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1 Motivations

1.1 Sub-critical Elliptic equations on R
n

To prove existence of solutions of elliptic problems on R
n one of the main difficulties

is the lack of compactness.

For ex., the functional

I0(u) :=
∫

Rn

1
2

[|∇u|2 + u2
]
dx − 1

p+1

∫
Rn

|u|p+1dx, u ∈ W 1,2(Rn),

does not satisfy the Palais-Smale (PS) compactness condition.
Actually, it is easy to see that there exists a unique positive, radially symmetric

function U ∈ W 1,2(Rn) satisfying

−∆U + U = Up.

Then for every ξ ∈ R
n, any U(x − ξ) is a solution of

−∆u + u = up, u ∈ W 1,2(Rn),

and hence a critical point of I0.
Remark. The lack of (PS) is closely related to the fact that the embedding of

W 1,2(Rn) into Lp+1(Rn) is not compact, even if p + 1 < 2∗.
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On the other hand, a classical result by W. Strauss states that the subspace

W 1,2
r (Rn) = {u ∈ W 1,2(Rn) : u is radial}

is compactly embedded in Lq(Rn) when 1 < q < 2∗.

This allows us to show that I0 restricted to W 1,2
r satisfies the (PS) condition.

Moreover, it is immediate to check that I0 has the Mountain-Pass geometry, namely

(i) u = 0 is a strict local minimum of I0, and

(ii) there exists e ∈ W 1,2
r such that I0(e) < I0(0) = 0.

Thus I0 has a M-P critical point which is nothing but U .
More in general, consider the b.v.p.

(Pb) −∆u + u = b(x)up, u ∈ W 1,2(Rn),

where we assume:

(1) lim
|x|→∞

b(x) = b∞ > 0.

To simplify the notation we will take b∞ = 1.
The corresponding functional is given by

Ib(u) = 1
2‖u‖2 − 1

p+1

∫
Rn

b(x)|u|p+1dx.

Let us introduce its limit at infinity, obtained substituting b with b∞ = 1, namely

I0(u) = 1
2‖u‖2 − 1

p+1

∫
Rn

|u|p+1dx.

Let c0 denote the M-P critical level of I0 (one has c0 = I0(U)) and let us set

Sp+1 = inf{‖u‖2 : u ∈ W 1,2(Rn),
∫

Rn

|u|p+1dx = 1}.

It is well known that Sp+1 > 0 and is achieved at some u∗ such that ‖u∗‖2 = Sp+1.
Notice that Sp+1 is the best Sobolev constant for the embedding W 1,2(Rn) ↪→
Lp+1(Rn) and hence

(2) ‖u‖2
Lp+1 ≤ S−1

p+1 ‖u‖2.

Moreover, we have that U = S
1/(p−1)
p+1 u∗ satisfies −∆U + U = Up and hence

c0 = I0(U) = ( 1
2 − 1

p+1 )‖U‖2 = (1
2 − 1

p+1 )S
p+1
p−1
p+1 .
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Lemma 1.1 Suppose that b satisfies (1), with b∞ = 1. Then Ib satisfies (PS)c

for any c < c0.

It is easy to check that the assumption

(3) b(x) ≥ b∞ (= 1) ∀x ∈ R
n

implies that the M-P level cb of Ib satisfies cb ≤ c0, with strict inequality provided
b �≡ b∞ (= 1) (if b ≡ 1 one has that Ib ≡ I0).

Then the previous Lemma implies that Ib satisfies (PS)c at c = cb and hence
Ib has a M-P critical point. Thus

Theorem 1.2 If (1) and (3) hold, Ib has a Mountain Pass critical point and hence
the problem (Pb) has a (positive) solution.

More in general, using the P.L. Lions Concentration-Compactness Principle,
one can prove:

Theorem. (A. Bahri - P.L. Lions) Let 1 < p < n+2
n−2 and suppose that b ∈

L∞(Rn) satisfies

(a) b > 0 and lim|x|→∞ b(x) = b∞ > 0;

(b) there exist R, C, δ > 0 such that

b(x) ≥ b∞ − C exp(−δx), for |x| ≥ R

Then the problem (Pb) has a positive solution.
Let us consider now the problem

(4)
{ −∆u + u = (1 + εh(x))up,

u ∈ W 1,2(Rn), u > 0,

where h(x) is a bounded function.

Question: Does equation (4) possess positive solutions for ε sufficiently small?

We will show that, under suitable, natural assumptions on h there exists ξ̄ ∈ R
n

such that (4) has a solution uε ∼ U(· − ξ̄) for ε small enough.

Roughly, the new feature is that we do not need to compare h with its limit at
infinity.
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1.2 Equations with critical exponent

We will consider problems like

(5) −∆u = (1 + εk(x)) u
n+2
n−2 , u ∈ D1,2(Rn), u > 0.

Equations of this type arise in Differential Geometry.
The new feature is that the unperturbed problem

(6) −∆u = u
n+2
n−2 , u ∈ D1,2(Rn), u > 0

is invariant by translation (like in the subcritical case) and by dilations.
The fundamental solution U of (6) has the form (up to a constant)

U(x) =
(

1
1 + |x|2

)n−2
2

,

and for all ξ ∈ R
n and µ > 0,

zµ,ξ(x) = µ−n−2
2 U

(
x − ξ

µ

)
is a solution of (6).
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U

zµ,ξ

xξ0
Finding solutions of (5) is a delicate matter. For example, if k(x) is positive,

radial, has a unique maximum at x = 0 and decays to zero at infinity, (5) does not
possess any positive solution in D1,2(Rn).

However, we will show that a solution exists provided k satisfies, in addition to
some technical conditions, the following hypotheses

(a) k has a finite number of stationary points and ∆k(ξ) �= 0, ∀ ξ ∈ R
n such

that ∇k(ξ) = 0.

(b) if i(k′, x) denotes the index (namely the local degree) of k′ at x, there holds∑
∇k(ξ)=0, ∆k(ξ)<0

i(k′, x) �= (−1)n.
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1.3 Semiclassical standing waves of NLS

In Quantum Mechanics the behavior of a single particle is governed by the linear
Schrödinger equation

i�
∂ψ

∂t
= −�

2∆ψ + Q(x)ψ,

where i is the imaginary unit, � is the Planck constant, (t, x) ∈ R×R
n, ∆ denotes

the Laplace operator and ψ = ψ(t, x) is a complex valued function. Differently, in
the presence of many particles, one can try to simulate the mutual interaction effect
by introducing a nonlinear term. Expanding this nonlinearity in odd power series

a0ψ + a1|ψ|p−1ψ + · · · , (p ≥ 3)

and keeping only the first nonlinear term, one is led to a nonlinear equation of the
form

(7) i�
∂ψ

∂t
= −�

2∆ψ + (a0 + Q(x))ψ + a1|ψ|p−1ψ.

A stationary wave of (7) is a solution of (7) of the form

ψ(t, x) = exp
(
i α �

−1t
)
u(x) u(x) ∈ R, u > 0.

Thus, looking for solitary waves of (7) is equivalent to find an u > 0 satisfying

(8) −�
2∆u + (α + a0 + Q(x))u = up.

Such an u will be called a standing wave. A particular interest is given to the
so called semiclassical states that are standing waves existing for � → 0. Setting
� = ε and V (x) = α + a0 + Q(x), we are finally led to

(9)
{ −ε2∆u + V (x)u = up,

u ∈ W 1,2(Rn), u > 0,

where the condition u ∈ W 1,2(Rn) is added in order to obtain bound states, namely
solutions with finite energy.

To obtain a perturbation problem like the preceding ones, it is convenient to
make the change of variables x �→ εx + x0, where x0 ∈ R

n will be chosen in an
appropriate way, that leads to

(10)
{ −∆u + V (εx + x0)u = up,

u ∈ W 1,2(Rn), u > 0.

The solutions of (10) are the critical points u > 0 of the functional

Iε(u) =
∫

Rn

1
2

[|∇u|2 + V (εx + x0)u2
]
dx − 1

p+1

∫
Rn

|u|p+1dx, u ∈ W 1,2(Rn).

This functional is perturbative in nature: the unperturbed functional is

I0(u) =
∫

Rn

1
2

[|∇u|2 + V (x0)u2
]
dx − 1

p+1

∫
Rn

|u|p+1dx
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while the perturbation term is given by

1
2

∫
Rn

[V (εx + x0) − V (x0)] u2dx.

The unperturbed equation I ′0(u) = 0 becomes:

(11)
{ −∆u + V (x0)u = up,

u ∈ W 1,2(Rn), u > 0.

If V (x0) > 0, (11) possesses as before a unique radial solution U0 > 0. Moreover,
any U0(· − ξ), ξ ∈ R

n, is also a solution of (11).
It will be shown that if x0 is stationary point of the potential V which is stable

(in a suitable sense specified later on), then (NLS) has for ε �= 0 small a solution
of the form

uε(x) ∼ U0

(
x − x0

ε

)
,

hence a solution that concentrates at x0.
This kind of solutions are called spike layers or simply spikes.
From the physical point of view, spikes are important because they show that

(focusing) NLS of the type (11) are not dispersive but the energy is localized in
packets.

1.4 Neumann singularly perturbed problems

Another example is given by elliptic singularly perturbed problems with Neumann
boundary conditions like

(12)

⎧⎨⎩
−ε2∆u + u = up, in Ω
u > 0, in Ω,
∂u
∂ν = 0, on ∂Ω,

where Ω is a bounded domain in R
n with smooth boundary ∂Ω and ν denotes the

unit outer normal at ∂Ω. As before, we take 1 < p < n+2
n−2 . Problems like (12) arise

in the study of some reaction-diffusion systems in biology.
The specific feature of (12) is to possess spike layer solutions.
The role of the potential V in the NLS is played here by the curvature of the

boundary, in the sense that there exist solutions concentrating at stable stationary
points of the mean curvature H of ∂Ω.

Final Remark. In all the preceding examples we look for critical points of a
perturbed functional

Iε(u) = I0(u) + εG(u), u ∈ H
with the feature that the unperturbed functional I0 has a finite dimensional manifold
Z of critical points.
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For example, for subcritical problems on R
n

Z = {U(· − ξ) : ξ ∈ R
n} � R

n

while in the critical case

Z = {µ−n−2
2 U

( · − ξ

µ

)
: ξ ∈ R

n, µ > 0} � R
n × R

+.

2 Abstract setting: critical points of perturbed
functionals

We consider a class of functionals of the form

Iε(u) = I0(u) + εG(u).

where H is a Hilbert space, I0 ∈ C2(H, R) plays the role of the unperturbed
functional and G ∈ C2(H, R) is the perturbation.

We will always suppose that there exists a d-dimensional smooth, say C2, man-
ifold Z, 0 < d = dim(Z) < ∞, such that all z ∈ Z is a critical point of I0. The
set Z will be called a critical manifold (of I0). Let Tz denote the tangent space to
Z at z. If Z is a critical manifold then

I ′0(z) = 0, ∀ z ∈ Z.

Differentiating the identity I ′0(z) ≡ 0, we get

(I ′′0 (z)[v]|φ) = 0, ∀ v ∈ Tz, ∀ φ ∈ H.

It follows that all v ∈ Tz is a solution of the linearized equation I ′′0 (z)[v] = 0,
namely v ∈ Ker[I ′′0 (z)].

Thus
Tz ⊆ Ker[I ′′0 (z)].

In particular, I ′′0 (z) has a non trivial Kernel (whose dimension is at least d) and
hence all the z ∈ Z are degenerate critical points of I0. We shall require that this
degeneracy is minimal. Precisely we will suppose that

(ND) Tz = Ker[I ′′0 (z)], ∀ z ∈ Z.

So, proving that Z satisfies (ND) is equivalent to show that Ker[I ′′0 (z)] ⊆ Tz,
namely that every solution of the linearized equation I ′′0 (z)[v] = 0 belongs to Tz.

In addition to (ND) we will assume that

(Fr) for all z ∈ Z, I ′′0 (z) is an index 0 Fredholm map.

Definition. A critical manifold Z will be called non degenerate, ND in short, if
(ND) and (Fr) hold.

8



2.1 A finite dimensional reduction

Let W = (Tz)⊥ and let P : H → W denote the orthogonal projection onto W

We look for critical points of Iε in the form u = z + w with z ∈ Z and w ∈ W .

The equation I ′ε(z + w) = 0 is equivalent to the following system

(13)
{

PI ′ε(z + w) = 0, (the auxiliary equation)
(Id − P )I ′ε(z + w) = 0, (the bifurcation equation)

Let first solve the auxiliary equation, namely

(14) PI ′0(z + w) + εPG′(z + w) = 0,

by means of the Implicit Function Theorem.
Let F : R × Z × W → W be defined by setting

F (ε, z, w) = PI ′0(z + w) + εPG′(z + w).

F is of class C1 and one has F (0, z, 0) = 0, for every z ∈ Z.

Lemma 2.1 If (ND) and (Fr) hold, then DwF (0, z, 0) is invertible as a map from
W into itself.

Proof. The map DwF (0, z, 0) is given by

DwF (0, z, 0) : v �→ PI ′′0 (z)[v].

Since PI ′′0 (z)[v] = I ′′0 (z)[v], the equation DwF (0, z, 0)[v] = 0 becomes

I ′′0 (z)[v] = 0.

Thus v ∈ Ker[I ′′0 (z)] ∩ W and from (ND) it follows that v = 0, namely that
DwF (0, z, 0) is injective. Using (Fr) we then deduce that DwF (0, z, 0) : W → W
is invertible.

Let Zc be a compact subset of Z. Lemma 2.1 allows us to apply the Implicit
Function Theorem to F (ε, z, w) = 0 yielding:

Lemma 2.2 ∃ ε0 > 0 such that ∀ |ε| < ε0, ∀ z ∈ Zc, the auxiliary equation (14)
has a unique solution wε = wε(z) ∈ W , with

(a) wε(z) ∈ W = (TzZ)⊥ and wε(z) → 0, as |ε| → 0;
(b) wε is of class C1 w.r. to z ∈ Zc and w′

ε → 0 as |ε| → 0;
(c) ‖wε(z)‖ = O(ε) as ε → 0, for all z ∈ Zc.

Proof of (b). w′
ε satisfies

PI ′′0 (z + wε)[q + w′
ε] + εPG′′(z + wε)[q + w′

ε] = 0, (q ∈ TzZ)

Then for ε = 0 we get PI ′′0 (z)[q + w′
0] = 0. Since q ∈ TzZ ⊆ Ker[I ′′0 (z)], then

PI ′′0 (z)[q] = 0, and this implies w′
0 = 0.
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2.2 Existence of critical points

To solve the bifurcation equation, let us define the reduced functional Φε : Z → R

by setting

(15) Φε(z) = Iε(z + wε(z)).

Theorem 2.3 Let I0, G ∈ C2(H, R) and suppose that I0 has a smooth ND critical
manifold Z. If Φε has, for |ε| sufficiently small, a critical point zε ∈ Zc, then
uε = zε + wε(zε) is a critical point of Iε = I0 + εG.

Sketch of the proof. Consider the manifold Zε = {z +wε(z)}. Since zε is a critical
point of Φε, it follows that uε ∈ Zε is a critical point of Iε constrained on Zε and
thus uε satisfies I ′ε(uε) ⊥ TuεZε. Moreover from PI ′ε(z + wε) = 0, it follows that
I ′ε(z + wε(z)) ∈ TzZ. In particular, I ′ε(uε) ∈ Tzε

Z. Since, for |ε| small, Tuε
Zε and

Tzε
Z are close, see Lemma 2.2, it follows that I ′ε(uε) = 0.
When Z is compact the preceding result immediately implies

Corollary 2.4 If, in addition to the assumptions of Theorem 2.3, the critical mani-
fold Z is compact, then for |ε| small enough, Iε has at least Cat(Z) (the Lusternik-
Schnierelman category of Z) critical points.

In order to use Theorem 2.3 it is convenient to expand Φε.

Lemma 2.5 One has:

Φε(z) = c0 + εG(z) + o(ε), where c0 = I0(z).

Proof. Recall that

Φε(z) = I0(z + wε(z)) + εG(z + wε(z)).

Let us evaluate separately the two terms above. First we have

I0(z + wε(z)) = I0(z) + (I ′0(z) |wε(z)) + o(‖wε(z)‖).
Since I ′0(z) = 0 we get

(16) I0(z + wε(z)) = c0 + o(‖wε(z)‖).
Similarly, one has

G(z + wε(z)) = G(z) + (G′(z) |wε(z)) + o(‖wε(z)‖)
= G(z) + O(‖wε(z)‖).(17)

Putting together (16) and (17) we infer that

(18) Φε(z) = c0 + ε
[
G(z) + O(‖wε(z)‖)

]
+ o(‖wε(z)‖).

Since ‖wε(z)‖ = O(ε), see Lemma 2.2-(c), the result follows.
The preceding lemma, jointly with Theorem 2.3 yields
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Theorem 2.6 Let I0, G ∈ C2(H, R). Suppose that I0 has a ND smooth critical
manifold Z. Moreover, setting Γ := G|Z , we assume and that there exists a critical
point z̄ ∈ Z of Γ = G|Z satisfying

(G′) ∃ N ⊂ R
d open bounded such that the topological degree d(Γ′,N , 0) �= 0.

Then for |ε| small the functional Iε has a critical point uε and there exists
ẑ ∈ N , Γ′(ẑ) = 0, such that uε → ẑ as ε → 0. Therefore if, in addition, N
contains only an isolated critical point z̄ of Γ′, then uε → z̄ as ε → 0.

Remark. Examples in which condition (G′) holds are:
(i) z̄ is a strict local maximum (or minimum),

(ii) z̄ is any non-degenerate critical point z̄.
In both cases, uε → z̄ as ε → 0.
If G(z) ≡ 0, Theorem 2.6 is useless and we need to evaluate the further terms

in the expansion of Φε.
However, it is possible to show that the preceding results still hold true, provided

we substitute Φε and Γ with, resp.

Φ̃ε(z) = c0 − 1
2 ε2(G′(z) |LzG

′(z)) + o(ε2),

and

Γ̃(z) = 1
2 (G′(z) |LzG

′(z)),

where Lz = (PI ′′0 (z))−1.

3 Applications

3.1 Subcritical Problems

We will consider the elliptic problem

(Pε) −∆u + u = (1 + εh(x))up, u ∈ W 1,2(Rn), u > 0,

where n ≥ 3 and p is a subcritical exponent, namely

1 < p <
n + 2
n − 2

.

In order to use the techniques discussed before we set H = W 1,2(Rn) and

Iε(u) = 1
2‖u‖2 − 1

p+1

∫
Rn

up+1
+ dx − ε · 1

p+1

∫
Rn

h(x) up+1
+ dx,

where, for simplicity, we assume that h ∈ L∞(Rn).
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Here H = W 1,2(Rn) is the usual Sobolev space, endowed with the standard
scalar product, resp. norm,

(u|v) =
∫

Rn

(∇u · ∇v + uv)dx, ‖u‖2 =
∫

Rn

(|∇u|2 + u2)dx.

Plainly, Iε ∈ C2(H, R) and solutions of (Pε) are critical points of Iε.
Iε has the form

Iε(u) = I0(u) + εG(u),

where the unperturbed functional I0 is given by

I0(u) = 1
2‖u‖2 − 1

p+1

∫
Rn

up+1
+ dx,

and the perturbation is

G(u) = − 1
p+1

∫
Rn

h(x) up+1
+ dx.

The unperturbed problem I ′0(u) = 0 is equivalent to the elliptic equation

(19) −∆u + u = up, u ∈ H, u > 0

which has a unique positive radial solution U which decays exponentially to zero at
infinity. Moreover, since (19) is translation invariant, it follows that any zξ(x) :=
U(x− ξ) is also a solution of (19). In other words, I0 has a (non-compact) critical
manifold given by

Z = {zξ(x) : ξ ∈ R
n} � R

n.

Lemma 3.1 Z is non-degenerate.

Proof (Sketch). v ∈ H belongs to Ker[I ′′0 (U)] iff

(20) −∆v + v = pUp−1(x)v, v ∈ H.

We set
r = |x|, ϑ =

x

|x| ∈ Sn−1

and let ∆r, resp. ∆Sn−1 denote the Laplace operator in radial coordinates, resp.
the Laplace-Beltrami operator. To find solutions of (20) we recall that every v ∈ H
can be written in the form

v(x) =
∞∑

k=0

ψk(r)Yk(ϑ), where ψk(r) =
∫

Sn−1 v(rϑ)Yk(ϑ)dϑ ∈ W 1,2(R),

and Yk(ϑ) are the spherical harmonics satisfying

(21) −∆Sn−1Yk = λkYk.
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The eigenvalues (and their multiplicity) of (21) are known. In particular,
λ0 = 0 has multiplicity 1,
λ1 = n − 1, has multiplicity n.
The rest of eigenvalues are given by λk = k(k + n − 2), k = 2, 3 . . .
Substituting v =

∑
ψkYk into (20) we get the following equations for ψk:

Ak(ψk) := −ψ
′′
k − n − 1

r
ψ′

k + ψk +
λk

r2
ψk − pUp−1ψk = 0, k = 0, 1, 2, . . .

If k = 0, λ0 = 0 and thus ψ0 satisfies

A0(ψ0) = −ψ
′′
0 − n − 1

r
ψ′

0 + ψ0 − pUp−1ψ0 = 0.

It is possible to show that all the solutions of A0(u) = 0 are unbounded. Since we
are looking for solutions ψ0 ∈ W 1,2(R), it follows that ψ0 = 0.

For k = 1, one has that λ1 = n − 1 and we find

A1(ψ1) = −ψ
′′
1 − n − 1

r
ψ′

1 + ψ1 +
n − 1

r2
ψ1 − pUp−1ψ1 = 0.

Let Û(r) denote the function such that U(x) = Û(|x|). Since U(x) satisfies −∆U+
U = Up, then Û solves

−Û ′′ − n − 1
r

Û ′ + Û = Ûp.

Differentiating, we get

(22) −(Û ′)′′ − n − 1
r

(Û ′)′ +
n − 1

r2
Û ′ + Û ′ = pÛp−1Û ′.

In other words, Û ′(r) satisfies A1(Û ′) = 0, and Û ′ ∈ W 1,2(R).
Let us look for a second solution of A1(ψ1) = 0 in the form ψ1(r) = c(r)Û ′(r).

By a straight calculation, we find that c(r) solves

−c′′Û ′ − 2c′ · (Û ′)′ − n − 1
r

c′Û ′ = 0.

If c(r) is not constant, it follows that

−c′′

c′
= 2

Û ′′

Û ′ +
n − 1

r
,

and hence

c′(r) ∼ 1

rn−1Û ′2 , (r → +∞).

This and U(r) ∼ e−|r||r|−n−1
2 imply that c(r) ∼ e2r and therefore c(r)Û ′(r) ∼

−err(1−n)/2 as r → +∞. From this we infer that c(r)Û ′(r) �∈ W 1,2(R), unless

c(r) = cst.. Then ψ1(r) = cÛ ′(r), for some c ∈ R.
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Finally, one shows that the equation Ak(ψk) = 0 has only the trivial solution in
W 1,2(R), provided that k ≥ 2.

Conclusion. Any v ∈ Ker[I ′′0 (U)] has to be a constant multiple of Û ′(r)Y1(ϑ).
Here Y1 is such that

−∆Sn−1Y1 = λ1Y1.

Recalling that λ1 has multiplicity n and letting Y1 =
∑n

1 aiY1,i, we find that

v ∈ span{Û ′Y1,i : 1 ≤ i ≤ n} = span{Uxi : 1 ≤ i ≤ n} = TUZ.

This proves that (ND) holds.

Theorem 3.2 (Pε) has a solution for |ε| is small enough, provided one of the
following conditions is fullfilled

(h1) h ∈ Ls with s = 2∗
2∗−(p+1) and

∫
Rn h(x)Up+1(x) �= 0;

(h2) ∃ r ∈ [1, 2] such that h ∈ Ls ∩ Lr.

(h3) h ∈ L∞ and lim|x|→∞ h(x) = 0

The proof in the cases (h1 − h2) is based on the following lemma

Lemma 3.3 Suppose that h ∈ Ls. Then

lim
|ξ|→∞

Γ(ξ) = 0,

(
Γ(ξ) =

∫
Rn

h(x)Up+1(x − ξ)dx

)
.

To prove the lemma we write, for a suitable ρ > 0,

Γ(ξ) =
∫
|x|<ρ

h(x)Up+1(x − ξ)dx +
∫
|x|>ρ

h(x)Up+1(x − ξ)dx

Let us evaluate separately the two terms (I), (II), in the preceding eq.

|(I)| ≤
(∫

|x|<ρ

|h(x)|sdx

)1/s (∫
|x|<ρ

Us′(p+1)(x − ξ)dx

)1/s′

=

(∫
|x|<ρ

|h(x)|sdx

)1/s (∫
|y+ξ|<ρ

Us′(p+1)(y)dy

)1/s′

≤ c1

(∫
|x+ξ|<ρ

Us′(p+1)(x)dx

)1/s′

.

Since U decays exponentially to zero as |x| → ∞, the last integral tends to zero as
|ξ| → ∞ ∀ ρ > 0 and hence

lim
|ξ|→∞

∫
|x|<ρ

h(x)Up+1(x − ξ)dx = 0, ∀ ρ > 0.
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Moreover,

|(II)| ≤
(∫

|x|>ρ

|h(x)|sdx

)1/s (∫
|x+ξ|>ρ

Us′(p+1)(x)dx

)1/s′

≤
(∫

|x|>ρ

|h(x)|sdx

)1/s (∫
Rn

Us′(p+1)(x)dx

)1/s′

≤ c2

(∫
|x|>ρ

|h(x)|sdx

)1/s

.

Thus, given any η > 0 there exists ρ > 0 large enough, in such a way that |(II)| ≤ η.
Thus (I) + (II) → 0, proving the lemma.
The condition (h1) says that Γ(0) =

∫
Rn h(x)Up+1(x) �= 0, hence Γ �≡ 0.

From the lemma it follows that Γ achieves a strict (global) maximum or mini-
mum.

From the abstract setting it follows that Iε has a critical point which gives rise
to a solution of (Pε) for |ε| is small enough.

Condition (h2) replaces (h1) and allows us to show that Γ �≡ 0 whenever h �≡ 0.

The case (h3) is handled by proving that lim|ξ|→∞ Φε(ξ) = 0. Then Φε has a
critical point and we can use once more the abstract setting.

3.2 The case of the critical exponent

Consider

(23) −∆u = (1 + εk(x))u(n+2)/(n−2), u > 0,

We will work in H := D1,2(Rn), the space of u ∈ L2∗
(Rn) such that ∇u ∈ L2(Rn),

endowed with scalar product and norm, respectively

(u|v) =
∫

Rn

∇u · ∇vdx, ‖u‖2 =
∫

Rn

|∇u|2dx.

Solutions of (23) are the critical points of Iε : H → R,

Iε(u) = 1
2‖u‖2 − 1

2∗

∫
Rn

u2∗
+ dx − ε 1

2∗

∫
Rn

k(x)u2∗
+ dx,

where u+ denotes the positive part of u.
As before, we need to consider the unperturbed problem

−∆u = u(n+2)/(n−2), u > 0, u ∈ H,
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which possesses the following family of solutions, depending on (n + 1) parameters
ξ ∈ R

n and µ ∈ R
+,

zµ,ξ(x) = µ−(n−2)/2U

(
x − ξ

µ

)
,

where

U(x) = [n(n − 2)](n−2)/4

(
1

1 + |x|2
)(n−2)/2

.

Correspondingly, we have an (n+1)-dimensional manifold of solutions given by

Z = {z = zµ,ξ : µ > 0, ξ ∈ R
n}.

It is possible to show that Z is ND.
According to the general theory, we have to study the finite dimensional func-

tional

Γ(µ, ξ) :=
∫

Rn

k(x)z2∗
µ,ξ(x)dx.

We will make the following assumptions on k(x). Let Cr[k], denote the set of
critical points of k.

(k.0) k ∈ L∞(Rn) ∩ C2(Rn);

(k.1) Cr[k] is finite and ∆k(x) �= 0, ∀x ∈ Cr[k].

(k.2) ∃ ρ > 0 such that 〈k′(x), x〉 < 0, ∀ |x| ≥ ρ

(k.3) 〈k′(x), x〉 ∈ L1(Rn),
∫

Rn〈k′(x), x〉dx < 0;

From (k.1) it follows that for every x ∈ Cr[k] the index i(k′, x) (namely the local
degree) of k′ at x is well defined.

Theorem 3.4 Let (k.1 − 3) hold and suppose that

(24)
∑

x∈Cr[k], ∆k(x)<0

i(k′, x) �= (−1)n.

Then (23) has at least a solution, provided |ε| � 1.

Γ takes the form

Γ(µ, ξ) = µ−n

∫
Rn

k(x)U2∗
(

x − ξ

µ

)
dx =

∫
Rn

k(µy + ξ)U2∗
(y)dy.

By a straight calculation we find

lim
µ↓0

Γ(µ, ξ) = a0k(ξ), a0 =
∫

Rn

U2∗
(y)dy.
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Moreover, from DµΓ(µ, ξ) =
∫

Rn〈k′(µy+ξ), y〉U2∗
(y)dy and since

∫
Rn yiU

2∗
(y)dy =

0, it follows
lim
µ↓0

DµΓ(µ, ξ) = 0.

As a consequence, we can extend Γ to all of R
n by setting Γ̃(0, ξ) = a0k(ξ) and

Γ̃(µ, ξ) = Γ(−µ, ξ) if µ < 0. The extended function is of class C1 and satisfies

(25) DµΓ̃(0, ξ) = 0, ∀ ξ ∈ R
n.

In particular,

(26) ξ ∈ Cr[k] ⇐⇒ (0, ξ) ∈ Cr[Γ̃],

Next, we evaluate the second derivatives of Γ̃. We find

D2
µµΓ̃(µ, ξ) =

∫
Rn

∑
D2

ijk(µy + ξ)yiyjU
2∗

(y)dy.

Since
∫

Rn yiyjU
2∗

(y)dy = 0 ⇐⇒ i �= j, we infer

(27) D2
µµΓ̃(0, ξ) = a1∆k(ξ), a1 =

∫
Rn

|y|2U2∗
(y)dy.

Furthermore, differentiating (25) with respect to ξi we infer

(28) D2
µξi

Γ̃(0, ξ) = 0, i = 1, . . . , n.

Putting together (27) and (28) one finds that the Hessian matrix Γ̃′′(0, ξ) at
any ξ ∈ R

n has the form

(29) Γ̃′′(0, ξ) =

⎛⎝ a0k
′′(ξ) 0

0 a1 ∆k(ξ)

⎞⎠ .

In particular, (0, ξ) is an isolated critical point of Γ̃ and, by the multiplicative
property of the degree, we have i(Γ̃′, (0, ξ)) = sgn(∆K(ξ))i(k′, ξ). Let us collect
the above results in the following Lemma

Lemma 3.5 Let (k.0)− (k.1) hold. Then (0, ξ) is an isolated critical point of Γ̃ if
and only if ξ ∈ Cr[k]. Moreover one has

i(Γ̃′, (0, ξ)) =

⎧⎨⎩
i(k′, ξ) if ∆k(ξ) > 0

−i(k′, ξ) if ∆k(ξ) < 0

Furthermore, one proves

Lemma 3.6 Let (k.2) − (k.3) hold. Then ∃R > 0 such that

〈Γ̃′(µ, ξ), (µ, ξ)〉 < 0, ∀ (µ, ξ) ∈ R
n+1, µ2 + |ξ|2 ≥ R2.

Therefore, deg(Γ̃′, Bn+1
R , 0) = (−1)n+1.
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Proof of Theorem 3.4 Letting C+ denote the set of points of Cr[Γ̃] with µ > 0,
C− := {(−µ, ξ) : (µ, ξ) ∈ C+} and C0 = {(0, ξ) : ξ ∈ Cr[k]}, one checks that

Cr[Γ̃] = C+ ∪ C0 ∪ C−.

Remark that C0 and C± are compact.

In order to apply the abstract setting, we will show that for any open bounded
set N ⊂]0,∞) × R

n with C+ ⊂ N one has that deg(Γ′,N , 0) �= 0.
Let us argue by contradiction. Let O ⊂]0,∞) × R

n be an open bounded set
with C+ ⊂ O and such that deg(Γ′,O, 0) = 0. Let us introduce the following
notation:

O− = {(−µ, ξ) : (µ, ξ) ∈ O}, O′ = O ∪O− .

Since Γ = Γ̃ in ]0,∞) × R
n, using Lemma 3.6 we deduce

(30) deg(Γ̃′, Bn+1
R \ O′, 0) = (−1)n+1.

Since the only critical points of Γ̃′ in Bn+1
R \O′ are those in C0 and taking into

account that C0 consists of isolated points, we get

deg(Γ̃′, Bn+1
R \ O′, 0) =

∑
ξ∈Cr[k]

i(Γ̃′, (0, ξ))

=
∑

ξ∈Cr[k],∆k(ξ)>0

i(Γ̃′, (0, ξ)) +
∑

ξ∈Cr[k],∆k(ξ)<0

i(Γ̃′, (0, ξ)).

Then

deg(Γ̃′, Bn+1
R \ O′, 0) =

∑
ξ∈Cr[k],∆k(ξ)>0

i(k′, ξ) −
∑

ξ∈Cr[k],∆k(ξ)<0

i(k′, ξ).

By (30) we have that deg(Γ̃′, Bn+1
R \ O′, 0) = (−1)n+1 whence

(31)
∑

ξ∈Cr[k],∆k(ξ)>0

i(k′, ξ) −
∑

ξ∈Cr[k],∆k(ξ)<0

i(k′, ξ) = (−1)n+1.

On the other hand, from (k.2) it immediately follows that deg(k′, Bn
R, 0) = (−1)n

and hence∑
ξ∈Cr[k]

i(k′, ξ) =
∑

ξ∈Cr[k],∆k(ξ)>0

i(k′, ξ) +
∑

ξ∈Cr[k],∆k(ξ)<0

i(k′, ξ) = (−1)n

This and (31) imply ∑
ξ∈Cr[k],∆k(ξ)<0

i(k′, ξ) = (−1)n,

a contradiction to the assumption (24).
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This proves that, for any open bounded set N ⊂]0,∞)×R
n such that C+ ⊂ N ,

one has
deg(Γ′,N , 0) �= 0.

Now we can apply the abstract results yielding a critical point of Iε and hence a
solution of (23).
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