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Chapter 1

A tutorial in Nash-Moser
theory

1.1 Introduction

The classical implicit function theorem is concerned with the solvability of
the equation

F(x, y) = 0 (1.1)

where
F : X × Y → Z

is a smooth map, X, Y , Z are Banach spaces, and there exists (x0, y0) ∈
X × Y such that

F(x0, y0) = 0 .

If x is close to x0 we want to solve (1.1) finding y = y(x).

The main assumption of the classical implicit function theorem is that
the partial derivative (DyF)(x0, y0) : Y → Z possesses a bounded inverse

(DyF)−1(x0, y0) ∈ L(Z, Y ) .

Note that, if (DyF)(x0, y0) ∈ L(Y, Z) is injective and surjective, by the
open mapping theorem, the inverse operator (DyF)−1(x0, y0) : Z → Y is
automatically continuous.

There are several situations where

(DyF)(x0, y0) has an unbounded inverse

(for example the image (DyF)(x0, y0)[Y ] is only dense in Z).
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An approach to these class of problems has been proposed by Nash in
the pioneering paper [26], for proving that any Riemannian manifold can be
isometrically embedded in RN for N sufficiently large.

Subsequently, Moser [19] has highlighted the main features of the tech-
nique in an abstract setting, being able to cover problems arising from Celes-
tial Mechanics and partial differential equations [20]-[21]-[22]. Further exten-
sions and applications were made by Gromov [11], by Zehnder [33] to small
divisors problems, by Hörmander [13] to problems in gravitation, by Serger-
aert [29] to catastrophe theory, by Schaeffer [27] to free boundary problems in
electromagnetics, by Beale [2] in water waves, by Hamilton [12] to foliations,
by Klainermann [14] to Cauchy problems, by Craig-Wayne [8] and Bour-
gain [5]-[6] for periodic and quasi-periodic solutions in Hamiltonian PDEs,
to mention just a few, showing the power and versatility of the technique.

The main idea is to replace the usual Picard iteration method with a
modified Newton iteration scheme. Roughly speaking, the advantage is that,
since this latter scheme is quadratic (see remark 1.2.1 and 1.3.2), the iterates
shall converge to the expected solution at a super-exponential rate. This
accelerated speed of convergence is sufficiently strong to compensate the
divergences in the scheme due to the “loss of derivatives”.

There are many ways to present the Nash-Moser theorems, according to
the applications one has in mind. We shall prove first a very simple “analytic”
Implicit Function Theorem (inspired to Theorem 6.1 by Zehnder in [26], see
also [9]) to highlight the main features of the method in an abstract “analytic”
setting (i.e. with estimates which can be typically obtained in Banach scales
of analytic functions). In the application to the nonlinear wave equation [4],
indeed, we shall be able to prove, with a variant of this scheme, existence
of analytic (in time) solutions of the nonlinear wave equation for positive
measure sets of frequencies.

Next, for completeness, we present also a Nash-Moser theorem in a dif-
ferentiable setting (i.e. modeled for applications on spaces of functions with
finite differentiability like, for example, Banach scales of Sobolev spaces). To
avoid technicalities we present it in the form of an inversion type theorem as
in Moser [19].

The present material follows the exposition in [3]

1.2 An analytic Nash-Moser Theorem

Consider three one parameter families of Banach spaces

Xσ , Yσ , Zσ , 0 ≤ σ ≤ 1



with norms | · |σ such that (Banach scales)

∀0 ≤ σ ≤ σ′ ≤ 1 |x|σ ≤ |x|σ′ ∀x ∈ Xσ′

(analogously for Yσ, Zσ) so that

∀0 ≤ σ ≤ σ′ ≤ 1 X1 ⊆ Xσ′ ⊆ Xσ ⊆ X0

(the same for Yσ, Zσ).

Example: The Banach spaces of analytic functions

Xσ :=
{
f : Td → R , f(ϕ) :=

∑
k

fke
ik·ϕ | |f |σ :=

∑
k

|fk|eσ|k| < +∞
}

.

Let
F : X0 × Y0 → Z0

be a mapping defined on the largest spaces of the scales.
Suppose there exists (x0, y0) ∈ X1×Y1 (in the smallest spaces) such that

F(x0, y0) = 0 . (1.2)

Assume that
F(Bσ) ⊂ Zσ ∀0 ≤ σ ≤ 1 (1.3)

where Bσ is the neighborhood of (x0, y0)

Bσ := Bσ
R(x0)×Bσ

R(y0) ⊂ Xσ × Yσ

and
Bσ

R(x0) :=
{
x ∈ Xσ| |x− x0|σ < R

}
analogously for Bσ

R(y0) ⊂ Yσ.

We shall make the following hypotheses in which K and τ are fixed positive
constants.

(H1) (Taylor Estimate) ∀0 < σ ≤ 1, ∀x ∈ Bσ
R(x0) the map F(x, ·) :

Bσ
R(y0) → Zσ is differentiable and, ∀(x, y), (x, y′) ∈ Bσ,∣∣∣F(x, y′)−F(x, y)− (DyF)(x, y)[y′ − y]

∣∣∣
σ
≤ K|y′ − y|2σ .

Condition (H1) is clearly satisfied if F(x, ·) ∈ C2(Bσ
R(y0), Zσ) and D2

yyF(x, ·)
is uniformly bounded for x ∈ Bσ

R(x0).



(H2) (Right Inverse of loss τ) ∀0 < σ ≤ 1, ∀(x, y) ∈ Bσ there is a linear
operator L(x, y) ∈ L(Zσ, Yσ′), ∀σ′ < σ, such that ∀z ∈ Zσ

(DyF)(x, y) ◦ L(x, y)z = z

in Zσ′ and ∣∣∣L(x, y)[z]
∣∣∣
σ′
≤ K

(σ − σ′)τ
|z|σ . (1.4)

The operator L(x, y) is the right inverse of (DyF)(x, y) in the sense that

(DyF)(x, y) ◦ L(x, y) is the continuous injection Zσ
i→ Zσ′

∀σ′ < σ.
Estimate (1.4) is a typical “Cauchy-type” estimate for operators acting

somewhat as differential operators of order τ in scales of Banach spaces of
analytic functions.

Theorem 1.2.1 Let F satisfy (1.2),(1.3), (H1)-(H2). If x ∈ Bσ
R(x0) for

some σ ∈ (0, 1] and |F(x, y0)|σ is sufficiently small1, then there exists a
solution

y(x) ∈ B
σ/2
R (y0) ⊂ Yσ/2

of the equation
F(x, y(x)) = 0 .

Proof. We define the Newton iteration scheme{
yn+1 = yn − L(x, yn)F(x, yn)
y0 := y0 ∈ Y1 ⊆ Yσ

(1.5)

for n ≥ 0. Throughout the induction proof we will verify at each step (see the
Claim below) that yn belongs to the domain of F(x, ·), L(x, ·) and therefore
yn+1 is well defined.

Since the inverse operator L(x, yn) “loses analyticity” (hypothesis (H2))
the iterates yn will belong to larger and larger spaces Yσn .

To quantify this phenomenon, let us define the sequence

σ0 := σ ∈ (0, 1] , σn+1 := σn − δn

where the “loss of analyticity” at each step of the iteration is

δn :=
δ0

n2 + 1

1quantified in (1.7); this latter condition defines a neighborhood of x0 in Xσ.



and δ0 > 0 is small enough so that the “total loss of analyticity”

∑
n≥0

δn =
∑
n≥0

δ0

n2 + 1
<

σ

2
(1.6)

(therefore σn > σ/2, ∀n ≥ 0).

We claim the following:

Claim: Take χ := 3/2 and define2

ρ := ρ(K, R, τ, σ) := min
{√e

K
, min

n≥0

(δτ
n+1

K2
e(2−χ)χn

)
,

R/2∑∞
k=0 e−χk

}
> 0 .

If

|F(x, y0)|σ < min
{
ρe−1 ,

δτ
0

K
ρe−1,

δτ
0

K

R

2

}
, (1.7)

then the following statements hold true for all n ≥ 0 :

(n; 1) (x, yn) ∈ Bσn and |F(x, yn)|σn ≤ ρe−χn
,

(n; 2) |yn+1 − yn|σn+1 ≤ ρe−χn
,

(n; 3) |yn+1 − y0|σn+1 < R/2.

Before proving the Claim, let us conclude the proof of Theorem 1.2.1.
By (n; 2) the sequence yn ∈ Yσ/2 is a Cauchy sequence (in the largest

space Yσ/2). Indeed, for any n > m

|yn − ym|σ/2 ≤
n−1∑
k=m

|yk+1 − yk|σ/2 ≤
n−1∑
k=m

|yk+1 − yk|σk+1

(k;2)

≤
n−1∑
k=m

ρe−χk → 0 for n,m → +∞ .

Hence yn converges in Yσ/2 to some y(x) ∈ Yσ/2. Actually y(x) ∈ B
σ/2
R/2(y0) ⊂

B
σ/2
R by (n; 3). Finally, by the continuity of F with respect to the second

variable and (n; 1)

F(x, y(x)) = lim
n→∞

F(x, yn) = 0

2We have ρ > 0 because the sequence of positive numbers

δτ
n+1e

(2−χ)χn

= δτ
0

e
1
2 (3/2)n

(1 + (n + 1)2)τ
→ +∞ as n → +∞ .



implying that y(x) is a solution of F(x, y) = 0.

Let’s now prove the Claim. Its proof proceeds by induction. First, let us
verify it for n = 0. It reduces to the smallness condition (1.7) for |F(x, y0)|σ.

(0; 1) By assumption x ∈ Bσ
R(x0) so that (x, y0) ∈ Bσ0 := Bσ. By (1.3) we

have that F(x, y0) ∈ Zσ and |F(x, y0)|σ ≤ ρe−1 follows by (1.7).

(0; 2)-(0; 3) Since (x, y0) ∈ Bσ, by (1.5) and (H2),

|y1 − y0|σ1 = |L(x, y0)F(x, y0)|σ1 ≤
K

(σ0 − σ1)τ
|F(x, y0)|σ .

Under the smallness condition (1.7) we have verified both (0; 2)-(0; 3).

Now, suppose (n; 1)-(n; 2)-(n; 3) are true. By (n; 3),

yn+1 ∈ B
σn+1

R (y0)

and so
(x, yn+1) ∈ Bσn+1 .

Hence F(x, yn+1) ∈ Zσn+1 (by (1.3)) and, by (H2),

yn+2 := yn+1 − L(x, yn+1)F(x, yn+1) ∈ Yσn+2

is well defined.
Set for brevity

Q(y, y′) := F(x, y′)−F(x, y)− (DyF)(x, y)[y′ − y] . (1.8)

By a Taylor expansion

|F(x, yn+1)|σn+1 =
∣∣∣F(x, yn) + (DyF)(x, yn)[yn+1 − yn] + Q(yn, yn+1)

∣∣∣
σn+1

(1.5)
= |Q(yn, yn+1)|σn+1

(H1)

≤ K|yn+1 − yn|2σn+1
(1.9)

(n;2)

≤ Kρ2e−2χn

. (1.10)

By (1.10) the claim (n + 1; 1) is verified whenever

Kρ2e−2χn

< ρe−χn+1

which holds true for any n ≥ 0 if

ρ < min
n≥0

( 1

K
e(2−χ)χn

)
=

√
e

K
. (1.11)



Now

|yn+2 − yn+1|σn+2

(1.5)
= |L(x, yn+1)F(x, yn+1)|σn+2

(H2)

≤ K

(σn+1 − σn+2)τ
|F(x, yn+1)|σn+1

(1.9)

≤ K2

(σn+1 − σn+2)τ
|yn+1 − yn|2σn+1

(1.12)

(n;2)

≤ K2

(σn+1 − σn+2)τ
ρ2e−2χn

and therefore the claim (n + 1; 2) is verified whenever

K2

(σn+1 − σn+2)τ
ρ2e−2χn

< ρe−χn+1

which holds true, for any n ≥ 0, if

ρ < min
n≥0

(δτ
n+1

K2
e(2−χ)χn

)
. (1.13)

Finally

|yn+2 − y0|σn+2 ≤
n+1∑
k=0

|yk+1 − yk|σn+2 ≤
n+1∑
k=0

|yk+1 − yk|σk+1

(k;2)

≤
n+1∑
k=0

ρe−χk

< ρ
∞∑

k=0

e−χk

which implies (n + 1; 3) assuming

ρ <
R/2∑∞

k=0 e−χk . (1.14)

In conclusion, if ρ > 0 is small enough (depending on K, τ , R, σ) according
to (1.11)-(1.13)-(1.14) the claim is proved.

This completes the proof.

Remark 1.2.1 The key point of the Nash-Moser scheme is the estimate

|yn+2 − yn+1|σn+2 ≤
K2

δτ
n+1

|yn+1 − yn|2σn+1
(1.15)

see (1.12). Even though δn → 0, this quadratic estimate ensures that the
sequence of numbers |yn+1− yn|σn+1 tends to zero at a super-exponential rate



(see (n; 2)) if |y1 − y0|σ1 is sufficiently small. Note that the Picard iteration
scheme would yield just |yn+2 − yn+1|σn+2 ≤ Cδ−τ

n+1|yn+1 − yn|σn+1, i.e. the
divergence of the estimates.

Clearly, the drawback to get (1.15) is to invert the linearized operators in
a whole neighborhood of (x0, y0), see (H2). This is the most difficult step to
apply the Nash-Moser method in concrete situations, see e.g. [4].

Remark 1.2.2 The hypotheses in Theorem 1.2.1 could be considerably weak-
ened, see [26]. For example in (H1) one could assume a loss of analyticity3

also in the quadratic part of the Taylor expansion∣∣∣F(x, y′)−F(x, y)− (DyF)(x, y)[y′ − y]
∣∣∣
σ′
≤ K

(σ − σ′)α
|y′ − y|2σ

∀σ′ < σ and some α > 0 (independent of σ).
Furthermore one could assume the existence of just an “approximate right

inverse”, namely ∀z ∈ Zσ∣∣∣((DyF)(x, y) ◦ L(x, y)− I)[z]
)∣∣∣

σ′
≤ K

(σ − σ′)τ
|F(x, y)|σ|z|σ (1.16)

(remark that L(x, y) is an exact inverse at the solutions F(x, y) = 0).
Furthermore in the statement of Theorem 1.2.1 it is possible to get better

and quantitative estimates.

Since we have not assumed the existence of the left inverse of (DyF)(x, y)
in the assumptions of Theorem 1.2.1, uniqueness of the solution y(x) can not
be expected (it could lack also in the linear problem).

Local uniqueness follows assuming the existence of a left inverse:

(H2)′ ∀0 < σ ≤ 1, ∀(x, y) ∈ Bσ there is a linear operator ξ(x, y) ∈
L(Zσ, Yσ′), ∀σ′ < σ, such that, ∀h ∈ Yσ

ξ(x, y) ◦ (DyF)(x, y)[h] = h

in Yσ′ and ∀z ∈ Zσ ∣∣∣ξ(x, y)[z]
∣∣∣
σ′
≤ K

(σ − σ′)τ
|z|σ . (1.17)

The operator ξ(x, y) is the left inverse of (DyF)(x, y) in the sense that ξ(x, y)◦
(DyF)(x, y) is the continuous injection Yσ

i→ Yσ′ , ∀σ′ < σ.

3In the application considered in [4] the quadratic part Q satisfies (H1), i.e. it does not
lose regularity.



Theorem 1.2.2 (Uniqueness) Let F satisfy (1.3), (H1)-(H2)′. Let (x, y),
(x, y′) ∈ Bσ be solutions of F(x, y) = 0, F(x, y′) = 0. If |y − y′|σ is small
enough (depending on K, τ , σ) then y = y′ in Yσ/2.

Proof. Setting h := y − y′ ∈ Yσ we have

|h|σ′
(H2)′

= |ξ(x, y) ◦ (DyF)(x, y)[h]|σ′

(1.17)

≤ K

(σ − σ′)τ
|(DyF)(x, y)[h]|σ

≤ K

(σ − σ′)τ
|Q(y, y′)|σ (1.18)

since F(x, y) = 0, F(x, y′) = 0 and recalling the definition of Q(y, y′) in
(1.8).

By (1.18) and (H1) we get

|h|σ′

(H1)

≤ K2

(σ − σ′)τ
|y′ − y|2σ =

K2

(σ − σ′)τ
|h|2σ , ∀σ′ < σ

whence, for σ′ := σn+1, σ := σn, δn := σn − σn+1,

|h|σn+1 ≤ K2δ−τ
n |h|2σn

, ∀n ≥ 0 .

These last estimates imply that if |h|σ = |y − y′|σ (σ = σ0) is sufficiently
small (depending on K, τ , σ) then h = y − y′ = 0 in Yσ/2.

1.3 A differentiable Nash-Moser Theorem

The iterative scheme (1.5) can not work to prove a Nash-Moser implicit func-
tion theorem in spaces, say, of class Ck, because, due to the loss of deriva-
tives of the inverse linearized operators, after a fixed number of iterations
all derivatives will be exhausted. The scheme has to be modified applying a
sequence of “smoothing” operators which regularize yn+1 − yn at each step.

To avoid technicalities, we present the ideas of the Nash-Moser differen-
tiable theory in the form of an inversion type theorem (as in Moser [19])
rather than an Implicit function type theorem.

To make it precise, consider a Banach scale (Ys)s≥0 satisfying

Ys′ ⊂ Ys ⊂ Y0 , ∀s′ ≥ s ≥ 0



equipped with a family of “smoothing” linear operators

S(t) : Y0 → Y∞ :=
⋂
s≥0

Ys , t ≥ 0

such that
|S(t)u|s+r ≤ Cs,r tr|u|s , ∀u ∈ Ys (1.19)

|(I − S(t))u|s ≤ Cs,r t−r|u|s+r , ∀u ∈ Ys+r , (1.20)

for some positive constants Cs,r. For the construction of these smoothing
operators for concrete Banach scales see for example Schwartz [28] or Zhender
in [26].

Remark 1.3.1 Estimates (1.19)-(1.20) are the usual ones in the Sobolev
scale

Ys :=
{
f(ϕ) :=

∑
k

fke
ik·ϕ | |f |2s :=

∑
k

|fk|2(1 + |k|2s) < +∞
}

for the projector SN on the first N Fourier-modes

SN

( ∑
k

fke
ik·x

)
:=

∑
|k|≤N

fke
ik·x

(when t := N is an integer).

Exercise: On a scale (Xs)s≥0 equipped with smoothing operators (S(t))t≥0,
the following convexity inequality holds: for all 0 ≤ λ1 ≤ λ2, α ∈ [0, 1] and
u ∈ Xλ2:

|u|λ ≤ Kλ1,λ2|u|1−α
λ1

|u|αλ2
, λ = (1− α)λ1 + αλ2 . (1.21)

This implies the well known Gagliardo-Nirenberg-Moser interpolation esti-
mates in Sobolev spaces, see [30] for a modern account.

We make the following assumptions where α, K, τ are fixed positive con-
stants.

(H1) (Tame estimate) F : Ys+α → Ys, ∀s ≥ 0, satisfies4

|F(y)|s ≤ K(1 + |y|s+α) , ∀y ∈ Ys+α .

4Differential operators F of order α satisfy the “tame” property (H1), i.e. |F(y)|s
grows at most linearly with the higher norm | · |s+α. This apparently surprising fact
follows by the interpolation inequalities (1.21), see [26], [12].



(H2) (Taylor estimate) F : Ys+α → Ys, ∀s ≥ 0, is differentiable and{ |(DF)(y)[h]|s ≤ K|h|s+α ,∣∣∣F(y′)−F(y)− (DF)(y)[y′ − y]
∣∣∣
s
≤ K|y′ − y|2s+α .

(H3) (Inverse of loss τ) ∀y ∈ Y∞ there is a linear operator L(y) ∈
L(Ys+τ , Ys), ∀s ≥ 0, i.e.

|L(y)[h]|s ≤ K|h|s+τ , ∀h ∈ Ys+τ ,

such that
DF(y) ◦ L(y)[h] = h .

Hypothesys (H1)-(H2)-(H3) state, roughly, that F , DF , respectively
L, act somewhat as differential operators of order α, respectively τ .

Theorem 1.3.1 Let F satisfy (H1)-(H2)-(H3) and fix any s0 > α + τ . If
|F(0)|s0+τ is sufficiently small (depending on α, τ , K, s0) then there exists
a solution y ∈ Ys0 of the equation F(y) = 0.

Proof. Consider the iterative scheme{
yn+1 = yn − S(Nn)L(yn)F(yn)
y0 := 0

(1.22)

where
Nn := eλχn

, Nn+1 = Nχ
n , χ := 3/2

for some λ large enough, depending on α, τ , K, s0, to be chosen later.

By (1.22), the increment yn+1−yn ∈ Y∞, ∀n ≥ 0, and, therefore, yn ∈ Y∞,
∀n ≥ 0 (because y0 := 0 ∈ Y∞). Furthermore

|yn+1 − yn|s0

(1.22)
= |S(Nn)L(yn)F(yn)|s0

(1.19)

≤ C0N
α+τ
n |L(yn)F(yn)|s0−α−τ

(H3)

≤ C0N
α+τ
n K|F(yn)|s0−α (1.23)

where C0 := Cs0−α−τ,α+τ is the constant from (1.19).

By a Taylor expansion, for n ≥ 1, setting for brevity Q(y; y′) := F(y′)−
F(y)−DF(y)[y′ − y],

|F(yn)|s0−α ≤ |F(yn−1) + DF(yn−1)[yn − yn−1]|s0−α + |Q(yn−1, yn)|s0−α

(1.22)
= |DF(yn−1)(I − S(Nn−1))L(yn−1)F(yn−1)|s0−α

+ |Q(yn−1, yn)|s0−α

(H2)

≤ K|(I − S(Nn−1))L(yn−1)F(yn−1)|s0 + K|yn − yn−1|2s0

(1.20)

≤ KCs0,βN−β
n−1Bn−1 + K|yn − yn−1|2s0

(1.24)



where Bn−1 := |L(yn−1)F(yn−1)|s0+β.

By (1.23) and (1.24) we deduce

|yn+1 − yn|s0 ≤ C1N
α+τ
n N−β

n−1Bn−1 + C1N
α+τ
n |yn − yn−1|2s0

(1.25)

for some positive C1 := C(α, τ, s0, K).

To prove, by (1.25), the super-exponential smallness of |yn+1 − yn|s0 , the
main issue is to give an a-priori estimate for the divergence of the Bn inde-
pendent of β.

For n ≥ 0 we have

Bn := |L(yn)F(yn)|s0+β

(H3)

≤ K|F(yn)|s0+β+τ (1.26)

and, for n ≥ 1, writing yn =
∑n

k=1(yk − yk−1),

Bn

(H1)

≤ K2(1 + |yn|s0+β+τ+α) ≤ K2
(
1 +

n∑
k=1

|yk − yk−1|s0+β+τ+α

)
(1.22)
= K2

(
1 +

n∑
k=1

|S(Nk−1)L(yk−1)F(yk−1)|s0+β+τ+α

)
(1.19)

≤ K2
(
1 +

n∑
k=1

C2N
τ+α
k−1 |L(yk−1)F(yk−1)|s0+β

)

≤ C3

(
1 +

n−1∑
k=0

N τ+α
k Bk

)
. (1.27)

where C2 := Cs0+β,r+α is the constant from (1.19) and C3 := K2 max{1, C2}.
We claim the following:

Claim: Take β := 15(α + τ) and suppose

|F(0)|s0+τ < e−λ4(α+τ)/KCs0,0 . (1.28)

There is λ := λ(τ, α, K, s0) ≥ 1, such that the following statements hold true
for all n ≥ 0:

• (n;1) Bn ≤ N ν
n = eλχnν , ν := 4(τ + α),

• (n;2) |yn+1 − yn|s0 ≤ N−ν
n = e−λχnν.

Statement (0; 1) is verified by

B0 := |L(0)F(0)|s0+β

(H3)

≤ K|F(0)|s0+β+τ ≤ eλν



which holds true for λ := λ(s0, α, τ, K) large enough.

Statement (0; 2) follows by

|y1 − y0|s0

(1.22)
= |S(N0)L(0)F(0)|s0

(1.19)

≤ Cs0,0|L(0)F(0)|s0

(H3)

≤ Cs0,0K|F(0)|s0+τ

(1.28)
< e−λν .

Now suppose (n; 1)-(n; 2) are true. To prove (n + 1; 1) write

Bn+1

(1.27)

≤ C3

(
1 +

n∑
k=0

N τ+α
k Bk

) (n;1)

≤ C3

(
1 +

n∑
k=0

e(τ+α+ν)λχk
)

= C3

(
1 + e(τ+α+ν)λχn

n∑
k=0

e−(τ+α+ν)λ(χn−χk)
)

≤ C3

(
1 + e(τ+α+ν)λχn

n∑
k=0

e−4(τ+α)(χn−χk)
)

≤ C4e
(τ+α+ν)λχn

< eνλχn+1

for some C4 := C4(α, τ, K, s0) > 0 and λ := λ(α, τ, K, s0) ≥ 1 sufficiently
large (because ν(χ− 1) > τ + α).

Remark 1.3.2 The main novelty w.r.t to the analytic scheme -compare (1.25)
with (1.15)- is to prove that the term Nα+τ

n N−β
n−1Bn−1 in (1.25) is super-

exponentially small. This follows, for β large, by (n;1), implying that |yn+1−
yn|s0 still converges to zero at a super-exponential rate if |y1 − y0|s0 is suffi-
ciently small, statement (n; 2).

Let us prove (n + 1; 2). Recalling that Nn := eλχn
we have

|yn+2 − yn+1|s0

(1.25)

≤ C1e
λ(α+τ)χn+1

e−λβχn

Bn + C1e
λ(α+τ)χn+1|yn+1 − yn|2s0

(n;1),(n;2)

≤ C1e
λ(α+τ)χn+1

e−λβχn

eλνχn

+ C1e
λ(α+τ)χn+1

e−2νλχn

≤ e−λχn+1ν

once we impose

C1e
λχn(χ(α+τ)−β+ν) <

e−λχn+1ν

2
, C1e

λχn(χ(α+τ)−2ν) <
e−λχn+1ν

2
.

These inequalities are satisfied, for λ large enough depending on α, τ , K, s0,
because

β − ν(1 + χ2)− χ(α + τ) > 0 and (2− χ)ν − χ(α + τ) > 0



for β := 15(α + τ), ν := 4(α + τ), χ = 3/2.
This concludes the proof of the Claim.

By (n; 2) the sequence yn is a Cauchy sequence in Ys0 and therefore yn →
y ∈ Ys0 . By (1.24), (n; 1)-(n; 2), |F(yn)|s0−α → 0 and therefore F(y) = 0.

Remark 1.3.3 Clearly much weaker conditions could be assumed. First of
all conditions (H1)-(H2)-(H3) need to hold just on a neighborhood of y0 = 0.
Next, we could allow the constant K := K(| |s0) to depend on the weaker
norm | · |s0. The inverse could be substitute by an approximate right inverse
as in (1.16).



Chapter 2

Hamiltonian PDEs

We want to show how to extend the local bifurcation theory of periodic solu-
tions close to elliptic equilibria (nonlinear normal modes) developed for finite
dimensional dynamical systems by Lyapunov [18], Fadell-Rabinowitz [10],
and Weinstein [32]-Moser [23] (see [3]-[24]), to infinite dimensional Hamilto-
nian PDEs (free vibrations). This requires the use of a Nash-Moser type im-
plicit function theorem to solve the range equation after a Lyapunov-Schmidt
decomposition usual in bifurcation theory.

As other applications of the Nash-Moser techniques to the problem of
forced vibrations we refer to [1].

2.1 Introduction

Let consider the autonomous nonlinear wave equation{
utt − uxx + a1(x)u = a2(x)u2 + a3(x)u3 + . . .
u(t, 0) = u(t, π) = 0

(2.1)

which possesses the equilibrium solution u ≡ 0.

We pose the following

• Question: there exist periodic solutions of (2.1) close to u = 0?

The first step is to study the linearized equation{
utt − uxx + a1(x)u = 0
u(t, 0) = u(t, π) = 0 .

(2.2)

The Sturm-Liouville operator −∂xx+a1(x) possesses a basis {ϕj}j≥1 of eigen-
vectors with real eigenvalues λj

(−∂xx + a1(x))ϕj = λjϕj , λj → +∞ . (2.3)

16



The ϕj are orthonormal with respect to the L2 scalar product.

X X X

uu

u

ω ω

u

 1

1 j

 j

j

j
ϕ (x)ϕ

1
(x)

1

Figure 2.1: The basis of eigenvectors

In this basis equation (2.2) reduces to infinitely many decoupled linear
oscillators: u(t, x) =

∑
j uj(t)ϕj(x) is a solution of (2.2) iff

üj + λjuj = 0 j = 1, 2, . . . . (2.4)

If −∂xx + a1(x) is positive definite, all its eigenvalues λj > 0 are positive1

and u = 0 looks like an “infinite dimensional elliptic equilibrium” for (2.2)
with linear frequencies of oscillations

ωj :=
√

λj ,

see figure 2.1. The quadratic Hamiltonian which generates (2.2),

H2(u, p) =
∫ π

0

p2

2
+

u2
x

2
+ a1(x)

u2

2
dx ,

where p := ut, is positive definite and, in coordinates, writes

H2 =
∑
j≥1

p2
j + λju

2
j

2

where pj := u̇j ∈ l2 (Plancharel Theorem).
The general solution of (2.2) is therefore given by the linear superposition

of infinitely many oscillations of amplitude aj, frequency ωj and phase θj on
the normal modes ϕj:

u(t, x) =
∑
j≥1

aj cos(ωjt + θj)ϕj(x) .

1If λj < 0 (there are at most finitely many negative eigenvalues) then the corresponding
linear equation (2.4) describes an harmonic repulsor (hyperbolic directions).



Hence all solutions of (2.2) are either periodic in time, either quasi-periodic,
either almost-periodic.

A solution u is periodic when each of the frequencies ωj for which the
amplitude aj is nonzero (active frequencies) is an integer multiple of a basic
frequency ω0:

ωj = ljω0 , lj ∈ Z .

In this case u is 2π/ω0 periodic in time.
The solution u is quasi-periodic with a m-dimensional frequency base if

there is a m-dimensional frequency vector ω0 ∈ Rm with rationally inde-
pendent components (i.e. ω0 · k 6= 0, ∀k ∈ Zm \ {0}) such that the active
frequencies satisfy

ωj := lj · ω0 , lj ∈ Zm .

A solution is called almost periodic otherwise, namely if there is not a finite
number of base frequencies.

It is a natural question to ask whether some of these periodic, quasi-
periodic, or almost periodic solutions of the linear equation (2.2) persists in
the non-linear equation (2.1).

2.2 Outiline of results

The first existence results were obtained by Kuksin [15] and Wayne [31]
extending KAM theory, and by Craig-Wayne [8] via a Lyapunov-Schmidt
reduction and Nash-Moser theory.

We start describing the Craig-Wayne result [8] which is an extension of
the Lyapunov Center Theorem to the nonlinear wave equation (2.1). The
main difficulty to overcome is the appearance of a (i) “small divisors” prob-
lem (which in finite dimension arises only for the search of quasi-periodic
solutions).

To explain how it arises, we recall the key non-resonance hypothesys in
the Lyapunov Center Theorem (see e.g. [24])

ωj − lω1 6= 0 , ∀l ∈ Z , ∀j = 2, . . . , n .

Hence, in finite dimension, for any ω sufficiently close to ω1, the same con-
dition ωj − lω 6= 0, ∀l ∈ Z, ∀j = 2, . . . , n, holds and the standard implicit
function theorem can be applied.

In contrast, the eigenvalues of the Sturm-Liouville problem (2.3) grow
polynomially2 like λj ≈ j2 + O(1) for j → +∞ (as it is seen by lower and

2For example the eigenvalues of −∂xx + m are λj = j2 + m with eigenvectors sin(jx).



upper comparison with the operator with constant coefficients), and therefore
ωj = j + o(1). As a consequence, in infinite dimensions, the set

{ωj − lω1 , ∀l ∈ Z , j = 2, 3, . . .}

accumulates to zero and the non-resonance condition

ωj − lω1 6= 0 , ∀l ∈ Z , j = 2, 3, . . . (2.5)

is not sufficient to apply the standard implicit function theorem.

This is the “small divisors” problem (this name is due by the fact that
such quantities appears as denominators).

Nevertheless, replacing (2.5) with some stronger condition, persistence of
a large Cantor like set of small amplitude periodic solutions of (2.1) can be
ensured using a Nash-Moser iteration scheme.

Theorem 2.2.1 (Craig-Wayne [8]) Let

f(x, u) := a1(x)u− a2(x)u2 − a3(x)u3 + . . .

be a function analytic in the region {(x, u) | |Im x| < σ , |u| < 1} and odd
f(−x,−u) = −f(x, u). Among this class of nonlinearities there is an open
dense set F (in C0-topology) such that, ∀f ∈ F , there exist a Cantor like set
C ⊂ [0, r∗) of positive measure and a C∞ function Ω(r) with Ω(0) = ω1 such
that ∀r ∈ C, there exists a periodic solution u(t, x; r) of (2.1) with frequency
Ω(r). These solutions are analytic in (x, t) and satisfy

|u(t, x; r)− r cos(Ω(r)t)ϕ1(x)| ≤ Cr2 , |Ω(r)− ω1| < Cr2 .

The Lyapunov solutions u(t, x; r) are parametrized with the amplitude
r, but also the corresponding set of frequencies Ω(r), r ∈ C, has positive
measure.

The conditions on the terms a1(x), a2(x), a3(x), etc. are, roughly, the
followings: first a condition on a1(x) to avoid primary resonances on the
linear frequencies ωj (which depend on a1), see the non-resonance condition
(2.5); next a condition of genuine nonlinearity placed upon a2(x), a3(x) is
required to solve the 2-dimensional bifurcation equation. We refer to [7] for
further discussions.

Remark 2.2.1 To prove existence of quasi-periodic solutions with m-frequencies

u(t, x) = U(ωt, x) , ω ∈ Rm ,



where U(·, x) : Tm → R, the main difficulty w.r.t. the periodic case relies
in a more complicated geometry of the numbers ω · l − ωj, l ∈ Zm, j ∈ N.
Existence of quasi-periodic solutions with the Lyapunov-Schmidt approach
has been proved by Bourgain [5]. For existence results via the KAM approach
see e.g. [17], [16] and references therein.

The “completely resonant” case

a1(x) ≡ 0

where
ωj = j , ∀j ∈ N (2.6)

(infinitely many resonance relations among the linear frequencies) was left
an open problem. In this case all the solutions of (2.2) are 2π-periodic. For
infinite dimensional Hamiltonian PDEs, aside the small divisor problem (i),
this leads to the further complication of an infinite dimensional bifurcation
phenomenon.

In the paper [4] attached below we show how to deal with it. The results
contained in [4] can be seen as an extension to Hamiltonian PDEs of the
results of Weinstein-Moser and Fadell-Rabinowitz.

For further results and open problems concerning small divisors problem
in Hamiltonian PDEs we refer to [7].



Bibliography

[1] Baldi P., Berti M., Forced vibrations of a nonhomogeneous string,
preprint 2006; and Periodic solutions of wave equations for asymptoti-
cally full measure sets of frequencies, Rend. Mat. Acc. Naz. Lincei, v.
17, 2006.

[2] Beale T. The existence of solitary water waves, Comm. Pure Appl. Math.
30, 1977, 373-389.

[3] Berti M., Nonlinear oscillations and Hamiltonian PDEs, Lecture Notes
2006.

[4] Berti M., Bolle P., Cantor families of periodic solutions for completely
resonant nonlinear wave equations, Duke Mathematical Journal, 134, 2,
359-419, 2006.

[5] Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of
2D linear Schrödinger equations, Ann. of Math., 148, 363-439, 1998.

[6] Bourgain, J. Construction of periodic solutions of nonlinear wave equa-
tions in higher dimension, Geom. Funct. Anal. 5 (1995), no. 4, 629–639.
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