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ON THE MOTION PLANNING PROBLEM, COMPLEXITY,
ENTROPY, AND NONHOLONOMIC INTERPOLATION

JEAN-PAUL GAUTHIER and VLADIMIR ZAKALYUKIN

Abstract. We consider the sub-Riemannian motion planning prob-

lem defined by a sub-Riemannian metric (the robot and the cost to

minimize) and a non-admissible curve to be ε-approximated in the

sub-Riemannian sense by a trajectory of the robot. Several notions
characterize the ε-optimality of the approximation: the “metric com-
plexity” MC and the “entropy” E (Kolmogorov–Jean). In this pa-
per, we extend our previous results. 1. For generic one-step bracket-
generating problems, when the corank is at most 3, the entropy is
related to the complexity by E = 2πMC. 2. We compute the en-
tropy in the special 2-step bracket-generating case, modelling the car
plus a single trailer. The ε-minimizing trajectories (solutions of the
“ε-nonholonomic interpolation problem”), in certain normal coordi-
nates, are given by Euler’s periodic inflexional elastica. 3. Finally,
we show that the formula for entropy which is valid up to corank 3
changes in a wild case of corank 6: it has to be multiplied by a factor
which is at most 3/2.

1. Introduction, notation, statement of the problems

A general motion planning problem from robotics is defined by a triple
(∆, g,Γ):

(i) a distribution ∆ over R
n of a certain corank p, which represents the

admissible motion (the kinematic constraints) of the robot;
(ii) a Riemannian metric g over ∆ providing a (sub-Riemannian) met-

ric structure d to measure the length of admissible curves (actually
realized by the robot);

(iii) a smooth nonadmissible curve Γ : [0, 1] → R
n which we want to ap-

proximate by an admissible one. In practice, the choice of Γ makes
the robot avoid possible obstacles in R

n.
For given dimension n of the ambient space and corank p of the distri-

bution, the set of motion planning problems Σ = (∆, g,Γ) is denoted by
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S. We endow S with the standard C∞-topology. [Since our problems are
always local around a compact curve Γ, there is no need to control anything
at infinity, and Whitney topology is not used].

Remark 1. Sometimes, we will impose extra assumptions (e.g., assuming
that distribution is one-step bracket generating). We will still keep the
notation S for the relevant smaller open set of motion planning problems.
Assuming that the problem is real analytic, we restrict the C∞-topology to
the subset of analytic objects.

We are interested in approximating or interpolating the curve Γ by ad-
missible curves, ε-close (in the sub-Riemannian sense), and we want to
analyze what happens as ε tends to zero (or at least is very small). This
corresponds to the practical situation of an ambient space R

n almost full of
obstacles.

We will need “equivalents” of quantities as ε tends to zero. We say that
two functions f1(ε) and f2(ε) tending to +∞ as ε tends to zero are weakly
equivalent (f1 �w f2) if, as usual,

k1f1(ε) ≤ f2(ε) ≤ k2f1(ε)

for certain strictly positive constants k1 and k2.
We say that f1(ε) and f2(ε) are strongly equivalent (f1 �s f2) if

lim
ε→0

f1(ε)
f2(ε)

= 1.

The notation f1 ≥s f2 is also used; it means that

lim inf
ε→0

f1(ε)
f2(ε)

≥ 1.

Now we define two crucial concepts associated with a motion planning
problem: metric complexity and entropy.

For a given motion planning problem Σ = (∆, g,Γ), denote by Tε (respec-
tively, Cε) the sub-Riemannian ε-tube (respectively, ε-cylinder) around Γ:

Tε = {x ∈ R
n; d(x,Γ) ≤ ε},

Cε = {x ∈ R
n; d(x,Γ) = ε}.

Let γε : [0, tγε
] → R

n be a parametrized admissible (almost everywhere
tangent to ∆) curve (moreover, we can assume that it is Lipschitz, and
arclength parametrized) such that γε([0, tγε

]) ⊂ Tε and γε(0) = Γ(0) and
γε(tγε

) = Γ(1). The metric complexity MC(ε) is the (weak or strong)
equivalence class of the infimum of the length l(γε) = tγε

of such curves γε

divided by ε:

MC(ε) =
1
ε

inf l(γε).

Therefore, the metric complexity measures asymptotically (as ε tends to
zero) the minimum length of ε-approximating curves.
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Now assume that γε has an extra property (the ε-nonholonomic inter-
polation property): γε is formed by a finite number of pieces connecting
points of Γ and the length of each piece does not exceed ε. The entropy
E(ε) is again a weak or strong equivalent of the infimum of the total length
of such curves γε, divided by ε:

E(ε) =
1
ε

inf{l(γε); γε is interpolating}.

Note that the usual Kolmogorov’s definition of the entropy deals with
the asymptotics of the minimum number of ε-balls covering Γ. Therefore,
it is one half of our entropy.

For both metric complexity and entropy, one is interested in “realizing”
constructively the asymptotic optimal strategy. A parametrized family of
curves γε weakly or strongly realizing the minimum is called a (weak or
strong) asymptotic optimal synthesis (for the complexity or entropy).

2. Some preliminary results

We need some results from our previous papers [6–9].
We omit the explicit asymptotic optimal syntheses constructed in these

papers and recall only the expressions of the metric complexity.
Assume that ∆ is one-step bracket-generating.
For a nonadmissible curve Γ : [0, 1] → R

n which is transversal to the
distribution ∆, we define a field along Γ of (p−1)-dimensional affine spaces
Ωt, of linear skew symmetric (with respect to g) endomorphisms of ∆(Γ(t)),

At = A0
t +

p−1∑
i=1

λiA
i
t, λi ∈ R, t ∈ [0, 1],

as follows. Consider 1-forms α which vanish on ∆ and which take value 1

on the vector
dΓ
dt

(t). Then we set

〈AtX,Y 〉g = dα(X,Y ) = α([X,Y ])

for any X,Y ∈ ∆(Γ(t)).
The fact that ∆ is one-step bracket-generating ensures that Ωt is a well-

defined (p − 1) dimensional affine space not containing the zero. Now we
define the principal invariant χ of the motion planning problem:

χ(t) = inf
Ωt

‖At‖g. (2.1)

The function χ(t) is strictly positive and continuous. If at some isolated
point t0, Γ(t) is tangent to ∆, then χ(t) tends to infinity as t → t0. Gener-
ically, this happens only for corank p = 1.
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Theorem 1 (see [6, 8]). p ≤ 3, the one-step bracket-generating case.
There exists an open dense subset S∗ ⊂ S of motion planning problems
such that

MC(ε) �s
2
ε2

∫
Γ

dt

χ(t)
. (2.2)

For corank 1, this formula is also true, despite the fact that χ(t) can be
infinite at some isolated points.

Also, in the case where p = 1, omitting the one-step bracket-generating
assumption, a single new generic situation can appear, and this can happen
only for n = 3: isolated Martinet points of ∆ along Γ. Generically, at these

points χ vanishes but remains smooth. Let �(t) =
∣∣∣∣dχ

dt

∣∣∣∣ (t).
Theorem 2 (see [6, 7]). p = 1, no bracket assumption. There is an open

dense subset S∗ ⊂ S for which, either
1. formula (2.2) holds or
2. n = 3 and

MC(ε) �s

∑
Martinet points

ti on Γ

− 4
�(ti)

log(ε)
ε2

.

In the one-step bracket-generating case, the situation changes in a subtle
way when the corank p ≥ 4. This will be illustrated in Sec. 7, but in [8, 9],
we have proved the following two theorems.

Theorem 3 (see [8]). The one-step bracket-generating case, arbitrary
corank p.

MC(ε) ≥s
2
ε2

∫
Γ

dt

χ(t)
. (2.3)

Theorem 4 (see [9]). The generic situation, one-step bracket generat-
ing, n = 10, p = 6. For problems from an open-dense subset S∗ ⊂ S, the
following holds: there exists a curve Γ̃, which is arbitrarily C0-close to Γ,
and the metric complexity of Γ̃ is 2/ε2A with the constant A arbitrarily close

to
∫
Γ

dt

χ(t)
(where χ(t) is relative to Γ).

Therefore, in fact, the metric complexity estimate (2.2) is “almost true.”
To clarify what happens for p ≥ 4 (especially for the 10–6 case), for

0 ≤ t ≤ 1, consider the image B̃t of the product Bt ×Bt ⊂ ∆Γ(t) ×∆Γ(t) of
two unit balls via the bracket mapping [·, ·] into the quotient tangent space
TΓ(t)R

n/∆(Γ(t)). Recall that the mapping [·, ·]mod ∆ is a tensor.

Definition 1. The set B̃t is said to be strictly convex in the direction
Vt ∈ TΓ(t)R

n/∆(Γ(t)) if:



COMPLEXITY, ENTROPY 375

(P1) there exist x∗ = λVt mod ∆Γ(t) ∈ B̃t, λ > 0, and a form ω from the
dual space (TΓ(t)R

n/∆Γ(t))∗ ≈ (Rp)∗ such that for all y ∈ B̃t,

ω(x∗) − ω(y) ≥ 0

or (equivalent condition),
(P2) if V ∗ = {ω ∈ (Rp)∗, ω(Vt) = 1}, then there exist ω∗ ∈ V ∗ and

x∗ = λVt ∈ B̃t, λ > 0, with the property

ω∗(x∗) = sup
x∈B̃t

ω∗(x) = inf
ω∈V ∗

sup
x∈B̃t

ω(x).

Properties (P1) and (P2) are equivalent since B̃t is not an arbitrary set:
it is symmetric and star-shaped with respect to the origin, and by one-step
bracket-generating assumption, it spans R

n−p as a vector space.
When p ≤ 3, for generic one-step bracket-generating problems, the set

B̃t is always strictly convex in the direction of Γ̇(t) mod ∆(Γ(t)) (this was
shown in [8, 9]). On the contrary, for p ≥ 4, B̃t is not strictly convex in
general. In the 10–6 case, the situation is even much more interesting: gener-
ically, the direction of Γ̇(t) never meets B̃t \ {0} (except for some isolated
points). This is justified by simple dimension arguments: projectivization
of Γ̇(t)mod ∆(Γ(t)) lives in the (5-dimensional) projective space RP

5, while
the projectivization of B̃t is the image under the mapping [·, ·]/∆ of the
4-dimensional Grassmannian of 2-planes in R

4.
We also omit the results of [6–9] on the smoothness of the (leading term

of the) metric complexity as a function of the endpoint of Γ.

3. Statement of the results and organization of the paper

This paper is mostly devoted to the entropy and its interactions with
the metric complexity. We start from a result about the one-step bracket-
generating case with p ≤ 3.

Theorem 5. The one-step bracket-generating case, p ≤ 3. There exists
an open-dense subset S∗ of S such that the problems from S∗ yield

E(ε) �s
4π

ε2

∫
Γ

dt

χ(t)
. (3.1)

In other words, the entropy is equal to 2π times the metric complexity.

Remark 2. This theorem is also valid for p > 3 but for any t, B̃t is strictly
convex in the direction of Γ.

The following result describes the generic case of a corank 6 distribution
in R

10 (wild 10–6 case).

Theorem 6. The one-step bracket-generating, analytic wild 10–6 case.
There exists an open dense subset S∗ of S such that, for Σ ∈ S∗, there
exists another invariant �(t), |�(t)| ≤ 1, such that :
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1. if �(t) = ±1 identically, then B̃t is strictly convex in the direction of
Γ, and the entropy is still given as follows:

E(ε) �s
4π

ε2

∫
Γ

dt

χ(t)
;

2. otherwise, the entropy has the following property :

4π

ε2

∫
Γ

dt

χ(t)
≤s E(ε) ≤s

6π

ε2

∫
Γ

dt

χ(t)
. (3.2)

3. In particular, if � is a nonzero constant, then

E(ε) �s
2(3 − |�|)π

ε2

∫
Γ

dt

χ(t)
.

Hence, in the worst case, there is a ratio 3/2 between the formula of
entropy of the 10–6 case and formula (3.1) for entropy when p ≤ 3.

We will also consider the unique 2-step bracket-generating generic 4–2
case, which corresponds to the car with a trailer.

In this case, we define the “normalized abnormal vector field.” It is an
intrinsic admissible vector field H on R

4 defined as follows: if F and G
are two orthonormal vector fields defining a sub-Riemannian metric, then
H = uF + vG, where

u2 + v2 = 1,

det(F,G, [F,G], u[F, [F,G]] + v[G, [F,G]]) = 0.
(3.3)

In a generic (open, dense) case, this vector field H is well defined up to
the sign in a neighborhood of Γ and is completely intrinsic. Denote by I
an unitary (with respect to the metric g) vector field in the distribution
orthogonal to H. We set K = [I,H]. K is well defined up to a sign,
and in the generic situation, it never belongs to ∆ and is never collinear
to Γ̇. Therefore, we have a canonical 3-frame (I,H,K) on R

4, defining
another sub-Riemannian metric on R

4, of corank 1, which is not tangent to
Γ̇ except for some isolated points. The influence of these isolated points on
the metric complexity and entropy is negligible (see [8] for the arguments in
the corank-one case). The underlying distribution ∆′ is just the derivative
distribution of ∆. The metric over ∆′ is denoted by g′ (the frame (I,H,K)
is orthonormal with respect to g′).

Let γ be a one-form which vanishes on I, H, and K, and which is 1
on Γ̇. (It is uniquely defined modulo a function which is 1 on Γ). Then,
we define a field of skew-symmetric endomorphisms of ∆′(Γ(t)) along Γ as
follows: 〈

Â(t)X,Y
〉

g′
= dγ(X,Y ) = γ([X,Y ]) ∀X,Y ∈ ∆′(Γ(t)).
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Also, we set
δ(t) = ‖Â(t)‖g′ ∀t ∈ [0, 1].

The function δ(t) is strictly positive and independent of the choice of signs
for vector fields I, H, and K.

We prove the following theorem.

Theorem 7. The 2-step bracket-generating case, n = 4, p = 2. There
is an open-dense subset S∗ of S such that the entropy has the following
expression:

E(ε) =
3

2σε3

∫
Γ

dt

δ(t)
.

Here σ ≈ 0.00580305 is a certain universal constant.

Theorems 5–7 are constructive. We provide either an explicit asymptotic
optimal synthesis, or a method of constructing it.

The proofs are based on the notions of “normal coordinates” and “normal
form” along Γ (introduced in Sec. 4). Then we define nilpotent approxima-
tions along Γ of a motion-planning problem and prove the following Theo-
rem 8, reducing Theorems 5–7 to the consideration of respective nilpotent
approximations only.

Theorem 8. In all cases under consideration, the entropy of the motion
planning problem is strongly equivalent to that of the nilpotent approxima-
tion along Γ.

Hence, the organization of the paper is as follows. Section 4 presents all
the tools we need: normal coordinates, normal forms, nilpotent approxima-
tions along Γ, and certain rough estimates. Section 5 contains the proof
of Theorem 8. Section 6 gives the proof of Theorem 5 about the ratio 2π
between the entropy and complexity for p ≤ 3. Section 7 gives the proof of
Theorem 6 about entropy in the wild 10–6 case. Section 8 gives the proof of
Theorem 7 about entropy in the 4–2 case. The asymptotic optimal synthe-
sis, in the normal coordinates, turns out to be the inflexional periodic Euler
elastica. Finally, in the Appendix, we prove a few useful auxiliary facts.

4. Technical preliminaries

In this section, we recall main constructions of [1–4, 6–9], needed in the
sequel.

4.1. Normal coordinates. Consider a motion planning problem Σ =
(∆, g,Γ), not necessarily one-step bracket-generating. Take a (germ along
Γ of) parametrized p-dimensional surface S, transversal to ∆,

S = {q(s1, . . . , sp−1, t) ∈ R
n}, where q(0, . . . , 0, t) = Γ(t).
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Such a germ exists if Γ is not tangent to ∆. As was already mentioned in
Sec. 3, excluding a neighborhood of an isolated point, where Γ is tangent
to ∆, i.e., Γ becomes “almost admissible,” does not affect the estimates.

Lemma 1 (normal coordinates with respect to S). There exist map-
pings x : R

n → R
n−p, y : R

n → R
p−1, and w : R

n → R such that
ξ = (x, y, w) is a coordinate system in some neighborhood of S in R

n such
that :

0. S(y, w) = (0, y, w), Γ = {(0, 0, w)};
1. ∆|S = ker dw ∩ ⋂

i=1,...,p−1

ker dyi, g|S =
n−p∑
i=1

(dxi)2;

2. CS
ε =

{
ξ
∣∣∣ n−p∑

i=1

xi
2 = ε2

}
;

3. geodesics of the Pontryagin maximum principle [16] satisfying the
transversality conditions with respect to S are the straight lines through
S contained in the planes Py0,w0 = {ξ | (y, w) = (y0, w0)}. Hence, they
are orthogonal to S.

These normal coordinates are unique up to changes of coordinates of the
form

x̃ = T (y, w)x, (ỹ, w̃) = (y, w), (4.1)
where T (y, w) ∈ O(n − p), the (n − p)-orthogonal group.

Here, CS
ε denotes the cylinder {ξ; d(S, ξ) = ε}.

4.2. Normal form.

4.2.1. Frames. A motion planning problem can be specified by a couple
(Γ, F ), where F = (F1, . . . , Fn−p) is a g-orthonormal frame of vector fields
generating ∆. Hence we will also write Σ = (Γ, F ). If a global coordinate
system (x, y, w), not necessarily normal, is given in a neighborhood of Γ in
R

n, where x ∈ R
n−p, y ∈ R

p−1, and w ∈ R, then we write:

Fj =
n−p∑
i=1

Qi,j(x, y, w)
∂

∂xi
+

p−1∑
i=1

Li,j(x, y, w)
∂

∂yi
+ Mj(x, y, w)

∂

∂w
, (4.2)

where j = 1, . . . , n − p. Hence, the sub-Riemannian metric is specified
by the triple (Q,L,M) of smooth (x, y, w)-dependent matrices, and we
also write Σ = (Γ,Q,L,M). If, in the chosen coordinates (e.g., in normal
coordinates), Γ(t) = (0, 0, t), then we write Σ = (Q,L,M).

4.2.2. The general normal form. Fix a surface S as in Sec. 4.1 and a normal
coordinate system ξ = (x, y, w) for a problem Σ.

Theorem 9 (normal form). There exists a unique orthonormal frame
F = (Q,L,M) for (∆, g) with the following properties:

1. Q(x, y, w) is symmetric, Q(0, y, w) = Id (the identity matrix );
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2. Q(x, y, w)x = x;
3. L(x, y, w)x = 0, M(x, y, w)x = 0;
4. conversely, if ξ = (x, y, w) is a coordinate system satisfying condi-

tions 1–3 above, then ξ is a normal coordinate system for the sub-
Riemannian metric defined by the orthonormal frame F with respect
to the parametrized surface {(0, y, w)}.

Clearly, this normal form is invariant with respect to the changes of
normal coordinates (4.1).

Let us write:

Q(x, y, w) = Id +Q1(x, y, w) + Q2(x, y, w) + . . . ,

L(x, y, w) = 0 + L1(x, y, w) + L2(x, y, w) + . . . ,

M(x, y, w) = 0 + M1(x, y, w) + M2(x, y, w) + . . . ,

where Qk, Lk, and Mk are matrices depending on ξ, whose coefficients have
order k with respect to x (i.e., they are in the kth power of the ideal of
C∞(x, y, w) generated by the functions xr, r = 1, . . . , n− p). In particular,
Q1 is linear in x, Q2 is quadratic, etc. Set u = (u1, . . . , un−p) ∈ R

n−p. Then
p−1∑
j=1

L1j
(x, y, w)uj = L1,y,w(x, u)

is quadratic in (x, u), and R
p−1-valued. Its ith component is a quadratic

expression denoted by L1,i,y,w(x, u). Similarly,
p−1∑
j=1

M1j
(x, y, w)uj = M1,y,w(x, u)

is a quadratic form in (x, u). The corresponding matrices are denoted by
L1,i,y,w, i = 1, . . . , p − 1, and M1,y,w.

The following proposition was proved in [2, 3] for corank 1.

Proposition 1. 1. Q1 = 0;
2. L1,i,y,w, i = 1, . . . , p − 1, and M1,y,w are skew symmetric matrices.

4.2.3. Special 4–2case. In the two-step bracket-generating 4–2 case, there
exists an important canonical choice of both the surface S and the rotation
T (y, w) from (4.1). We still use the notation of Sec. 3.

First, we reparametrize the curve Γ(t) by setting

dτ =
3
2

dt

δ(t)
. (4.3)

From now on, we will work with the new parameter, keeping the initial
one in the statement of the final results only. Thus, from now on, δ(t) = 3/2.

Second, choose the surface S and its parametrization as follows:

S(s, t) = exp sK(Γ(t)).
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Third, choose the rotation T (y, w) (see (4.1)) to make the normalized
abnormal vector field H equal to ∂/∂x2 at S.

4.3. Cylinders in normal coordinates. The standard “ball-box theo-
rem” (see [10]) and the properties of the normal form imply the following
estimates.

Let ξ = (x, y, w) be a normal coordinate system and let F = (Q,L,M)
be the associated normal form. Assume that either ∆ is one-step bracket
generating, or Σ is 4–2 generic (in particular, it is two-step bracket gener-
ating).

Theorem 10 (normal cylinder-box theorem [8]).
1. If ξ = (x, y, w) ∈ Tε, then

‖x‖2 ≤ ε, ‖y‖2 ≤ k2ε
2

for some k2 > 0.
2. Take 0 < ω < 1 and set

Kk1,ω
ε = {ξ = (x, y, w) | ‖x‖2 ≤ ωε, ‖y‖2 ≤ k1ε

2}.
Then for sufficiently small k1, Kk1,ω

ε ⊂ Tε.

Obviously, Theorem 10 (stated in [8] for the one-step bracket-generating
case) holds also in the 4–2 case with the special choice of normal coordinates,
as above.

4.4. Nilpotent approximations along Γ. Fix a normal coordinate sys-
tem (according to the rules of Sec. 4.2.3 in the 4–2 case) and the corre-
sponding normal form.

Restricting to the tubes Tε ⊂ Tε0 for sufficiently small ε ≤ ε0, assign the
weights 1, 2, and 0 to the variables xi, yi, and w, respectively (according
to their orders in ε in Theorem 10). Then the vector field ∂/∂xi has the
weight −1, ∂/∂yi has the weight −2, and (to agree with the “local effect” in
the direction of Γ) for ∂/∂w, we set the weight −2 in the one-step bracket-
generating case, and −3 in the 4–2 case.

Definition 2. The nilpotent approximation Σ̂ of Σ along Γ consists of
the sub-Riemannian metric obtained by keeping only the terms of order −1
in the normal form (i.e., an orthonormal frame for Σ̂ is the normal frame of
Σ truncated at order −1).

The nilpotent approximation in the one-step bracket-generating case has
the following form (using the control system notation):

ẋ = u,

ẏi =
1
2
x′Li(w)u, i = 1, . . . , p − 1;

ẇ =
1
2
x′M(w)u.

(4.4)
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Here x′ is the transpose of x and w is the coordinate along Γ. The matrices
Li and M depending on w are skew symmetric.

In fact, the (y, w)-space is identified with the surface S, and with the
quotient TΓ(w)R

n/∆(Γ(w)), and the mapping

(x, u) → (x′L1(w)u, . . . , x′Lp−1(w)u, x′M(w)u)

is just the coordinate form of the bracket mapping [·, ·]/∆.
The properties of the normal form imply the following lemma.

Lemma 2. For an admissible trajectory of Σ which remains in Tε, we
have

ẋ = u + O(ε2),

ẏi =
1
2
x′Li(w)u + O(ε2), i = 1, . . . , p − 1,

ẇ =
1
2
x′M(w)u + O(ε2),

(4.5)

where O(ε2) denote smooth functions bounded by Cε2 for some appropriate
positive constant C.

Respectively, in the 4–2 generic case, the nilpotent approximation takes
the form

ẋ1 = u1; ẋ2 = u2,

ẏ =
1
2
(x2u1 − x1u2),

ẇ =
1
2
x1(x2u1 − x1u2),

(4.6)

which implies the following lemma.

Lemma 3 (the two-step bracket-generating 4–2 case). For an admissi-
ble trajectory of Σ which remains in Tε, we have

ẋ = u + O(ε2),

ẏ =
1
2
(x2u1 − x1u2) + O(ε2),

ẇ =
1
2
x1(x2u1 − x1u2) + O(ε3),

(4.7)

where O(εi) are smooth functions bounded by Cεi for some appropriate pos-
itive constant C.

Remark 3. Note that in the 4–2 case, due to the canonical normaliza-
tions, the nilpotent approximation is unique: it does not depend on any
parameter.
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4.5. A rough estimate. We need to estimate sub-Riemannian balls with
centers on Γ. Denote by Bt(ε) a ε-sub-Riemannian ball centered at the
point (0, 0, t) of Γ and by B̂t(ε) the corresponding ball for the nilpotent
approximation along Γ. The following lemma is an immediate consequence
of the definition of normal coordinates and of the standard ball-box theorem
from [10].

We still fix a normal coordinate system and the associated normal form,
according to Sec. 4.2.

Lemma 4. There exists a positive constant k such that the balls Bw0(ε)
and B̂w0(ε) contain the following set, for all (0, 0, w0) ∈ Γ:

1. one-step bracket-generating case:

{(x, y, w); ‖x‖ ≤ kε, ‖y‖ ≤ kε2, |w − w0| ≤ kε2};
2. the generic 4–2 case, two-step bracket-generating :

{(x, y, w); ‖x‖ ≤ kε, ‖y‖ ≤ kε2, |w − w0| ≤ kε3}.
4.6. Nilpotent approximation in the 10–6 case. Now we will improve
the general expression (4.4) of the nilpotent approximation in the one-step
bracket-generating case, using a change of coordinates on S and an appro-
priate change of normal coordinates (4.1). Note that the final form of the
nilpotent approximation is independent of the choice of S itself.

Decompose the Lie algebra so(4) in pure quaternions and pure skew-
quaternions:

so(4) = P ⊕ P̂ ,

where P is the vector space of pure quaternions, generated by i, j, and k:

i =
(

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

)
, j =

(
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

)
, k =

(
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

)
,

and P̂ is generated by ı̂, ĵ, and k̂, where

ı̂ =
(

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

)
, ĵ =

(
0 0 1 0
0 0 0 1−1 0 0 0
0 −1 0 0

)
, k̂ =

(
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

)
.

The following theorem holds for generic 10-6 analytic problems.

Theorem 11. Outside an arbitrarily small neighborhood of a finite sub-
set of Γ, there exists a choice of the normal coordinates, and a parametriza-
tion of S (preserving the parametrization of Γ), such that the nilpotent ap-
proximation takes the form

ẋ = u, ẏ1 =
1
2
x′(̂ı + �(w)i)u, ẏ2 =

1
2
x′ju,

ẏ3 =
1
2
x′ku, ẏ4 =

1
2
x′ĵu, ẏ5 =

1
2
x′k̂u,

ẇ =
1
2
χ(w)x′iu.

(4.8)
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Here x′ is the transpose of x and �(w) is a certain invariant of the motion
planning problem, −1 ≤ �(w) ≤ 1. The value �(w) = ±1 if B̃w is strictly
convex in the direction of Γ. Otherwise, the direction of Γ̇w avoids B̃w.

Proof. First, reparametrize Γ setting dw̃ =
2

χ(w)
dw. For brevity, below we

omit tilde in the notation. Then, in the nilpotent approximation we can as-
sume that ẇ = x′M(w)u, where M(w) is skew-symmetric with double eigen-
values of modulus 1. (This was shown in [8] and is repeated in Corollary 1,
Appendix 2; the “modulus one” claim comes from the reparametrization
of Γ.) Now, a change of normal coordinates of the form T (w) (see (4.1)),
with the matrix T (w) from O(4, R) (not necessarily from SO(4, R)), yields
M(w) = i. Finally, an appropriate change of parametrization of S identical
on Γ yields

ẋ = u, ẏ1 = x′(̂ı + κ1(w)i)u, ẏ2 = x′(j + κ2(w)i)u,

ẏ3 = x′(k + κ3(w)i)u, ẏ4 = x′(ĵ + κ4(w)i)u, ẏ5 = x′(k̂ + κ5(w)i)u,

ẇ = x′iu.

Note that κ2 = κ3 = 0 since

‖i‖ = inf
λ

‖i + λ1(j + κ2i) + λ2(k + κ3i)‖

(we can assume this from the very beginning, applying if needed an admis-
sible change of coordinates on S of the form w̃ = w +

∑
µi(w)yi preserving

the parametrization on Γ). Note that the standard norm of quaternions or
the Hilbert–Schmidt norm of the matrix coincide with the L2-norm of the
matrix up to some constant factors depending on conventions. Also, gener-
ically outside a finite subset of Γ, the coefficients µi can be chosen smooth
(see [8]).

Moreover, the real analyticity implies that either all κi vanish identically
or some of them are nonzero outside a finite set. (Recall that these special
isolated points cause no trouble in the estimates of metric complexity or
entropy; see [8].)

Now we make a change of normal coordinates (4.1), where T (w) is a
certain skew-quaternion of norm 1, which acts by conjugation on the matri-
ces from the normal form. Then, a permutation of y1, y4, y5 makes κ1(w)
nonzero. (Note that the problem becomes trivial if κj is identically zero for
all j.)

Now we set

ỹ4 = y4 − κ4

κ1
(w)y1, ỹ5 = y5 − κ5

κ1
(w)y1
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to obtain the following pre-normal form:

ẋ = u, ẏ1 = x′(̂ı + κ1(w)i)u, ẏ2 = x′ju,

ẏ3 = x′ku, ẏ4 = x′(ĵ + λ4(w)̂ı)u, ẏ5 = x′(k̂ + λ5(w)̂ı)u,

ẇ = x′iu.

(4.9)

A change of normal coordinates (4.1) with the help of a skew-quaternion
matrix T (w) of norm 1 reduces the equations for y4 and y5 to the form

ẏ4 = a(w)x′ĵu + b(w)x′k̂u, ẏ5 = c(w)x′ĵu + d(w)x′k̂u.

In fact, an appropriate conjugation with a unit skew-quaternion maps a
certain 2-plane in skew-quaternions, to the plane orthogonal to ı̂.

Finally, the change(
ỹ4

ỹ5

)
=

(
a(w) b(w)
c(w) d(w)

)−1 (
y4

y5

)

of variables y4 and y5 and a suitable renormalization of ẏ1 provide the
required normal form for nilpotent approximation.

The fact that �(w) = κ1(w) is an invariant of the structure follows from
the results of Sec. 7: its values characterize the entropy of the given motion
planning problem.

An easy argument shows that |�(w)| ≤ 1: the transformations we have
made do not affect the equality

1 = ‖i‖ = inf
λ

(‖i + λ(̂ı + �i)‖),
where the norm is the L2-norm.

Remark 4. The calculation showing that |�(w)| ≤ 1 should be made using
the L2-norm, and are of a different nature than the calculation showing that
κ2 = κ3 = 0, which can be made using the standard norm of quaternions.

In particular, the case |�(w)| = 1 corresponds to the strict convexity of
B̃w in the direction of Γ.

5. Reduction to the nilpotent approximation

In this section, we prove Theorem 8.
Let ξ(t) = (x(t), y(t), w(t)) and ξ̂(t) = (x̂(t), ŷ(t), ŵ(t)), t ∈ [0, ε] be

arclength parametrized trajectories of the motion planning problem Σ and
its nilpotent approximation Σ̂, respectively, and let a normal coordinate
system and the corresponding normal form be fixed.

Both trajectories correspond to the same control u(t) and the same initial
condition r = (0, 0, w0) ∈ Γ. Then, according to (4.5) and (4.7), we have

ẋ = u + O(ε2),

ẏi =
1
2
x′Li(w)u + O(ε2), i = 1, . . . , p − 1,

(5.1)
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and
ẇ =

1
2
x′M(w)u + O(ε2)

or, respectively,

ẇ =
1
2
x1(x2u1 − x1u2) + O(ε3).

These relations imply

‖x(ε) − x̂(ε)‖ ≤ Kε3,

‖y(ε) − ŷ(ε)‖ ≤ Kε3,

‖w(ε) − ŵ(ε)‖ ≤ Kε3 (or Kε4)

(5.2)

for a certain constant K > 0.
Now we assume that one of the trajectories ξ(. . . ) or ξ̂(. . . ) returns to Γ

in time ε. Let q = (0, 0, w1) denote the corresponding point of Γ. According
to Lemma 4, the endpoint (ξ̂(ε) or ξ(ε)) of the other trajectory belongs to
both balls Bw1(ε

5/4) and B̂w1(ε
5/4) for sufficiently small ε. Therefore, we

can modify the last trajectory to make it interpolate the same points and
have the length smaller than or equal to ε(1 + ε1/4).

Let γ1 and γ2 be two trajectories, where γ1 is a trajectory of Σ (respec-
tively, Σ̂), ε-interpolating Γ, and γ2 is a trajectory of Σ̂ (respectively, Σ)
obtained from γ1 by the previous construction: for any interpolating piece
of γ1 of length a ≤ ε, we obtain the corresponding interpolating piece of γ2

of length b ≤ a(1 + a1/4), interpolating the same points. Therefore,

l(γ1) =
N∑

i=1

ai, l(γ2) =
N∑

i=1

bi ≤
N∑

i=1

ai(1 + ε1/4) ≤ (1 + ε1/4)l(γ1).

Then
l(γ2)

ε(1 + ε
1
4 )

≤ l(γ1)
ε

.

Now we assume that γ1 is optimal among ε-interpolating curves (Lemma 9
from the Appendix states that such a curve does exist), then

l(γ2)

ε(1 + ε
1
4 )

≤ E1(ε),

where E1 is the entropy of Σ (respectively, Σ̂). Since γ2 is ε(1 + ε1/4)-
interpolating, we obtain

E2(ε(1 + ε1/4)) ≤ E1(ε),

where E2 is the entropy of Σ̂ (respectively, Σ).
Then we obtain

Ê(ε(1 + ε1/4)) ≤ E(ε), (5.3a)

E(ε(1 + ε1/4)) ≤ Ê(ε). (5.3b)
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On the other hand, for all cases considered in this paper, we show indepen-
dently that Ê(ε) �s A/εp, where either p = 2 or p = 3. Hence, inequality
(5.3a) implies that

E(ε)
εp

A
≥ εp(1 + ε1/4)p

A
Ê(ε(1 + ε1/4))

1
(1 + ε1/4)p

.

Passing to the lim inf, we obtain

lim inf
(

E(ε)
εp

A

)
≥ 1, E(ε) ≥s Ê(ε).

Similarly, inequality (5.3b) implies

E(ε(1 + ε1/4))
εp(1 + ε1/4)p

A
≤ Ê(ε)

εp(1 + ε1/4)p

A
.

Passing to the limit, we obtain

lim sup
ε→0

(
E(ε(1 + ε1/4))

εp(1 + ε1/4)p

A

)
≤ 1.

Now, setting ε̃ = ε(1 + ε1/4), we obtain

lim sup
ε̃→0

(
E(ε̃)

ε̃p

A

)
≤ 1

and, consequently,
E(ε) ≤s Ê(ε).

6. The case of corank p ≤ 3

In this section, we prove Theorem 5.
According to Theorem 8, we work with the nilpotent approximation,

which takes the following form in the normal coordinates on a tube Tε:

ẋ = u,

ẏi =
1
2
x′Li(w)u, i = 1, . . . , p − 1,

ẇ =
1
2
x′M(w)u.

(6.1)

Assume that we have made a change of normal coordinates of the form
(x, y, w) → (x, y, w̃), where

w̃ = w +
p−1∑
i=1

λ∗
i (w)yi,

∥∥∥∥∥M(w) +
p−1∑
i=1

λ∗
i (w)Li(w)

∥∥∥∥∥
g

= inf
λ

∥∥∥∥∥M(w) +
p−1∑
i=1

λi(w)Li(w)

∥∥∥∥∥
g

.
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This is a reparametrization of the surface S, which preserves the curve Γ.
The new coordinates remain normal. It was shown in [8] that such a smooth
vector λ∗(w) exists, except for a finite subset of Γ. This finite set of special
isolated points is treated exactly as in [8] and does not affect the result.
Hence we can assume that in (6.1),

‖M(w)‖g = inf
λ

∥∥∥∥∥M(w) +
p−1∑
i=1

λi(w)Li(w)

∥∥∥∥∥
g

.

Using a change of normal coordinates of the form (4.1), we can assume
that M(w) has the following block-diagonal form:

M(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1 0 . . . . . . . . . . . . 0
−α1 0 0 . . . . . . . . . . . . 0
. . . 0 0 α2 0 . . . . . . . . .
. . . . . . −α2 0 0 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 0 αl . . .
. . . . . . . . . . . . . . . −αl 0 . . .
0 . . . . . . . . . . . . . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where α1, . . . , αl are smooth functions of w such that for all w,

α1(w) > · · · > αl(w) > 0.

For odd n − p, the zero eigenvalue should be added in the bottom right
corner.

The following crucial property was also proved in [8]:

Li
1,2(w) = Li

2,1(w) = 0 for all i = 1, . . . , p − 1. (6.2)

Remark 5. The last property means exactly that B̃w is strictly convex
in the direction of Γ̇ (a generic property for p < 4, as we have said): here
Γ̇ is collinear to ∂/∂w, the bracket modulo ∆ of ∂/∂x1 and ∂/∂x2 has a
component Li

1,2(w) in the direction of ∂/∂yi. Therefore, property (P2) of

Definition 1 holds with ω∗ = dw and x∗ =
[

∂

∂x1
,

∂

∂x2

]
+ ∆w.

Now let an admissible arclength parametrized path γ : [0, a] → R
n, a ≤ ε,

connect points (0, 0, w1) and (0, 0, w2).
Along γ we have

ẇ

α1(w)
≤ 1

2
(x1u2 − x2u1) +

1
2

α2(w)
α1(w)

(x3u4 − x4u3) + . . . .
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Hence, denoting by γ1, . . . , γl the projections of the curve γ to the coordinate
2-planes (x1, x2), (x3,x4), . . . , we obtain

w2∫
w1

dw

α1(w)
≤ 1

2

∫
γ1

(x1ẋ2 − x2ẋ1)dt +
1
2

∫
γ2

ϕ2(w)(x3ẋ4 − x4ẋ3)dt + . . . ,

where ϕ2, . . . , ϕl are smooth functions of w not exceeding 1. Moreover,

ϕi(w) = ϕi(w1) + (w − w1)ψi(w),

where ψi is smooth and
|w − w1| ≤ kε2.

Since ‖x‖ ≤ ε (according to the cylinder box theorem, since the curve
belongs to Tε) and t ≤ a ≤ ε, we obtain

w2∫
w1

dw

α1(w)
≤ 1

2

∫
γ1

(x1ẋ2 − x2ẋ1)dt

+
1
2
ϕ2(w1)

∫
γ2

(x3ẋ4 − x4ẋ3)dt + · · · + Kaε3

for some K > 0. Denoting by Ω1, . . . ,Ωl the domains encircled by γ1, . . . , γl

in the corresponding 2-planes, we obtain
w2∫

w1

dw

α1(w)
≤ 1

2

∫
Ω1

2dx1 ∧ dx2 +
1
2
ϕ2(w1)

∫
Ω2

2dx3 ∧ dx4 + · · · + Kaε3

≤ A(Ω1) + · · · + A(Ωl) + Kaε3,

where A(Ωi) denotes the area of Ωi. Now the isoperimetric inequality on
the plane implies that

w2∫
w1

dw

α1(w)
≤ 1

4π
((P1)2 + · · · + (Pl)2) + Kaε3,

where Pi is the perimeter of Ωi and

w2∫
w1

dw

α1(w)
≤ 1

4π

⎡
⎢⎣
⎛
⎝

a∫
0

(u2
1 + u2

2)
1/2dt

⎞
⎠

2

+

⎛
⎝

a∫
0

(u2
3 + u2

4)
1/2dt

⎞
⎠

2

+ . . .

⎤
⎥⎦

+ Kaε3 ≤ ε

4π

a∫
0

(u2
1 + u2

2 + · · · + u2
2l)dt + Kaε3 ≤ εa

4π
+ Kaε3.
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If several (say, m) steps are needed to go from w = 0 to the other endpoint
w = ŵ of Γ, then

ŵ∫
0

dw

α1(w)
≤

m∑
i=1

ai

( ε

4π
+ Kε3

)
,

length(γ) =
m∑

i=1

ai ≥ 4π

ε

ŵ∫
0

dw

α1(w)
− K̃ε2.

This implies that

E(ε) ≥s
4π

ε2

ŵ∫
0

dw

α1(w)
. (6.3)

To prove the inverse inequality, construct an asymptotic optimal synthe-
sis for the nilpotent approximation. The cylinder in R

n

C1
ε =

{(
x1 − ε

2π

)2

+ x2
2 + · · · + x2

n−p =
ε2

4π2
, x3 = · · · = xn−p = 0

}

of the perimeter ε has dimension p+1 and is transversal to ∆ for sufficiently
small ε (since Γ is transversal to ∆). The intersections of tangent planes to
the cylinder with ∆ define a single vector field X on C1

ε of norm one such
that the coordinate w increases along its trajectories. The corresponding
controls (easily computed with the normal form) are as follows:

u1 = 2π
x2

ε
, u2 = −2π

(x1ε/2π)
ε

, u3 = · · · = 0.

The trajectory of this field X starting from (0, 0, 0) has the components

x1(t) =
ε

2π

(
1 − cos

2πt

ε

)
, x2(t) =

ε

2π
sin

2πt

ε
, x3(t) = · · · = 0,

while by crucial property (6.2),

yi(t) = 0 for i = 1, . . . , p − 1.

Hence at the time t = ε the trajectory intersects Γ again.
The component w(t) satisfies the equation

ẇ =
1
2
α1(w)(x1u2 − x2u1) = α1(w)

x1(t)
2

= α1(w)
ε

4π

(
1 − cos

2π

ε
t

)
.

Therefore, the time T of passing from the origin to the coordinate ŵ of the
other endpoint of Γ satisfies the relation

4π

ε

ŵ∫
0

dw

α1(w)
= T − ε

2π
sin

2π

ε
T
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and, therefore,

T ≤ 4π

ε

ŵ∫
0

dw

α1(w)
+

ε

2π
.

The trajectory does not arrive exactly at the endpoint Γ(1), but at some
nearby point w̃ on Γ satisfying |ŵ − w̃| ≤ ∆ε2 for some ∆ > 0. Hence the
remaining piece to arrive at Γ(1) has a length less than δε for a certain
δ > 0, by Lemma 4.

Thus, the whole entropy satisfies the inequality

E(ε) ≤s
4π

ε2

ŵ∫
0

dw

α1(w)
,

as required.

7. The wild 4–10 case

In this section, we prove Theorem 6. According to Theorem 8, we start
from the normal form (4.8) for the nilpotent approximation, which after a
suitable reparametrization of Γ can be written as follows:

ẋ = u, ẏ1 = x′(̂ı + �i)u, ẏ2 = x′ju,

ẏ3 = x′ku, ẏ4 = x′ĵu, ẏ5 = x′k̂u,

ẇ = x′iu.

(7.1)

Formula (3.2) for the entropy in the case where � is a function of w, easily
follows from the formula when � is a constant: the dependence of � on w
at each ε-interpolation step produces a small deviation of the component
y1, which can be compensated during an extra time interval of higher order
than ε. Therefore, it does not affect the estimates. Hence we consider only
the case where � = const.

Clearly (see Lemmas 9 and 10), for sufficiently small ε, the interpolating
pieces joining two points of Γ should be minimal length geodesics of the
sub-Riemannian metric joining these points. Therefore, we calculate the
optimal geodesics of length ε of the sub-Riemannian metric. By the one-
step bracket-generating assumption, it suffices to consider normal geodesics.

Note that, similarly to the Riemannian geometry, calculating the
geodesics we can minimize the energy instead of the length. We take the
arclength-parametrized geodesics.



COMPLEXITY, ENTROPY 391

Proposition 2. The equations of geodesics are

ẋ = u, (7.2)

du

dt
= Au,

dyj

dt
= x′Lju,

dw

dt
= x′iu, (7.3)

where Lj are given above in (7.1) and A is an arbitrary skew-symmetric
matrix.

Proof. If Ψ(t) is the adjoint vector, then ui = Ψ(t) · Xi(x(t)), i = 1, . . . , n,
where Xi are the components of the control vector field. But the functions
Ψ(t)[Xi, Xj ] are constant since the second brackets [[Xi, Xj ], Xk] are zero.

We are looking for a parametrized minimal geodesic

ξ(t) = (x(t), y(t), w(t), u(t)), t ∈ [0, ε],

connecting the point (x, y, w) = (0, 0, 0) with the point (0, 0,W ). Let A =
H ′ΛH, where H is orthogonal, det(H) = 1, and Λ is skew symmetric and
(2×2)-block-diagonal. We set V = Hu and V0 = Hu0. Denote by BD(α, β)
the block-diagonal (4 × 4)-matrix with the (2 × 2)-blocks α and β.

To make the proof more clear, we split it into several cases. We reproduce
completely the arguments in each case despite their similarity. On the
contrary, we omit some long but routine computational details.

Case 1. Noninvertible matrix Λ.

Lemma 5. A minimal interpolating geodesic has a noninvertible matrix
Λ if and only if � = ±1.

Proof. The noninvertible matrix Λ has the form Λ = BD(0, αJ), where

J =
(

0 −1
1 0

)
.

Setting ξ̃ = Hx, we obtain that V = BD(Id, eαJt) · V0 and

ξ̃ = BD

(
t Id, − 1

α
J(eαJt − Id)

)
V0.

By the nonholomic interpolation assumption ξ̃(ε) = 0, therefore, the matrix
(eαJε−Id) is noninvertible. This happens for the smallest value of α = 2π/ε.
Hence V0 = (0, 0, cos(ϕ), sin(ϕ)) for some ϕ. We set Ṽ0 = (cos ϕ, sin ϕ).

Decomposing the skew-symmetric matrix M into a linear combination
of basic matrices i, j, k, ı̂, ĵ, and k̂, denote by yM the corresponding lin-
ear combination of the coordinate functions y. Therefore, yM satisfies the
equation

ẏM = x′Mu = ξ′HMH ′eΛtV0.
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Setting

M̃ = HMH ′ =
(

M1 M2

M3 M4

)
,

we see that

ẏM =
1
α

Ṽ ′
0J(e−αJt − Id)M4e

αJtṼ0.

But M4 = m4J and, therefore,

ẏM =
1
α

Ṽ ′
0J(Id−eαJt)M4Ṽ0.

At t = ε this gives yM (ε) = − ε2

2π
m4. This value must be zero for M = j,

k, ĵ, k̂, and ı̂ + �i (the geodesic intersects Γ at t = ε). Any H can be
written in the form H = eqeq̂, where q (respectively, q̂) is a quaternion
(respectively, skew). Now for M = j and M = k, the condition m4 = 0
implies that eqje−q and eqke−q are orthogonal to i. Hence the element
eqie−q orthogonal to them must be ±i:

eqie−q = ω1i, ω1 = ±1.

Taking M = ĵ and M = k̂, we similarly obtain

eq̂ ı̂e−q̂ = ω2 ı̂, ω2 = ±1.

Applying this argument also to M = ı̂ + �i, we have

ω1�yi(ε) + ω2yı̂(ε) = 0.

Hence

−�ω1
ε2

2π
+ ω2

ε2

2π
= 0.

Then � = 1 or � = −1.
The case where we take Λ = BD(αJ, 0) is similar.
For M = i, we obtain w(ε) = −ε2/2π, providing the entropy estimation

for ρ = ±1.

Remark 6. Finally, let us summarize our conclusions at the end of this
case.

1. If � = ±1, the entropy is still

E(ε) =
4π

ε2

∫
Γ

dw

χ(w)
;

the factor 2 missing apparently comes from the reparametrization of
Γ in (7.1): we have set dw̃ = 2dw/χ(w). This is we already known
since the case � = ±1 is the case where B̃w is strictly convex in the
direction of Γ and in tis case, the proof of Theorem 5 (see Sec. 6) still
applies.
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2. If � �= ±1, then the matrices A and Λ in the equation of our interpo-
lating geodesics are invertible.

Case 2. Now we assume that � �= ±1 and Λ is invertible.

Lemma 6. A geodesic defined by the matrix Λ = BD(α1J, α2J),
α1, α2 �= 0, returns to Γ in time ε only if α1 = 2πk1/ε and α2 = 2πk2/ε for
some integers k1, k2 �= 0.

Proof. We have, with the same notation as above:

V = BD(eα1Jt, eα2Jt) · V0,

ξ̃ = BD

(
− 1

α1
J(eα1Jt − Id), − 1

α2
J(eα2Jt − Id)

)
V0.

Because of the nonholonomic interpolation at time ε, the matrix

BD

[
− 1

α1
J(eα1Jt − Id), − 1

α2
J(eα2Jt − Id)

]

must be noninvertible at t = ε.
This shows that either ε = 2πk1/α1, or ε = 2πk2/α2, or both.
Assume that α2 = 2πk2/ε for some integer k2 but α1 �= 2πk1/ε for any

integer k1.
Again, V0 = (0, 0, cos ϕ, sin ϕ) for ξ̃(ε) = 0, and, to obtain the geodesics

parametrized by arclength, we set also Ṽ0 = (cos ϕ, sin ϕ).
Again, taking a skew-symmetric matrix M , the same calculation as in

Lemma 5 for the equation ẏM = xMu shows that

yM (ε) = − ε2

2π
m4.

The same reasoning as in Lemma 5 leads to the following result: if � �= ±1,
such geodesics cannot realize nonholonomic interpolation. Therefore, we
must have α2 = 2πk2/ε and α1 = 2πk1/ε, for some integers k1, k2 �= 0,

Λ = BD

(
2πk1

ε
J,

2πk2

ε
J

)
.

The lemma is proved.

Case 3. The moduli k1 and k2 are equal. This case never happens for
|ρ| < 1.

Lemma 7. An ε-interpolating geodesic must have k1 �= ±k2 if |ρ| < 1.

Proof. Assume that k1 = k2 = k (the case k1 = −k2 is similar).
Now

Λ = BD

(
2πk

ε
J,

2πk

ε
J

)
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and ξ̃(ε) = 0 for any V0 = (x, y, z, w). For a skew-symmetric matrix M =
q + q̂ and the equation ẏM = ξ′MeΛtV0, the same computations as before
show that

q = ai + q̃1j + q̃2k, q̂ = bı̂ + q1ĵ + q2k̂, (7.4a)

yq(ε) = − aε2

2kπ
(x2 + y2 + z2 + w2), (7.4b)

yq̂(ε) =
ε2

2kπ

[
2(q1(yz − wx) + q2(xz + wy)) + b(x2 + y2 − w2 − z2)

]
.

(7.4c)

Write H = erer̂ for some quaternion r and skew-quaternion r̂. If we want
to realize nonholonomic interpolation at the time t = ε, we must find a unit
vector V0 = (x, y, z, w) such that yM (ε) vanishes for M = erje−r, erke−r,
er̂ ĵe−r̂, er̂k̂e−r̂, and �erie−r+ er̂ ı̂e−r̂.

Again, the equalities yerje−r (ε) = 0, yerke−r (ε) = 0 and (7.4b) imply that
erje−r and erke−r are orthogonal to i. Hence, erie−r = ω1i, ω1 = ±1, and

yer̂ ĵe−r̂ (ε) = 0, yer̂ k̂e−r̂ (ε) = 0,
−ω1�ε2

2kπ
+ yer̂ ı̂e−r̂ (ε) = 0.

Therefore, by (7.4c), the vector

W = (2(yz − wx), 2(xz + wy), x2 + y2 − w2 − z2) ∈ R
3

must be orthogonal to two independent vectors V1 and V2, and its scalar
product with the unit vector orthogonal to V1 and V2 must be ω1�. Then,
the norm of W must be |�|. But a simple calculation shows that it is 1. (In
the case k2 = −k1, we find 1 = 1/|�|.)
Case 4. The remaining case α2 = 2πk2/ε and α1 = 2πk1/ε, k1, k2 �= 0,
k1 �= ±k2.

Lemma 8. An interpolating trajectory in the time ε is minimal only if
k1 = −2, k2 = 1, or k1 = −1, k2 = 2.

Proof. We will directly calculate yM (ε), where ẏM = ξ′MeΛtV0, for an
arbitrary initial vector V0 = (x, y, z, w) of norm 1.

Again, we take M = q + q̂, q = ai + q̃1j + q̃2k, and q̂ = bı̂ + q1ĵ + q2k̂.
After a simple but tedious computation (verified with Mathematica), we

find:

yq(ε) =
aε2

2πk1k2

(− k2(x2 + y2) + k1(w2 + z2)
)
, (7.5a)

yq̂(ε) =
−bε2

2πk1k2

(
k2(x2 + y2) + k1(w2 + z2)

)
. (7.5b)

Note that if our trajectory is optimal, then the value yq(ε) cannot vanish
for all quaternions q: it must be nonzero on erie−r for some quaternion r.
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But it must be zero on erje−r and erke−r. Then erje−r and erke−r are
orthogonal to i. It follows again that erie−r = ω1i, ω1 = ±1. Hence

yerie−r =
ω1ε

2

2πk1k2

(− k2(x2 + y2) + k1(w2 + z2)
)
.

We consider two possibilities. First, assume that

k2(x2 + y2) + k1(w2 + z2) = 0.

Then we obtain � = 0 since �yi(ε)+yer̂ ı̂e−r̂ = 0, yi(ε) is nonzero. Therefore,

k2(x2 + y2) + k1(w2 + z2) = 0, (x2 + y2) + (w2 + z2) = 1. (7.6)

Now let
k2(x2 + y2) + k1(w2 + z2) �= 0.

Then by the nonholonomic interpolation, yer̂ ĵe−r̂ (ε) = 0 and yer̂ k̂e−r̂ (ε) = 0.
Hence, according to (7.5b), the quaternions er̂ ĵe−r̂ and er̂k̂e−r̂ are orthog-
onal to ı̂. Hence, the element er̂ ı̂e−r̂ orthogonal to them must be equal to
ω2 ı̂, ω2 = ±1. Since yM (ε) = 0 also for M = �erie−r + er̂ ı̂e−r̂, it follows
that

�ω1

(− k2(x2 + y2) + k1(w2 + z2)
)− ω2

(
k2(x2 + y2) + k1(w2 + z2)

)
= 0.

We treat only the case where ω1 = ω2 = ±1. The other case is similar.
We obtain

−k2(x2 + y2)(� + 1) + k1(w2 + z2)(� − 1) = 0,

which implies

k2(x2 + y2)(� + 1) + k1(w2 + z2)(1 − �) = 0,

(x2 + y2) + (w2 + z2) = 1.
(7.7)

This equation coincides with Eq. (7.6) for � = 0. Therefore, it suffices to
consider this case. Solving Eq. (7.7) provides:

(x2 + y2) =
−k1(1 − �)

k2(� + 1) − k1(1 − �)
,

(w2 + z2) =
k2(� + 1)

k2(� + 1) − k1(1 − �)
,

yerie−r (ε) = yi(ε) =
ε2

π

1
k2(� + 1) − k1(1 − �)

.

The denominator does not vanish since |�| < 1 and k1 and k2 have opposite
signs.

Actually, one can explicitly verify that these values realize nonholonomic
interpolation at the time ε.
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To maximize w(ε) = yi(ε), for k2,−k1 > 0, we set k̂1 = −k1 and k̂2 = k2.
The maximum of yi(ε) corresponds to the minimum of the convex combi-
nation

k̂2
1 + �

2
+ k̂1

1 − �

2
of k̂1 and k̂2 with positive and distinct integers k̂1 and k̂2 . Clearly, the
maximum value of yi(ε) is obtained for (k̂1, k̂2) = (2, 1) or (1, 2). Then
either k2 = 2 and k1 = −1 or k2 = 1 and k1 = −2. Respectively, we obtain

w(ε) = yi(ε) =
ε2

π

1
� + 3

, w(ε) = yi(ε) =
ε2

π

1
3 − �

.

If � > 0, then the largest value is w(ε) = yi(ε) =
ε2

π

1
3 − �

.

End of the proof. Taking into account the factor 2 in the reparametriza-
tion dw̃ = 2dw/χ(w) imposed at the beginning, we obtain the following
formula for dw̃ = dw/χ(w):

w̃(ε) =
ε2

π

1
2(3 − |�|) .

Finally, Lemma 12 from the appendix implies that

E(ε) �s
2(3 − |ρ|)π

ε2

∫
Γ

dw

χ(w)
,

which proves the theorem.

8. The car with a trailer

In this section, we prove Theorem 7. According to Theorem 8, we work
with the nilpotent approximation. To use the standard notation (see [14])
we permute the variables x1 and x2 and the variables u1 and u2. We reverse
the signs of y and w and denote the phase variables by (x, y, z, w) and the
control variables by (u, v). After reparametrization of Γ, Eqs. (4.6) takes
the form ξ̇ = F (ξ)u + G(ξ)v or, in coordinates,

ẋ = u, ẏ = v, ż =
1
2
(yu − xv), ẇ =

1
2
y(yu − xv).

We want to find an admissible curve going from (0, 0, 0, 0) to (0, 0, 0, ŵ)
in a fixed time ε and minimizing ŵ. To do this, we apply the Pontryagin
maximum principle in a fixed time. The tranversality condition and the
independence of the Hamiltonian on w imply the following form of the
Hamiltonian:

H =
s0

2
y(yu − xv) + pu + qv +

r

2
(yu − xv).

Here, s0 is the auxiliary adjoint variable, s0 ≤ 0. In fact, by setting Ψ(t) =
(p, q, r, s0), the Hamiltonian can be written as H = Ψ · Fu1 + Ψ ·Gu2. The
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variable s0 plays formally the same role as the adjoint variable of w. Also,
r is a constant.

The Hamiltonian cannot be zero: the abnormal extremals do not satisfy
the requirements.

Since the Hamiltonian is nonzero, the normal extremals (arclength para-
metrized) belong to the level-1 hypersurface of the Hamiltonian:

H =
√

(Ψ · F )2 + (Ψ · G)2.

Therefore, in particular, p2(0) + q2(0) = 1.
The corresponding canonical equations provide:

d(Ψ · F )
dt

= Ψ[F,G]Ψ · G,
d(Ψ · G)

dt
= −Ψ[F,G]Ψ · F.

If we set h = Ψ[F,G], u = cos ϕ, and v = sin ϕ, we obtain ϕ̇ = −h.
Also,

ḣ = −Ψ · [F, [F,G]]u − Ψ · [G, [F,G]]v = 0 +
3
2
s0v =

3
2
s0 sin ϕ.

Then

ϕ̈ = −ḣ = −3
2
s0 sin ϕ.

Since s0 ≤ 0, we change ϕ by ϕ + π and obtain

ϕ̈ = −3
2
s sin(ϕ), s ≥ 0. (8.1)

This equation arises in the standard treatment of Euler’s elastica (see, e.g.,
[14]).

The projection of the extremal curve to the (x, y)-plane satisfies the equa-
tions

ẋ = u = − cos ϕ, ẏ = v = − sin ϕ.

Therefore, following [14], it has to be an elastica: a curve which is a static
equilibrium of an homogeneous elastic bar, constrained in the plane. More-
over, this (x, y)-curve must be a closed curve (joining the origin with the
origin) and smooth (owing to the smoothness of normal extremals). The
curve must encircle a domain with 0 area (the variable z, which is the area
according to ż = 1

2 (yẋ − xẏ), vanishes at endpoints). Therefore, the single
possibility is the periodic inflexional elastica. The inflexion occurs at the
origin. This implies that

0 = ϕ̇(0) = −h(0) = r +
3
2
sy(0).

Therefore, r = 0.
The function 1

2 ϕ̇2 − 3
2s cos ϕ is an integral of the motion, hence Eq. (8.1)

can be written as
1
2
ϕ̇2 = −3s

2
(cos(ϕ0) − cos(ϕ)). (8.2)



398 JEAN-PAUL GAUTHIER and VLADIMIR ZAKALYUKIN

Fig. 1. The dance of the minimum entropy

Hence, if k = sin ϕ0
2 and K(k) is the quarter period of the Jacobi elliptic

functions of argument ν and modulus k, the period in ν = t
√

3s
2 is 4K, and

the period in t is 4K
√

2/3s = ε. The case of this periodic inflexional elastica
corresponds to a value of K such that 2Eam(K) = K. This corresponds to
approximately ϕ0 = 130◦ following [14, p. 403], and ϕ0 = 130.692◦ following
Mathematica r© (see [15]).

Finally, we obtain

x(t) = − ε

4K

[
−4Kt

ε
+ 2

(
Eam

(
4Kt

ε
+ K

)
− Eam(K)

)]
,

y(t) = k
ε

2K
cn

(
4Kt

ε
+ K

)
,

where K = 2Eam(K) ≈ 2.32073 and the controls are determined as follows:

u = 1 − 2 dn
(

K

(
1 +

4t

ε

))2

,

v = −2 dn
(

K

(
1 +

4t

ε

))
sn

(
K

(
1 +

4t

ε

))
sin

ϕ0

2
.

In particular, note that the asymptotic optimal synthesis for the nilpotent
approximation is smooth.

One can say that the projection (in normal coordinates) of the curve
providing the minimum entropy to the (x, y)-horizontal planes represents a
kind of a smooth dance (see Fig. 1).

For t = ε, the computations yields

w = 0.00580305ε3.

Applying now Lemma 12 from the Appendix, we obtain the required
formula from Theorem 7 for the entropy.
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9. Appendix

9.1. Appendix 1. Estimating an entropy of a motion planning problem
Σ = (Γ,∆, g), we consider the following problem.

Problem (Qω) (ω is small). Find l∗ = inf{length(γ); γ is admissible,
ω-interpolating, dom(γ) = [0, tγ ], γ(0) = Γ(0), γ(tγ) = Γ(1)}.

Problem (Qω) has a subproblem (Pw0
ω ).

Problem (Pw0
ω ) (ω is small). Given Γ(w0), find w∗ = sup{w; ∃γ admis-

sible, ∃a ≤ ω, γ(0) = Γ(w0), γ(a) = Γ(w0 + w)}.
We state (and sketch the proof of) certain basic properties of these prob-

lems.

Lemma 9. In problem (Qω), the minimum l∗ is attained at a ω-
interpolating curve γ∗, which is a (finitely) piecewise minimizing geodesic
(minimizing pieces have length ≤ω).

Note that the proof of Lemma 9 contains the proof of the following known
result.

Lemma 10. In problem (Pw0
ω ), the maximum is attained at a curve

which is a minimizing geodesic, and a = ω.

Sketch of the proof of Lemma 9. In these purely local constructions (around
Γ), we can assume that the orthonormal frame F = (F1, . . . , Fn−p) has com-
pact support. Thus, we can assume that the trajectories under consideration
are defined up to t = +∞. Let un be a minimizing sequence of controls,
and let xn be the corresponding sequence of trajectories. Reparametriz-
ing by a constant factor dt = αdτ the trajectory which was initially ar-
clength parametrized, we can assume that the domain of un and xn is [0, 1]
and un are uniformly bounded in L∞[0, 1] and in L2[0, 1]. Also, denoting
the L2-norm by ‖ · ‖, we obtain that the sequence ‖un‖ = length(xn) is
bounded. Thus, we see that un weakly converges in L2 to some weak limit
u∗, and the corresponding limit trajectory is x∗. The input-output mapping
u(·) → x(·) is a continuous mapping from the space (L2[0, 1], weak) to the
space (C0[0, 1], uniform). Moreover,

length(x∗) ≤ ‖u∗‖ ≤ lim ‖un‖ = l∗.

Therefore, (u∗, x∗) is a minimizing trajectory and x∗(0) = Γ(0) and
x∗(1) = Γ(1).

Let us show that x∗ is ω-interpolating; assume the contrary. Then
Lemma 11 implies that x∗ contains a piece-segment P of the length l exceed-
ing ω, with the corresponding control Q (defined on the same interval) such
that P does not intersect Γ. Denote by (Pn, Qn) the segments of the trajec-
tories and controls (xn, un) restricted to the same domain of the length l.
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The uniform convergence of xn implies that for sufficiently large n, Pn does
not intersect Γ. Also,

lim length(Pn) =
√

l lim ‖Qn‖ ≥
√

l‖Q‖ ≥ length(P ) > ω.

Therefore, (un, xn) is not ω-interpolating, a contradiction.
If an interpolating piece of x∗ is not a minimizing geodesic, then it is

easy to see that x∗ is not optimal.

Lemma 11. If γ(0), γ(1) ∈ Γ and each segment of γ of the length >ω
contains a point of Γ, then Γ is ω-interpolating.

This is obvious, as well as the fact (which we use extensively through-
out the paper) that γ is ω-interpolated with a finite number of pieces of
length ≤ω.

Now, given a motion planning problems Σ (in the normal form, with
respect to certain normal coordinates), assume that for all sufficiently small
ω, the solutions w∗

ω of Problems (Pw
ω ) from Lemma 10 satisfy the inequality

Aωp ≤ |w∗
ω − w| ≤ Bωp (9.1)

for p = 2 or p = 3.
Assume that Γ : [0,W ] → R

n (keeping in mind certain reparametriza-
tions, we do not restrict ourselves to the case W = 1).

Lemma 12. Under these assumptions,

W

Bωp
≤ E(ω) ≤ W

Aωp
+ k, k > 0.

Proof. First, solving repeatedly problems (Pw
ω ) (for which the extremum is

attained) we construct an ω-interpolating curve γ∗ such that

length(γ∗) ≤ W

Aωp−1
+ kω, k > 0.

The term kω is introduced to compensate the upper-boundary effect. This
can easily be done using Lemma 4.

Then, by definition,

E(ω) ≤ length(γ∗)
ω

≤ W

Aωp
+ k.

Second, let γω be any ω-interpolating curve, arclength parametrized. Let
t0 = 0 < t1 < · · · < tn = tγω

be the interpolation points. We have, by
assumption (applying (9.1) for ω = ti+1 − ti), the following estimates:

|wi+1 − wi| ≤ B|ti+1 − ti|p,
|wi+1 − wi|

ωp
≤ B(

|ti+1 − ti|
ω

)p ≤ B
|ti+1 − ti|

ω
,
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since |ti+1 − ti| ≤ ω. This implies

|ti+1 − ti| ≥ |wi+1 − wi|
Bωp−1

≥ wi+1 − wi

Bωp−1
,

and since l(γω) =
∑ |ti+1 − ti|, we obtain

l(γω) ≥ W

Bωp−1
.

Hence
l(γω)

ω
≥ W

Bωp
,

which consequently implies that taking the infimum over all ω-interpolating
curves γω, the required estimate holds:

E(ω) ≥ W

Bωp
.

The lemma is proved.

9.2. Appendix 2. Below, ‖ · ‖ means the L2-norm.
Let M , Lj , j = 1, . . . , p−1, be linearly independent skew-symmetric ma-

trices (note that this independence is due to the one-step bracket-generating
assumption). We use the abbreviated notation N(λ) = M + λN for

M +
p−1∑
j=1

λjLj . let λ∗ be such that

α = ‖N(λ∗)‖ = inf
λ

‖N(λ)‖.
Such λ∗ automatically exists by the assumption of the independence, and
‖N(λ∗)‖ > 0.

Assume that ‖N(λ)‖ is a smooth function in λ at least in a neighbor-
hood V0 of λ∗. This holds, in particular, when the maximum modulus
eigenvalue

√−1α (=
√−1‖N(λ∗)‖) of N(λ∗) is simple. (In fact, in this

case, α(λ) = ‖N(λ)‖ is an analytic function in λ on V0).
Under these assumptions, the following crucial property, used throughout

the paper, holds (we recall its proof from [8]).

Lemma 13. The set

B =
{

(x′My, x′L1y, . . . , x′Lp−1y); ‖x‖, ‖y‖ ≤ 1
}
⊂ R

p

is strictly convex in the direction (1, 0, . . . , 0).

Proof. Without loss of generality, we can assume that λ∗ = 0. Then on V0

we have

α(λ) = sup
‖x‖=‖y‖=1

x′N(λ)y = sup
‖x‖,‖y‖≤1

x′N(λ)y = X(λ)′N(λ)Y (λ),

‖X(λ)‖ = ‖Y (λ)‖ = 1.
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Obviously, we can find smooth in λ vectors X(λ) and Y (λ) satisfying these
relations.

Hence we can write

X(λ) = X + λX̃ + O2(λ),

Y (λ) = Y + λỸ + O2(λ),

α(λ) = α + λα̃ + O2(λ).

Then the equality 1 = 〈X(λ), X(λ)〉 implies

1 = 〈X,X〉 + 2λ〈X, X̃〉 + O2(λ).

This and a similar equation for Y imply

〈X, X̃〉 = 0, 〈Y, Ỹ 〉 = 0. (9.2)

We also have

α(λ) = X(λ)′N(λ)Y (λ) ≥ α ∀λ ∈ V0

and

α + λα̃ + O2(λ) =
(
X + λX̃ + O2(λ)

)′
(M + λL)

(
Y + λỸ + O2(λ)

)
= X ′MY + λ

(
X̃ ′MY + X ′MỸ + X ′LY

)
+ O2(λ)

= α + λ
(
X̃ ′MY + X ′MỸ + X ′LY

)
+ O2(λ) ≥ α, ∀α ∈ V0.

This implies that X̃ ′MY + X ′MỸ + X ′LY = 0. Since, by definition,
MX = −αY and MY = αX, we have X̃ ′MY = αX̃ ′X = 0 by (9.2). Since
X ′MỸ = −Ỹ ′MX = αY ′Ỹ = 0, we obtain X ′LY = 0.

This means that

(X ′MY,X ′L1Y, . . . , X ′Lp−1Y ) = (‖N(λ∗)‖, 0, . . . , 0) ∈ B,

inf
λ

sup
(w,z)∈B

(w + λz) = ‖N(λ∗)‖ = (1, λ∗
1, . . . , λ

∗
p−1) ·

⎛
⎜⎜⎜⎜⎝

‖N(λ∗)‖
0

. . .

. . .
0

⎞
⎟⎟⎟⎟⎠ ,

which is exactly condition (P2) from Definition 1. Hence, B is strictly
convex in the direction (1, 0, . . . , 0).

Corollary 1 (in the notation of Sec. 2). If B̃t is not strictly convex in
the direction of Γ̇t mod ∆Γ(t), then Mt+ λ∗Lt has a nonsimple maximum
modulus eigenvalue.

Recall another fact (see [8, Lemma 9, item 3]) used throughout the paper.
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Lemma 14. For a generic one-step bracket-generating Σ, except for fi-
nite subset of Γ, there exists a smooth mapping w → λ∗(w) such that∥∥∥∥∥M(w) +

p−1∑
j=1

λ∗
j (w)Lj(w)

∥∥∥∥∥ is the minimum of ‖N(λ)‖.

The proof uses a standard transversality argument.
This lemma implies an important fact that, for nilpotent approximation

(4.4), we can (excluding a finite subset of Γ without any influence on the
estimates of the entropy and complexity) make the change of variables:

w̃ = w +
p−1∑
j=1

λ∗
j (w)yj . This is a change of the parametrization of S, which

preserves the parametrization of Γ and yields normal coordinates (x, y, w̃),
provided that (x, y, w) are normal. In these new coordinates,

‖M(w̃)‖ = inf
λ

∥∥∥∥∥∥M(w̃) +
p−1∑
j=1

λjLj(w̃)

∥∥∥∥∥∥ .
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