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Pavel Drábek
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Chapter 1

Variational eigenvalues of ∆p

Let us consider the linear eigenvalue problem

{
−∆u− λu = 0 in Ω,

u = 0 on ∂Ω
(1.1)

where Ω ⊂ R is a bounded domain. In the weak setting, to find an eigenvalue
and an eigenfunction of (1.1) means to find λ ∈ R and u ∈ W 1,2

0 (Ω), u 6= 0,
such that the integral identity

∫

Ω

∇u.∇v dx− λ
∫

Ω

uv dx = 0

holds for all test functions v ∈ W 1,2
0 (Ω). It is well known that all eigenvalues

of (1.1) can be arranged into a sequence

0 < λ1 < λ2 ≤ λ3 ≤ . . .→ +∞,

the multiplicity of any eigenvalue is finite and the corresponding normalised
eigenfunctions {u1, u2, u3, . . .} form a complete orthonormal system.
Using the Courant-Weinstein variational principle, the eigenvalues can be ex-
pressed as follows:

λk = inf
u⊥{u1,...,uk−1}
||u||L2=1

∫

Ω

|∇u|2 dx, k = 1, 2, . . . (1.2)

In connection with the forthcoming nonlinear problem, let us emphasise the
fact that the sequence obtained in (1.2) exhausts the set of all eigenvalues of
(1.2).

5



Let us consider now the p-Laplacian for p > 1, i.e. the quasilinear second
order operator defined by

∆pu := div(|∇u|p−2∇u).

Clearly, ∆2u = ∆u, and for p 6= 2, this operator is (p − 1)-homogeneous and
nonlinear. Natural eigenvalue problem for the p-Laplacian, which generalises
that of (1.1), reads as follows

{
−∆pu− λ|u|p−2 u = 0 in Ω,

u = 0 on ∂Ω.
(1.3)

In the weak setting:

∫

Ω

|∇u|p−2∇u · ∇v dx− λ
∫

Ω

|u|p−2uv dx = 0 (1.4)

for any v ∈ W 1,p
0 (Ω).

There are several analogues of the variational formula (1.2) which allows
for construction of sequences of the so called variational eigenvalues of the p-
Laplacian. However, with exception of the case N = 1, it is not clear if these
sequences exhaust the set of all eigenvalues.

Before giving one of the definitions of the variational eigenvalues, we inves-
tigate some basic properties of the functional

I(u) =

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

, u ∈W 1,p
0 (Ω) \ {o}.

Using the notation 〈. , .〉 for the duality between (W 1,p
0 (Ω))∗ and W 1,p

0 (Ω), we
have

〈I ′(u), v〉

=
p
(∫

Ω
|∇u|p−2∇u.∇v dx

) (∫
Ω
|u|p dx

)− (∫
Ω
|∇u|p dx

)
p
(∫

Ω
|u|p−2uv dx

)
(∫

Ω
|u|p dx

)2

for any v ∈ W 1,p
0 (Ω). If we restrict onto

S :=
{
u ∈ W 1,p

0 (Ω) : ||u||Lp = 1
}
,

we have
〈I ′(u), v〉 = p [〈A(u), v〉 − I(u) 〈B(u), v〉] , (1.5)

where A, B : W 1,p
0 (Ω)→ (W 1,p

0 (Ω))∗ are defined as follows:
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〈A(u), v〉 =

∫

Ω

|∇u|p−2∇u.∇v dx,

〈B(u), v〉 =

∫

Ω

|u|p−2 uv dx,

u, v ∈ W 1,p
0 (Ω). Both operators are odd, (p − 1)-homogeneous and continu-

ous. Moreover, A is continuously invertible and B is compact. Notice that
〈A(u), u〉 = I(u) and 〈B(u), u〉 = 1 for u ∈ S, and, hence for any u ∈ S we
have

〈I ′(u), u〉 = 0.

“Important observation”: By the dual characterisation of the norm we then
obtain that for any u ∈ S,

||(I|S)′(u)||(T u)∗ = ||(I ′(u)||(W 1,p
0 (Ω))∗ ,

where T u stands for the tangent space of S at the point u ∈ S. In particular,
we will use this fact in Lemma 1.1 and in Lemma 1.2 below. We also drop the
indices of the norm of I ′ for the sake of brevity.

Let us assume now that λ ∈ R is a critical level of I|S and uλ ∈ S is the
corresponding critical point. It follows from the Lagrange multiplier method
that there is µ ∈ R such that

〈A(uλ), v〉 = µ 〈B(uλ), v〉
for all v ∈ W 1,p

0 (Ω). But it follows immediately that µ = λ = I(uλ) =
〈A(uλ), uλ〉. In other words, (1.4) holds and so, the critical levels of I|S and
the critical points are in one-to-one correspondence with the eigenvalues and
eigenfunctions of the p-Laplacian, respectively.

The following two assertions are important for our definition of variational
eigenvalues.

Lemma 1.1 I|S satisfies the Palais-Smale condition.

Proof. Let {un} ⊂ S and c > 0 be such that

|I(un)| ≤ c for any n ∈ N and p [A(un)− I(un)B(un)] = I ′(un)→ 0 (1.6)

in (W 1,p
0 (Ω))∗ as n→∞. Clearly, {un} is bounded in W 1,p

0 (Ω), hence passing to
subsequences if necessary, we can finally assume, that there exists u ∈ W 1,p

0 (Ω),
such that

un ⇀ u in W 1,p
0 (Ω), un → u in Lp(Ω), and also I(un)→ Ī in R.
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By compactness, we have B(un) → B(u) in (W 1,p
0 (Ω))∗. Making use of (1.6)

and continuity of A−1 we arrive at

un → A−1(ĪB(u)) in W 1,p
0 (Ω),

which completes the proof.

Q.E.D.

Since S is a connected and complete C1 Finsler manifold and I|S ∈ C1(S,R),
we can use Lemma 3.7 from [G, p.55]. We will state only special version of it,
which is important for us.

Lemma 1.2 Let C ⊂ S be a compact set. Assume that there exists ε > 0
such that for all u ∈ C we have

||I ′(u)|| ≥ 2ε > 0.

Then there exists a continuous one parameter family of homeomorphisms

ψ : S × [0, 1]→ S
such that

1. ψ(u, 0) = u for every u ∈ S
2. I(ψ(u, 1)) ≤ I(u)− ε for every u ∈ S.

In particular, since S = −S and also I(u) = I(−u) for every u ∈ S, then the
homeomorphisms can be chosen to preserve the symmetry, i.e. we also
have

3. ψ(−u, t) = −ψ(u, t) for every u ∈ S and t ∈ [0, 1].

For any k ∈ N let

Fk := {A ⊂ S : there exists continuous odd surjection h : Sk−1 → A}.
Here Sk−1 stands for the unit sphere in Rk. Further, define

λk := inf
A∈Fk

sup
u∈A

I(u), k = 1, 2, . . . . (1.7)

Theorem 1.3 For any k ∈ N, λk is a critical level of I (and hence an
eigenvalue of the p-Laplacian).
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Proof. Suppose that λk is not a critical level of I for some k ∈ N. Then there
exist ε > 0 and Aε ∈ Fk such that supu∈Aε ≤ λk + ε

2
and for any u ∈ Aε we

have ||I ′(u)|| ≥ 2ε. For otherwise, for any n ∈ N, we find An ∈ F such that

sup
u∈An

I(u) ≤ λk +
1

2n
and ||I ′(un)|| < 2

n

for some un ∈ An. But this together with Lemma 1.1 imply the existence of
u ∈ S, such that I ′(u) = 0 and I(un) = λk, a contradiction to our assumption
that λk is not a critical level.
Now, having ε > 0 and Aε ∈ Fk in hands, we can apply Lemma 1.2 with
C = Aε. Denote by h : Sk−1 → Aε a continuous odd surjection. If ψ is an
object from Lemma 1.2 then

ψ (h(.), 1) : Sk−1 → ψ(Aε, 1) = Ãε

is a continuous and odd surjection as well, i.e. Ãε ∈ Fk. But according to
Lemma 1.2 we have

sup
u∈Ãε

I(u) ≤ λk − ε

2

which contradicts the definition of λk. Hence λk must be a critical level of I
for all k ∈ N.

Q.E.D.

We will refer to the sequence {λk} as to the sequence of variational eigenvalues
of the p-Laplacian.

The following basic question is connected with the definition of variational
eigenvalues:

“Does the sequence {λk} defined by the minimax argument (1.7) represent
a complete list of eigenvalues?”

Of course, the answer is YES if p = 2. The answer is the same if p 6= 2 and
N = 1. In this case we have powerful one-dimensional machinery available to
prove this result (shooting argument, uniqueness for the initial value problem,
etc.). This is not the case if p 6= 2 and N > 1; the answer remains OPEN, and
the problem seems to be rather difficult.

Let us close this section pointing out the relation between {λk} defined by
(1.7) and the other variational eigenvalues which are defined by means of the
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Krasnoselski genus of the set. Recall that genus γ(A) of the set A is defined
as follows:

γ(A) =

{
inf [1999/05/25v2.5hStandardLaTeXfontdefinitions]{m ∈ N: there exists a continuous odd map of A into Rm \ {0}},
∞ if the infimum above does not exist.

Set
F∗k := {A ⊂ S : Ā = A, −A = A, γ(A) ≥ k}

and
λ∗k := inf

A∈F∗k
sup
u∈A

I(u).

It is well known that {λk} are eigenvalues of the p-Laplacian and λ∗k → ∞.
Since there is no continuous odd map from Sk−1 into Rm \ {0} with m < k,
we have Fk ⊂ F∗k , i.e. λk ≥ λ∗k, k = 1, 2, , . . . In particular, we have also
λk →∞. Since it is easy to see that λ1 = λ∗1, a natural question arises:

“Does λk = λ∗k hold for all k ∈ N?”

The answer is YES if either p = 2 or else p 6= 2 and N = 1 by the same reasons
as above. The answer is YES also if N > 1 and k = 2 (see the argument
below). In case N > 1 and k > 2 the answer seems to be OPEN.

Proposition 1.4 We have λ2 = λ∗2.

Proof. It is sufficient to show that λ2 ≤ λ∗2. It is proved in [AT] that

λ∗2 = inf{λ > λ∗1 : λ is an eigenvalue}
and if u2 is some normalised eigenfunction associated with λ∗2, then u+

2 6≡ 0 and
u−2 6≡ 0 in Ω. Set

A :=
{
s u+

2 + t u−2 : s, t ∈ R, |s|p||u+
2 ||pLp + |t|p||u−2 ||pLp = 1

}
.

Then A ⊂ F2 and for all u ∈ A we have
∫

Ω

|∇u|p dx = |s|p
∫

Ω

|∇u+
2 |p dx+ |t|p

∫

Ω

|∇u−2 |p dx

= |s|pλ∗2
∫

Ω

|u+
2 |p dx+ |t|pλ∗2

∫

Ω

|u−2 |p dx = λ∗2.

The definition of λ2 then yields λ2 ≤ λ∗2.

Q.E.D.
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Chapter 2

Landesman-Lazer type problem
for ∆p

Let us consider the boundary value problem
{
−∆pu− λ|u|p−2u+ f(x, u ) = 0 in Ω,

u = 0 on ∂Ω
(2.1)

where f : Ω×R→ R is Carathéodory’s function such that for a.e. x ∈ Ω and
for all s ∈ R we have |f(x, s)| ≤ f̄(x) for some f̄ ∈ Lp′(Ω).
Using the degree argument it is not difficult to prove that (2.1) has at least one
weak solution provided λ is not an eigenvalue of the p-Laplacian. In general,
this is not the case if λ is an eigenvalue. So, the natural question arises:

“What are reasonable sufficient (or/and necessary) conditions on f for the
existence of at least one weak solution of (2.1)?”

The answer goes back to works of Landesman and Lazer from the late sixties,
who dealt with semilinear problem, i.e. (2.1) with p = 2.

Assume that there exist limits

f±(x) = lim
s→±∞

f(x, s)

and either

(LL)+
λ

∫

v>0

f+(x)v(x) dx+

∫

v<0

f−(x)v(x) dx > 0

or

(LL)−λ

∫

v>0

f+(x)v(x) dx+

∫

v<0

f−(x)v(x) dx < 0
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is satisfied for all v ∈ Ker(−∆p − λ) \ {0}. Our goal is to show that under one
of the conditions above, there exists at least one weak solution of problem (2.1)
(cf. [DR1]).
Observe first, that both (LL)±λ are vacuously true if λ is not an eigenvalue and
hence the existence follows from our result as well.

Let us concentrate on the situation when λ is an eigenvalue and point out
that our result holds regardless λ is a variational or nonvariational eigenvalue.
Before discussing the proof let us consider some special cases of f = f(x, s) in
order to understand better the meaning of Landesman-Lazer type conditions
(LL)±λ . Let f(x, s) = g(s)− h(x), i.e. (2.1) reads as

{
−∆pu− λ|u|p−2u+ g(u) = h in Ω,

u = 0 on ∂Ω.
(2.2)

Assume that h ∈ Lp
′
(Ω), g : R → R is bounded and continuous and there

exist the limits

g(±∞) = lim
s→±∞

g(s).

Then (LL)+
λ reads as

g(+∞)

∫

v>0

v(x) dx+ g(−∞)

∫

v<0

v(x) dx >

∫

Ω

h(x)v(x) dx

for all v ∈ Ker(−∆p − λ) \ {0}, and similarly for (LL)−λ .
If we simplify even more and assume λ = λ1 and ϕ1 > 0 is the corresponding

normalised eigenfunction (notice that λ1 > 0 is simple eigenvalue even for the
p-Laplacian), and g(s) = arctan s, then (LL)−λ1

reduces to

−π
2

∫

Ω

ϕ1(x) dx <

∫

Ω

h(x)ϕ1(x) dx <
π

2

∫

Ω

ϕ1(x) dx

which is the condition having simple “geometric interpretation”.

Let us introduce the functional

Jλ(u) :=
1

p

∫

Ω

|∇u|p dx− λ

p

∫

Ω

|u|p dx+

∫

Ω

(∫ u(x)

0

f(x, s) ds

)
dx

and denote

F (x, u(x)) =

∫ u(x)

0

f(x, s) ds.
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Then

〈J ′λ(u), v〉 =

∫

Ω

|∇u|p−2∇u.∇v dx− λ
∫

Ω

|u|p−2 u v dx

+

∫

Ω

f(x, u) v dx, u, v ∈ W 1,p
0 (Ω)

and it follows that J ′λ(u) = 0 if and only if u is a weak solution of (2.1). Note
that the operator C : W 1,p

0 (Ω)→ (W 1,p
0 (Ω))∗ defined by

〈C(u), v〉 =

∫

Ω

f(x, u(x)) v(x) dx, u, v ∈ W 1,p
0 (Ω)

is compact and bounded, i.e. for any u ∈ W 1,p
0 (Ω) we have

||C(u)||(W 1,p
0 (Ω))∗ ≤ ||f̄ ||Lp′ .

Our first observation about Jλ concerns the Palais-Smale condition.

Lemma 2.1 Under the hypotheses (LL)±λ the functional Jλ satisfies the (Palais-
Smale) condition on W 1,p

0 (Ω).

Proof. Let {un} ⊂ W 1,p
0 (Ω), c > 0 be such that for all n ∈ N :

|Jλ(un)| ≤ c and J ′λ(un)→ 0.

First, we show that {un} is a bounded sequence in W 1,p
0 (Ω). Assume the

contrary, i.e. ||un|| → ∞ (we drop the indices of norms for brevity). Set
vn := un

||un|| . Passing to subsequence if necessary, we can assume that there are

v ∈ W 1,p
0 (Ω) and ḡ ∈ Lp(Ω) such that vn ⇀ v in W 1,p

0 (Ω), vn → v in Lp(Ω),
vn → v a.e. in Ω, and |vn(x)| ≤ ḡ(x) for a.e. x ∈ Ω. Consider

J ′λ(un)

||un||p−1
= A(vn)− λB(vn) +

C(un)

||un||p−1
.

By the assumption, the left-hand side tends to zero; by the compactness of B
and boundedness of C, the second and the third terms on the right-hand side
tend to λB(v) and 0, respectively. Employing the continuity of A−1 we get

vn → A−1(λB(v)).

Hence ||v|| = 1 and A(v)−λB(v) = 0, i.e. vn → v ∈ Ker(−∆p−λ)\{0}. Next
we have

pJλ(un)− 〈J ′λ(un), un〉 = p

∫

Ω

F (x, un) dx−
∫

Ω

f(x, un)un dx,
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i.e.

pJλ(un)

||un|| − 〈J
′
λ(un), vn〉 = p

∫

Ω

F (x, un)

||un|| dx−
∫

Ω

f(x, un)vn dx. (2.3)

For a.e. x ∈ {x ∈ Ω : v(x) > 0} we have un(x)→ +∞ and so

lim
n→∞

f(x, un(x))vn(x) = f+(x) v(x),

lim
n→∞

F (x, un(x))

||un|| = lim
n→∞

vn(x)
∫ un(x)

0
f(x, s) ds

un(x)
= (l’Hospital rule) = v(x) f+(x);

similarly, for x ∈ {x ∈ Ω : v(x) < 0}, we have un(x)→ −∞ and

lim
n→∞

f(x, un(x)) vn(x) = f−(x) v(x),

lim
n→∞

F (x, un(x))

||un|| = v(x) f−(x).

Both integrands on the right hand side of (2.3) have a majorant f̄ ḡ ∈ L1(Ω).
It then follows from the Lebesgue theorem, the assumptions of Palais-Smale
condition and (2.3) that

0 = lim
n→∞

[
p

∫

Ω

F (x, un)

||un|| dx−
∫

Ω

f(x, un)vn dx

]

= (p− 1)

[∫

v>0

f+ v dx+

∫

v<0

f− v dx

]
,

which contradicts (LL)±λ . This proves the boundedness of {un} in W 1,p
0 (Ω).

Passing to a subsequence we may assume that un ⇀ u in W 1,p
0 (Ω) for some

u ∈ W 1,p
0 (Ω). Since we also assume

0←− J ′λ(un) = A(un)− λB(un) + C(un),

we can employ compactness of B and C, and continuity of A−1, to conclude

un → A−1 (λB(u)− C(u)) .

Q.E.D.

With Palais-Smale condition in hands we can apply Theorem 3.4 from [S, p.75]:

Lemma 2.2 Let β ∈ R be a regular value of Jλ and let ε̄ > 0. Then there
exists ε ∈ (0, ε̄) and a continuous one-parameter family of homeomorphisms
ϕ : W 1,p

0 (Ω)× [0, 1]→ W 1,p
0 (Ω) such that
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1. ϕ(u, t) = u if t = 0 or if |Jλ(u)− β| ≥ ε̄;

2. Jλ(ϕ(u, t)) is non-increasing in t for any u ∈ W 1,p
0 (Ω);

3. Jλ(u) ≤ β + ε implies Jλ(ϕ(u, 1)) ≤ β − ε.
Now we state the main result of this section.

Theorem 2.3. Let us assume that either (LL)+
λ or (LL)−λ holds. Then (2.1)

has at least one weak solution.

Proof.

1. Assume that λ is not a variational eigenvalue. Since λn →∞, there exists
k ∈ N such that λk < λ < λk+1. The plan is to show that there exists a
critical value of Jλ which can be characterised as a minimax over linked
sets.
Observe that there exists A ∈ Fk such that

sup
u∈A

I(u) = m ∈ (λk, λ).

Then for all t > 0 and u ∈ A we have

Jλ(tu) ≤ tp

p
(m− λ) + t||f̄ ||Lp′

and hence Jλ(tu)→ −∞ as t→ +∞. Set

Ek+1 :=

{
u ∈W 1,p

0 (Ω) :

∫

Ω

|∇u|p dx ≥ λk+1

∫

Ω

|u|p dx

}
.

Then for all u ∈ Ek+1 we have

Jλ(u) ≥ 1

p
(λk+1 − λ)||u||pLp − ||f̄ ||Lp′ ||u||Lp

and hence
−∞ < α = inf

u∈Ek+1

Jλ(u).

For T > 0 denote TA := {tu; t ≥ T, u ∈ A}. Take T so large that

α > γ := max
u∈TA

Jλ(u).

Consider the family

Γ :=
{
h ∈ C0(Bk,W

1,p
0 (Ω)) : h|Sk−1 is an odd mapping into TA} ,

15



where Bk stands for closed unit ball in Rk. Then one can prove that
Γ 6= φ ([DR1, Lemma 5]) and for any h ∈ Γ : h(Bk) ∩ Ek+1 6= φ ([DR1,
Lemma 6]). This means that the sets TA and Ek+1 are linked in a way
that allows the application of standard minimax theorems. By means of
Lemma 2.2 it can be proved ([DR1, Lemma 6]) that

c := inf
h∈Γ

sup
x∈Bk

Jλ(h(x))

is a critical value of Jλ and c ≥ α.

2. Assume that λ is a variational eigenvalue and (LL)+
λ holds. Since λn →

∞, there exists k ∈ N such that λ = λk and λk−1 < λk. Choosing an
increasing sequence µn ∈ (λk−1, λk), µn ↗ λk, by the previous step we
know that for any n ∈ N there is at least one critical point of Jµn and the
corresponding critical levels form a decreasing sequence ([DR1, Lemma
8]). This fact together with (LL)+

λ then guarantee that the sequence
of critical points of Jµn possesses strongly convergent subsequence to a
critical point of Jλk ([DR1, Lemma 9]). Similar argument works also for
(LL)−λ , where we have to choose µn ↘ λk.

Q.E.D.
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Chapter 3

Courant nodal domain theorem
for ∆p

In this section we return to the eigenvalues and eigenfunctions of problem (1.3).
Let us recall the so called Courant nodal domain theorem for the linear Lapla-
cian:

Theorem 3.1. Assume, that uλn is an eigenfunction associated with the n-th
eigenvalue λn, of (1.1). Then uλn has at most n nodal domains (maximal con-
nected sets on which uλn is of constant sign).

Note that simple examples demonstrate that no similar lower bound is possible.
Consider e.g. Ω = (0, π)× (0, Lπ), where L is large.

In [DR2] we show that Theorem 3.1 generalises completely to (1.3) if we assume
that the p-Laplacian satisfies a unique continuation property (defined below) or
that λ < λn+1. For the general case, we prove that, if uλn is an eigenfunction
associated with λn, uλn has at most 2n − 2 nodal domains. Also, if uλn has
n + k nodal domains, then there is another eigenfunction corresponding to λn
with at most n− k nodal domains.

Recall also that for the p-Laplacian it is now well known that λ1 and λ2 are
both variational eigenvalues, λ1 is simple and corresponding eigenfunctions
are of constant sign. On the other hand, any eigenfunction associated with λ2

changes sign exactly once, i.e. it has exactly two nodal domains. An interesting
feature of our estimates consists in the fact that they hold for both variational
and nonvariational eigenvalues.
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Definition 3.2. We say that −∆p satisfies the unique continuation property
(UCP) if for any eigenfunction uλ of (1.3) the set {x ∈ Ω : uλ(x) = 0} has
empty interior.

It is well known, that (UCP) holds for the case p = 2 but it is not clear if
it holds also for p 6= 2.

Let us formulate some useful properties of the eigenfunctions uλ ∈ W 1,p
0 (Ω)

of (1.3). The reader is kindly asked to find the proofs and other references in
[DR2].

Lemma 3.3. Let uλ be an eigenfunction associated with the eigenvalue λ and
let Ωλ be a nodal domain for uλ. Define

w :=

{
uλ, x ∈ Ωλ,

0, x 6∈ Ωλ.

Then w ∈ W 1,p
0 (Ω) and

∫
Ω
|∇w|p dx = λ

∫
Ω
|w|p dx.

Lemma 3.4. Assume that there exists K > 0 such that λ ∈ (0, K). Let Ωλ

be a nodal domain of uλ. Then meas Ωλ ≥ c1(K) > 0, where c1 = c1(K) is a
constant depending only on K.

In particular, it follows from Lemma 3.4 that any eigenfunction of the p-
Laplacian has a finite number of nodal domains.

Lemma 3.5. For any eigenfunction uλ ∈ W 1,p
0 (Ω) there exists η ∈ (0, 1) such

that uλ ∈ C1,η(Ω̄).

Lemma 3.6. Let λ be an eigenvalue different from λ1, and let uλ be an eigen-
function associated with λ. Let Ω1 be a nodal domain for uλ. Then there
is another nodal domain Ω2, a point x0 ∈ (∂Ω1 ∩ ∂Ω2) \ ∂Ω, and an ε > 0
such that Bε(x0) ∩ ∂Ω1 ∩ ∂Ω2 is a smooth manifold separating Bε(x0) ∩ Ω1

and Bε(x0) ∩ Ω2 (here Bε(x0) stands for the ball centered at x0 with radius ε).
Moreover, if uλ > 0 in Ω1 (respectively, uλ < 0 in Ω1), then ∂u

∂ν
< 0 (> 0),

where ν represents the unit outward normal to ∂Ω1 at x0.

Lemma 3.7. Let Ω1 and Ω2 be nodal domains for an eigenfunction uλ, and
let x0 ∈ (∂Ω1∩∂Ω2)\∂Ω be such that Bε(x0)∩∂Ω1∩∂Ω2 is a smooth manifold
separating Bε(x0)∩Ω1 and Bε(x0)∩Ω2. Suppose that u∗λ is another eigenfunc-
tion such that u∗λ = γiuλ on Ωi, i = 1, 2. Then γ1 = γ2.
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Theorem 3.8. Suppose that −∆p satisfies (UCP) and suppose that uλn is an
eigenfunction associated with λn. Then uλn has at most n nodal domains.

Proof. Assume that uλn has (n + k) nodal domains, where k ≥ 1. Call them
{Ω1,Ω2, . . . , Ωn+k}. Let ui := uλn .χΩi , where χΩi is the characteristic function
over the set Ωi. Let

A :=

{
n∑
i=1

γiui :
n∑
i=1

|γi|p
∫

Ω

|ui|p dx = 1

}
.

i.e. A ⊂ S. Hence A ∈ Fn.
Also, using Lemma 3.3 as well as the fact that {x ∈ Ω : ui(x) 6= 0} ∩ {x ∈ Ω :
uj(x) 6= 0} has measure zero for i 6= j, we get

∫

Ω

|∇u|p dx =
n∑
i=1

∫

Ωi

|∇u|p dx =
n∑
i=1

|γi|p
∫

Ωi

|∇u|p dx

=
n∑
i=1

|γi|pλn
∫

Ωi

|u|p dx = λn,

i.e. I ≡ λn on A. Observe that if u ∈ A then u ≡ 0 on Ωn+1, so u cannot
be an eigenfunction, else (UCP) would be contradicted. Thus I has no critical
points on A. Since A is compact, there is an ε > 0 such that

||I ′(u)|| ≥ 2ε > 0

for u ∈ A. Hence, we can apply Lemma 1.2 with C = A to obtain a symmetry
preserving flow ψ. Let A∗ := ψ(A, 1). Then A∗ ∈ Fn with supu∈A∗ I(u) < λn,
a contradiction to the definition of λn.

Q.E.D

Theorem 3.9. Suppose λ < λn+1 is an eigenvalue and uλ has at most n nodal
domains.

Proof. Suppose uλ has nodal domains {Ω1,Ω2, . . . , Ωn+k} for some k ≥ 1. Let
ui := uλ.χΩi be as in the previous proof. Let

A :=

{
n+k∑
i=1

γiui :
n+k∑
i=1

|γi|p
∫

Ω

|ui|p dx = 1

}
.

As in the previous proof we can verify that A ∈ Fn+k and that I(u) = λ for
u ∈ A. But the characterisation of λn+k implies that

λ = sup
u∈A

I(u) ≥ λn+k ≥ λn+1 > λ,

a contradiction.
Q.E.D.
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Notice that in the previous theorem λ is not required to be a variational eigen-
value.

Corollary 3.10. Let us assume that all variational eigenvalues are simple.
Then λn < λn+1 for all n and the estimate above gives a direct generalisation
of Theorem 3.1.

Theorem 3.11. Let uλn be an eigenfunction associated with λn. Then uλn has
at most 2n− 2 nodal domains.

Proof. We begin the proof by dividing Ω into nodal neighbourhoods. Let Ω1 be
a nodal domain for uλn . By Lemma 3.6. there is another nodal domain, Ω2,
a point x0 ∈ (∂Ω1 ∩ ∂Ω2) \ ∂Ω, and an ε > 0 such that Bε(x0) ∩ ∂Ω1 ∩ ∂Ω2

is a smooth manifold separating Ω1 and Ω2 in a neighbourhood of x0. For
convenience we will write Ω1 ∼ Ω2, and say that these sets are neighbours.
The nodal domain neighbourhood for Ω1 will refer to the collection of nodal
domains, Ωk, such that Ω1 and Ωk are connected by a finite sequence of neigh-
bours, i.e. there is a set of nodal domains {Ω′1, Ω′2, . . . , Ω′j} where Ω′i ∼ Ω′i+1

for each 1 ≤ i ≤ j − 1, Ω1 = Ω′1, and Ω′j = Ωk. Using this notation we can
organise all of the nodal domains for uλn into neighbourhoods

{Ω11, Ω12, . . . , Ω1j1}
{Ω21, Ω22, . . . , Ω2j2}

. . .

{Ωm1, Ωm2, . . . , ΩNjm}.
Now suppose that uλn has n+ k ≥ 2n− 1 nodal domains. Let N represent the
cardinality of I := {(i, j) : 1 ≤ i ≤ m, j > 1}. Notice that {Ωij : (i, j) ∈ I}
includes all the nodal domains except first in each neighbourhood. Since each
nodal domain neighbourhood contains at least two members, we have N ≥
1
2
(2n− 1), so N ≥ n. Let uij = uλnχΩi,j and define

A :=

{∑
I
γijuij :

∑
I
|γij|p

∫

Ωij

|uij|p dx = 1

}
.

As in the previous proofs, it is straightforward to check that A ∈ FN and that
I(u) = λn for u ∈ A. Suppose that u∗λn ∈ A is a critical point for I, and thus
an eigenfunction. Notice that u∗λn ≡ 0 on the nodal domains Ωi1 for 1 ≤ i ≤ m.
By Lemma 3.7. it follows that u∗λn ≡ 0 on every nodal domain that can be
connected to an Ωi1 by a finite sequence of neighbours. Therefore u∗λn ≡ 0 in
Ω, which is a contradiction because 0 6∈ A ⊂ S. Hence A contains no critical
points. Now the proof can be finished exactly as the proof of Theorem 3.8.

Q.E.D.
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Remark 3.12. In particular, an eigenfunction associated with the second
eigenfunction has at most 2 nodal domains. Since it has to change sign, it has
exactly 2 nodal domains.

Theorem 3.13. Let uλn be an eigenfunction associated with λn such that uλn
has n+ k (≤ 2n− 2) nodal domains. Then there exists another eigenfunction
u∗λn associated with λn, with at most n− k (≤ n) nodal domains.

Proof. Divide Ω into nodal domain neighbourhoods exactly as in the proof of
Theorem 3.11. Notice that there must be at least k + 1 neighbourhoods, else
the cardinality of {Ωij : 1 ≤ i ≤ m, j > 1} will be at least n, and we can apply
the proof of Theorem 3.11 to obtain a contradiction. Now we define an index
set

I := {(i, j) : 1 ≤ i ≤ k, j > 1} ∪ {(i, j) : i ≥ k + 1, j ≥ 1},
so that {Ωij : (i, j) ∈ I} omits one nodal domain in each of the first k nodal
domain neighbourhoods, but includes all of the nodal domains from remaining
neighbourhoods. Thus I has cardinality n.
Let

A :=

{∑
I
γijuij :

∑
I
|γij|p

∫

Ωij

|uij|p dx = 1

}
.

As in previous proofs we can show that A ∈ Fn with I ≡ λn on A. The set A
must contain a critical point of I, else we could derive a contradiction similarly
as in the previous proofs. Let u∗λn ∈ A be a critical point of I, i.e. another
eigenfunction associated with λn. Since u∗λn ∈ A, we know that u∗λn ≡ 0 in Ωi1

for 1 ≤ i ≤ k. As in the proof of Theorem 3.11., it follows that u∗λn ≡ 0 on each
of the first k nodal domain neighbourhoods. Notice that the nodal domains
for u∗λn are a subset of the nodal domains in the remaining nodal domain
neighbourhoods. By removing the first k nodal domain neighbourhoods we
have removed at least 2k nodal domains from consideration. Hence there are
at most n− k remaining nodal domains where u∗λn can be nontrivial.

Q.E.D.

The previous theorem yields the following weaker form of the Courant nodal
domain theorem.

Corollary 3.14. For each n there is an eigenfunction, u∗λn, associated with
λn, such that u∗λn has at most n nodal domains.
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