w by −w in the normal form). Also, we recall that by the results
of [5], out of a neighborhood of the Martinet points, the asymptotic optimal
synthesis is just given by any trajectory of Xε.

Asymptotic optimal synthesis.
1. For w ≥ εK: follow any trajectory of Xε (this strategy agrees with

the asymptotic optimal synthesis away from Martinet points);
2. from w0 = 0 to w1 = εK:

(a) start from θ0 = 0, k = 0,
(b) on the intervals θ ∈ [2kπ, (2k + 1)π] follow the flow of Xε,
(c) having reached θ = (2k + 1)π, cross the tube Tε by a horizontal

geodesic through Γ, contained in the plane wk = const, to reach
θ = (2k + 2)π.
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3. The Martinet case

3.1. Preliminaries. In this section, we use the notation and results of
Sec. 2.1.

We already know from [5] that the metric complexity at a generic Mar-
tinet point satisfies:

−4 log ε

αε2
≤ MCΣ(ε).

Let us just show that the metric complexity of the asymptotic synthesis

described in Sec. 2.1.3 is strongly equivalent to
−4 log ε

αε2
. This will prove

Theorem 3.
To do this, we consider a motion planning problem Σ in normal coor-

dinates and in normal form (2.2) satisfying all the generic assumptions of
Sec. 2.1.2 (i.e., α > 0, a > 0). Again, K = 3A/α and we take w1 = εK. We
fix w2 > w1 independently of ε.

We will show that:

(a) the time to go from a point p0 = (x0, y0, 0) ∈ Cε to p1 = (x1, y1, w1) ∈
Cε is weakly equivalent to 1/ε (or less);

(b) the time to go from p1 to a certain point p2 of the form p2 =

(x2, y2, w2) ∈ Cε, is strongly equivalent to
−2 log ε

αε
.

Taking into account the piece w < 0 of the curve Γ, which is subject to a
similar treatment, this will prove the result. Some extra pieces of horizontal
geodesics of length 2ε (respectively, ε) are needed at w0 = 0 (respectively,
at the endpoints of Γ), but their asymptotic cost is negligible.

3.2. Proof of (b). Trajectories of Xε satisfy (2.4):

dw

dθ
=

ε2

2
αw + ε3L(ε, θ, w).

The cylindrical coordinates of p1 are (ε, θ1, w1). With an additional cost of
2ε, which is irrelevant for strong equivalence, we may assume that θ1 = 0
(following horizontal straight geodesics). Then, for θ ≥ 0, the following
estimate holds on Cε, if ε is small:

w(θ) ≥ e
αε2
2 θw1 − ε3A

∫ θ

0

e
αε2
2 (θ−s)ds

≥ e
αε2
2 θ(w1 −

2εA

α
) +

2εA

α
.

(3.1)

Since w1 = εK and K can be taken as 3A/α, it follows that

θ ≤ −2 log ε

αε2
+ 2

log(αw(θ)
A )

αε2
. (3.2)
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Now, along the trajectories of Xε, θ satisfies

dθ

dt
=

1 − ε2β

ε
≥ 1

ε
− εK2,

for a certain K2 > 0, and for sufficiently small ε. Assume that p2 has
cylindrical coordinates (ε, θ2, w2) and is reached at time T . Then

θ2 ≥ T

ε
− εK2T

and T ≤ θ2ε(1 + ε2K3) for K3 > 0. Using (3.2), we obtain:

T ≤ θ2ε(1 + ε2K3) ≤ −2 log ε

αε
+ 2

log(αw2
A )

αε
+ K ′

3.

Since we already know by [5] that

T ≥ −2 log ε

αε
− K4

ε
,

for K4 > 0 (another straightforward estimate we did not recall), this proves
the result.

3.3. Proof of (a). We consider a piece of trajectory of Xε starting at time
0 from pk = (ε, 2kπ,wk), and we denote by pk+1 = (ε, (2k + 1)π,wk+1) the
point reached when θ reaches (2k + 1)π. Since

dw

dθ
=

ε2

2
(αw + εa sin(θ) + ε2F (ε, θ, w)),

we obtain

wk+1 ≥ e
αε2
2 πwk +

aε3

2

∫ (2k+1)π

2kπ

e
αε2
2 ((2k+1)π−s) sin(s)ds

− ε4

2

∫ (2k+1)π

2kπ

e
αε2
2 ((2k+1)π−s)K5ds,

for some K5 > 0. A straightforward computation shows:

wk+1 ≥ e
αε2
2 πwk +

ε3a

4
. (3.3)

Applying this k times from p0 = (ε, 0, 0) gives:

wk ≥ ε3a

4
(1 + e

αε2
2 π + · · · + e(k−1) αε2

2 π) ≥ εL̄(ek αε2
2 π − 1)

for some L̄ > 0. Then w = w1 = εK will be reached for some k satisfying

k ≥ 2
απε2

log
(

K

L̄
+ 1

)
. (3.4)

Now, let us count the time for the synthesis: for each ∆θ = π, since

dθ

dt
=

1 − ε2β

ε
≥ 1

ε
− εK2,
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we have

∆θ = π ≥ ∆T

(
1
ε
− εK2

)
.

Here, ∆T is the time needed for ∆θ = π. Hence, ∆T ≤ πε

1 − ε2K2
.

At each step (2b), (2c) of the synthesis defined in Sec. 2.1.3, we need a
time

∆T + 2ε ≤ πε

1 − ε2K2
+ 2ε ≤ Mε

for some M > 0. Hence the total time τ to go to w1 with the synthesis
satisfies

τ ≤ kMε ≤ 2M

απε
log

(
K

L̄
+ 1

)
+ Mε,

which proves the result.

4. Normal forms for n ≥ 4 and the proof of Theorem 4

In this section, our aim is to prove constructively Theorem 4. For this,
we will generalize the “normal coordinates” and normal forms of the papers
[2,3]. Once this is done, the constructive proof of Theorem 4 is exactly the
same as the proof of Theorem 1 in [5]. We will not recall it.

4.1. Smooth diagonalization of one-parameter families of skew
symmetric matrices. In the sequel, the integer part of a real x is de-
noted by [x], and A′ means the transpose of the matrix A.

Any Cω-real one-parameter family of normal (in particular, symmetric
or skew symmetric) matrices can be analytically diagonalized. This is a
classical fact (see [10]). Here, we will prove a C∞ version of this fact, which
is crucial in order to obtain the normal form of Theorem 7 below, and, in
particular, to construct asymptotic optimal syntheses.

Let S denote the set of real smooth n×n one-parameter families of skew
symmetric matrices,

A : t → A(t), A : [0, 1] → so(n).

Fix t0 ∈ [0, 1], and let jk
t0A be the k jet at t0 of A(·). We denote the

polynomial

jk
t0A(τ) = A(t0) + τ

dA

dt
(t0) + · · · + τk

k!
dkA

dtk
(t0)

by the same symbol. By [10], jk−1
t0 A(τ) has eigenvalues

±
√
−1αk−1

1 (τ), . . . , ±
√
−1αk−1

[ n
2 ] (τ)

(if n is odd, then 0 is also an additional eigenvalue) depending analyti-
cally on τ . Let us assume that, for some k, the (k − 1)-jets at τ = 0,
jk−1αk−1

1 , . . . , jk−1αk−1
[ n
2 ] satisfy:
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• if i �= j, then jk−1αk−1
i �= ±jk−1αk−1

j (n is even or odd),
• moreover, jk−1αk−1

i �= 0 (the zero jet) for all i (n is odd).
Then, we say that A(·) is regular at t0. If this is true for all t0 ∈ [0, 1], then
A(·) is said to be regular.

Theorem 6. The C∞-families A ∈ S that are regular can be smoothly
block-diagonalized (by conjugation with a smooth one-parameter family of
orthogonal matrices).

We will give the proof in the case of real skew symmetric matrices only,
but the proof in the general case of (complex-valued) one-parameter families
of Hermitian matrices is similar.

In this section, S0 will denote the space of germs at the origin (t = 0),
of one-real-parameter families of skew symmetric matrices A(t), and jkA(t)
will be the k-jet at 0 of A(t). Ct will denote the ring of germs at the origin
of smooth functions of t, and M will be the maximal ideal of Ct.

We denote by J the matrix
(

0 −1
1 0

)
. For α = (α1, . . . , α[ n

2 ]), we denote
by Dα or D(α) the block-diagonal matrix:

Dα = Block-diag(α1J, . . . αn
2
J) if n is even,

Dα = Block-diag(α1J, . . . α[ n
2 ]J, 0) if n is odd.

Then Dα(·) will denote typical elements of S0 that are block-diagonal.
Let such Dα(·) be fixed, so that the collection of elements αi ± αj , i, j =
1, . . . , [n

2 ], i �= j have nonzero (k− 1)-jets at the origin (if n is odd, we need
also that the αi’s have nonzero (k − 1)-jets at the origin). Then we have
the following two lemmas.

Lemma 1. For all W (t) ∈ MkS0, there is a smooth family of skew
symmetric matrices K(t) ∈ MS0, and a block-diagonal family Dβ(·), where
βi(·) ∈ Mk, such that

W = K ′Dα + DαK + Dβ . (4.1)

Proof. We treat only the case of even n (the case of odd n is similar). The
matrix K is represented by a (n

2 × n
2 )-matrix K̂, whose entries are (2 × 2)-

matrices K̂i,j =
(

ai,j bi,j

ci,j di,j

)
. Let us set T = K ′Dα + DαK. Then it is easy

to verify that T̂i,i = 0, and for i �= j,

T̂i,j = αiJK̂i,j − αjK̂i,jJ.

This shows first that Dβ is a block diagonal matrix with the entries Ŵi,i

that have their own entries in Mk by the assumption. For the nondiagonal
blocks, Eq. (4.1) becomes

Ŵi,j = αiJK̂i,j − αjK̂i,jJ.
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This is a linear equation in ai,j , bi,j , ci,j , and di,j . The determinant of
the 4 × 4 matrix B of this linear equation is easily computed: it equals

δ = (αi − αj)2(αi + αj)2.

The inverse B−1 has entries that are real multiples of the functions

a1 =
αi

(αi)2 − (αj)2
, b1 =

αj

(αi)2 − (αj)2
.

But a1t
k and b1t

k both belong to Ct. Let us prove this for a1t
k only:

a1t
k =

tk

2

(
1

αi − αj
+

1
αi + αj

)
.

The result follows from the assumption that αi − αj and αi + αj do not
have a zero (k − 1)-jet and hence are not in Mk. This implies also that
K ∈ MS0.

Lemma 2. Let M = D(α) + M̃ with M̃ ∈ MkS0. Then, there is a
smooth one-parameter family of orthogonal matrices G(t), with G(0) = Id,
and a smooth one-parameter family of block-diagonal matrices D(ᾱ(t)), with
jk−1αi(t) = jk−1ᾱi(t) for all i = 1, . . . , [n

2 ], such that

G′MG = D(ᾱ).

Proof. The proof is based upon the homotopy method (standard in real C∞

singularity theory).
Let by Mτ , τ ∈ [0, 1], Mτ = D(α(t)) + τM̃(t) join M0 = D(α(t)) and

M1 = D(α(t)) + M̃(t), and look for a homotopy of orthogonal matrices
Gτ (t) and for block-diagonal matrices Dτ = D(ατ (t)) such that ατ (t) =
α(t) + τα̂(t, τ) and

Mτ (t) = G′
τ (t)D(ατ (t))Gτ (t). (4.2)

Differentiating (4.2) w.r.t. τ gives:

M̃ =
dG′

τ

dτ
DτGτ + G′

τDτ
dGτ

dτ
+ G′

τ

dDτ

dτ
Gτ .

Conjugating this equality by G−1
τ = G′

τ , we obtain

GτM̃G′
τ = K ′

τDτ + DτKτ +
dDτ

dτ
, (4.3)

where Kτ =
dGτ

dτ
G−1

τ ∈ so(n) and the left-hand side belongs to MkS0 for
all τ .

We consider the constant one-parameter family Ḡ(t) = g (depending
on the parameter g ∈ SO(n)), and the family of diagonal matrices ∆b =
D(α(t) + tk−1b) with b ∈ R

[ n
2 ].
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Given such Ḡ, ∆b, we consider the following equation in K̄, D̄ (similar
to (4.3) and (4.1)):

ḠM̃Ḡ′ = K̄ ′(t, g, b)∆b + ∆bK̄(t, g, b) + D̄(t, g, b).

According to Lemma 1, this equation has a solution, defined in a neighbor-
hood of the origin in the (t, b) space and for all g ∈ SO(n). From the proof
of Lemma 1, this solution K̄, D̄ is smooth with respect to all the arguments
t, g, and b.

Then the differential equations

dg

dτ
g−1 = K̄(g, t, b), tk−1 dD(b)

dτ
= D̄(g, t, b)

provide a smooth vertical vector field V on the fibers of the product bundle:

π : SO(n) × R
[ n
2 ] × R → R, (g, b, t) �→ t.

This is true since the entries of the block-diagonal matrix D̄(g, t, b) belong
to Mk for fixed g and b.

At t = 0, the vector field V vanishes (this follows from the proof of
Lemma 1 for K̄, and from the fact that the entries of D̄ belong to Mk).
Therefore, the flow of V with initial conditions g(t, 0) = Id, b(t, 0) = 0 is
(for t close to zero) well defined up to τ = 1, and it defines a one-parameter
family Gτ , Dτ satisfying (4.3). The fact that jk−1αi(t) = jk−1ᾱi(t) is a
consequence of the fact that b(0, τ) = 0 for all τ , since the entries of D̄ ∈
Mk. The lemma is proved.

Proof of Theorem 6. We leave the details of the case of odd n to the reader.
It is easy to show that Lemmas 1 and 2 already imply that if a family A ∈ S
is regular, then for all t0 ∈ [0, 1], it can be smoothly block-diagonalized in
a neighborhood of t0. Then it remains only to construct a global block-
diagonalization. For this, it is sufficient to glue two diagonalizations defined
on a pair of overlapping intervals. If A(t) is regular at t0, then the points
θ where not only k-jets but eigenvalues themselves are distinct, are dense
near t0. Take such θ in the intersection of the overlapping intervals.

Changing a diagonalization U1(t) on one of the intervals if necessary,
we may assume that U1(θ)−1U2(θ) lies in the connected component of the
identity of the isotropy subgroup St(θ) ⊂ O(n) of the diagonal matrix
U1(θ)−1A(θ)U1(θ).

Using a smooth homotopy V (t) ∈ St(t) defined in a neighborhood N(θ)
of θ, such that V (t) = Id for t < θ−ε and V (t) = U2(t)U1(t)−1 for t > θ+ε
(ε is small), the family:

U1(t), t < θ − ε,

V (t)U1(t), θ − ε ≤ t ≤ θ + ε,

U2(t), t > θ + ε,
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is a smooth block-diagonalization on the union of the two intervals.

4.2. Normal coordinates and normal forms. Proof of Theorem 4.

Proposition 2. Let Γ be fixed and (∆, g) ∈ GS∞ be as defined in Sec. 2.
Then there exists a global germ of coordinate system (ξ, w) along Γ such that
the following assertions hold :

1. Γ(t) = (0, t), ∆(Γ(t)) = Ker dw, g(Γ(t)) =
n−1∑
i=1

dξ2
i ;

2. geodesics satisfying the Pontryagin maximum principle transversality
conditions w.r.t. Γ are straight lines through Γ contained in the hori-
zontal planes Sw0 = {w = w0};

3. for sufficiently small ε, the sub-Riemannian cylinders

Cε = {q | d(q, Γ) ≤ ε}
(where d is the sub-Riemannian distance) are the Riemannian cylin-

ders
{

n−1∑
i=1

ξ2
i ≤ ε2

}
.

Such a coordinate system is called a pre-normal coordinate system.

This proposition is easy and has already been stated several times (see
[1–3,5]).

Prenormal coordinate systems are unique up to coordinate changes of
the form

(ξ̃, w) = (U(w)ξ, w),

where U(w) is a smooth curve in SO(n − 1).
Now let A(t) be the field of linear endomorphisms of ∆(Γ(t)) associated

with Σ = (Γ,∆, g). If a prenormal coordinate system (ξ, w) is given, let us
denote by Ā(t) the matrix of A(t) with respect to the orthonormal frame(

∂

∂ξ1
, . . . ,

∂

∂ξn−1

)
.

Proposition 3 (normal coordinates). Assume that the one-parameter
family of skew symmetric matrices Ā(t) is regular (in the sense of Sec. 4.1).
Then, there is a global (germ of ) coordinate system (ξ, w) along Γ (called a
normal coordinate system) such that :

1. (ξ, w) is prenormal ;
2. the matrices Ā(t) are skew-symmetric and block-diagonal.

Proof. We start in a given pre-normal coordinate system (ξ, w). By Theo-
rem 6, we can block diagonalize Ā(t) by a smooth orthogonal transforma-
tion U(t).

Setting (ξ̃, w) = (U(w)ξ, w) does the job, since these coordinate changes
do not affect the properties (1)–(3) of prenormal coordinates.
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Normal coordinates are unique up to coordinate changes of the form
(ξ̃, w) = (T (w)ξ, w), where T (w) is a smooth curve in the natural maximal
torus of SO(n − 1).

In a normal coordinate system, the coordinates (ξ, w) split into coordi-
nates (x, y, w) (n is odd), or (x, y, z, w) (n is even) such that ξ = (x, y) =
(x1, y1, . . . , xn−1

2
, yn−1

2
) (or ξ = (x, y, z), ξ = (x1, y1, . . . , x[ n−1

2 ], y[ n−1
2 ], z),

z ∈ R). The two-dimensional real eigenspaces of Ā(t) are span
{

∂

∂xi
,

∂

∂yi

}
,

and the unavoidable kernel (for even n) is span
{

∂

∂z

}
.

If normal coordinates are given, and an orthonormal frame field F =
(F1, . . . , Fn−1) is also given, then, in coordinates, we write the frame

F = (F1, . . . , Fn−1) = F
∂

∂ξ
+ L

∂

∂w
,

which means that

Fj =
∑

Qi,j
∂

∂ξi
+ Lj

∂

∂w
.

Then the matrices Q(ξ, w) and L(ξ, w) have k-jets with respect to ξ:

Q(ξ, w) = Q0(ξ, w) + Q1(ξ, w) + Q2(ξ, w) + . . . ,

L(ξ, w) = L0(ξ, w) + L1(ξ, w) + L2(ξ, w) + . . . ,

where Qi(ξ, w) and Li(ξ, w) are homogeneous polynomials of degree i in the
variables xj , yj (and z if n is even).

Also, let us again denote by ±√−1α1(w), . . . ,±√−1α[ n−1
2 ](w) (and 0)

the eigenvalues of Ā(w).

Theorem 7 (normal form). Under the same assumption that Ā(·) is a
regular family, if (x, y, w) (respectively, (x, y, z, w)) is a fixed normal coor-
dinate system, then there is a unique orthonormal frame field

F = (F1, . . . , Fn−1) = Q
∂

∂ξ
+ L

∂

∂w

for the sub-Riemannian metric, with the following properties:
1. Q is symmetric;
2. Q0(ξ, w) = Id;
3. Q(ξ, w) · ξ = ξ;
4. L(ξ, w) · ξ = 0;
5. Q1 = 0;
6. L0 = 0;
7. if n is odd, then

L1 =

(
α1(w)

2
y1, −α1(w)

2
x1, . . . ,

αn−1
2

(w)

2
yn−1

2
, −

αn−1
2

(w)

2
xn−1

2

)
;
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if n is even, then

L1 =

(
α1(w)

2
y1,−

α1(w)
2

x1, . . . ,
α[ n−1

2 ](w)

2
y[ n−1

2 ],−
α[ n−1

2 ](w)

2
x[ n−1

2 ], 0

)
.

In fact, this is a generalization of the 3-dimensional normal form (2.2):
actually, (2.2) can be easily obtained from Theorem 7.

The proof of Theorem 7 is exactly the same as in [5].
Moreover, based upon this theorem, we have the following proposition,

which is proved (constructively, i.e., exhibiting an asymptotic optimal syn-
thesis) exactly as Theorem 1 in [5].

Proposition 4. Assume that Ā(·) is a regular family, and assume that
the fundamental 2-form α(t) �= 0 for all t ∈ [0, 1] assumption (c). Then
asymptotics (1.1) holds for the metric complexity, and the leading coefficient
of MCΣ(ε, T ) is a C1 smooth function of T , piecewise C∞.

Lemma 3. For all t0 ∈ [0, 1], the mapping

Jk+1
t0 GS∞ → JkS0, jk+1

t0 (∆, g) → jk
t0Ā,

is a submersion.

Proof. Take coordinates (ξ, w) along Γ such that Γ(t) = (0, t), ∆(Γ(t)) =

Ker dw, and g|Γ(t) =
n−1∑
i=1

dξ2
i . Then the forms ω (defined in Sec. 1.3) can be

written as follows:

ω = dw +
n−1∑
i=1

fi(ξ, w)dξi.

The matrix Ā(w) of α = dω|Γ(t) in these coordinates is

Ā(w)i,j =
(

∂fi

∂ξj
− ∂fj

∂ξi

)
(0, w).

The lemma is proved.

Therefore, Theorem 4 follows from Proposition 4 and the following
lemma, the proof of which is easy and left to the reader.

Lemma 4. The elements of Jk−1S0, i.e., the (k − 1)-jets jk−1
0 Ā at t =

0 of one-parameter families Ā(t) that are not regular at t = 0 form an
algebraic subset of Jk−1S0 of codimension 3k in Jk−1S0.
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