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Chapter 1
The Schrödinger equation.

Introduction

1.1 Motivation

The Schrödinger equation is a law that models the evolution in time of a quantum

system, in the same way as Newton’s laws predict the evolution of a classical system.

Consider one particle (for instance, one electron) in a medium, and imagine that we

want to know something about the position of that particle. This can be done by using

the so-called wave function ψ(x, t), ψ : R
N ×R → C. With the wave function in hand,

the probability of the particle to be in a certain region Ω ⊂ R
N is:

Z
Ω
|ψ(x, t)|2 dx.

Of course, when Ω = R
N , the probability is one: then, we have:

Z
Rn

|ψ(x, t)|2 dx = 1.

The wave function satisfies the Schrödinger equation:

ih̄ψt = − h̄2

2m
∆ψ+U(x, t)ψ, (1.1)

where h̄ = 1.054572 ·10−34 is the (reduced) Planck constant, m is the mass and U(x, t)
is an external potential.

In order to determine a solution of the above equation we will need to know an

initial condition, that is:

ψ(x,0) = ψ0(x).

Let us consider first the case U(x, t) = 0. We briefly recall some properties of

the Fourier transform. In this first chapter L2(RN) is the space of complex-valued

functions, that is,

L2(RN) = { f : R
N → C :

Z
RN

| f (x)|2 dx < +∞}.

3
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Lemma 1.1. Given f ∈ L2(RN) , we define the Fourier transform of f of the form:

F[ f ](ω) = f̂ (ω) =
1

(2π)N/2

Z
RN

f (x)e−ix·ω dx ∀ ω ∈ R
N .

With this definition, f̂ ∈ L2(RN) and F is an isometry of L2(RN), with inverse:

F−1[ f ](ω) = f̆ (ω) =
1

(2π)N/2

Z
RN

f (x)eix·ω dx ∀ ω ∈ R
N .

Clearly, f̆ (ω) = f̂ (−ω). Moreover, there holds:

1. Suppose that f ∈ L2(RN). There holds that f ∈ H1(RN) ⇔ |ω| f̂ (ω) ∈ L2(RN),
and in such case we have:

F[ fxi ](ω) = iωiF[ f ](ω).

Moreover F is an isometry from H1(RN) into

L = { f ∈ L2(RN); |x| f (x) ∈ L2(RN)}
when considered with the norm: ‖ f‖L =

(R
RN | f (x)|2(1+ |x|2)dx

)1/2
.

2. The dual space of H1(RN) (that is, this is the space of continuos linear maps

from H1(RN) into R) is denoted by H−1(RN). Through the Fourier transform,

we can give an expression of H−1(RN). Actually, the dual of the space L is:

L′ = {ξ : R
N → C measurable ;

ξ(x)
1+ |x| ∈ L2(RN)},

with norm ‖ξ‖L′ =
(R

RN
|ξ(x)|2

(1+|x|2) dx
)1/2

. The duality between L and L′ is given

by the relation:

〈ξ, f 〉 = Re

Z
RN

ξ(x) f (x)dx.

The Fourier transform implies then an isometry between H−1(Rn) and L′ in the

following form; given ξ ∈ H−1, F[ξ] belongs to the dual of L and acts on L in

the form:

F[ξ](g) = 〈ξ,F−1[g]〉 ∀ g ∈ L.

Proposition 1.2. Let ψ0 ∈ H1(RN). Then the unique solution of the problem:

iψt +∆ψ = 0,
ψ(x,0) = ψ0(x),

(1.2)

is given by the formula:

ψ(x, t) =
(

1

4πit

)N/2 Z
RN

e
i|x−y|2

4t ψ0(y)dy. (1.3)

In other words, ψ ∈C1(R,H−1(RN)) and the equality (1.2) holds in H−1.
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Proof. By applying the Fourier transform to (1.2) in the spatial variable x, we have:

iψ̂t(ω, t)−|ω|2ψ̂(ω, t) = 0,
ψ̂(x,0) = ψ̂0(x).

This is an easy ODE that is solved:

ψ̂(ω, t) = e−i|ω|2tψ̂0(ω) := K(ω, t)ψ̂0(ω). (1.4)

The idea now is to use the inverse Fourier transform to find out the value of ψ. As

we know, the inverse Fourier transform turns products into convolutions. The proof is

then finished since

K̆(x, t) =
(

1

4πit

)n/2

e
i|x|2

4t .

Actually, for any function ψ0 ∈ L2(RN), the expression (1.3) can be seen as a

solution, in a certain sense (actually, in H−2(RN)) of the problem.

Remark 1.3. We now extract some consequences from (1.4). Observe that the L2

norm of ψ̂ is constant in time; hence, the norm L2 of ψ is constant. Analogously, if

ψ0(x) ∈ H1(RN), the H1 norm is constant.

From a physical point of view, the term |ψ(x, t)|2 is called the density function, and

|∇ψ(x, t)|2 is the kinetic energy. Hence, this remark states the conservation of mass

and energy.

The Schrödinger equation is usually studied when the action of a potential is also

taken under consideration. Sometimes, we can also consider the action of some nonlin-

ear terms. These terms appear mostly when we consider a system of various particles

that interact with each other.

In general, the nonlinear Schrödinger equation can be written in the form:

iψt +∆ψ = g(x, t,ψ)ψ,
ψ(x,0) = ψ0(x),

(1.5)

where g : R
N ×R×C → R. We will rapidly motivate why we impose g(x, t,ψ) ∈ R.

Suppose that we have a solution of (1.5), ψ(·, t) ∈ H1(RN) for all t. The equation

is physically relevant if it preserves the total density, as before. A formal calculation

yields:

Λ(t) =
Z

RN
|ψ(x, t)|2 dx = Re

Z
RN

ψ(x, t)ψ(x, t)dx,

Λ′(t) = 2Re

Z
RN

ψt(x, t)ψ(x, t)dx = 2Re

Z
RN

i(∆ψψ−g(x, t,ψ)ψψ) dx =

2Re i

Z
RN

|∇ψ|2 −g(x, t,ψ)|ψ|2 dx = 0.

The most usual type of nonlinearity is the form g(x, t, |ψ|)ψ. Among these, the case

g = |ψ|p−1ψ has been very important because of its simplicity. The case p = 3 reveals

to be specially relevant in Physics.

There is a huge literature on the time dependent Schrödinger equation (linear and

nonlinear); for the interested reader we suggest [11]. As we shall see in the next

section, our purpose is to look for special solutions; in this search we will be concerned

with elliptic equations in R
N .
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1.2 Standing waves

Let us consider the nonlinear Schrödinger equation:

iψt +∆ψ+U(x)ψ = g(|ψ|)ψ,
ψ(x,0) = ψ0(x),

(1.6)

where U : R
N → R is an external potential and g is the nonlinear term. We will be

interested in a very specific type of solutions, the so-called standing waves, which are

solutions of the form:

ψ(x, t) = e−iEtu(x), (1.7)

where u(x) is a real function and E ∈R. These solutions correspond to static situations

in the sense that the density |ψ(x, t)|2 = u(x)2 does not change in time.

However, from this static solutions we can obtain also other solutions: indeed, if

U(x) is invariant along the direction given by ξ ∈ R
N −{0}, then (1.6) is invariant

under the galilean transformation:

ψ(x, t) 
→ ψ(x−ξt, t)exp

[
i

2

(
ξ · x− 1

2
|ξ|2t

)]
.

Therefore, the standing waves also yield solutions that move in the direction given by

ξ, preserving its form; those are called traveling waves.

Plugging (1.7) into (1.6) we obtain:

−∆u+(U(x)−E)u+g(x, |u|)u = 0.

This is the stationary nonlinear Schrödinger equation.

As we see, we have got an elliptic equation in R
N . In order to study it, we can use

topological degree or variational methods, that have already been introduced in other

courses.

Let us briefly treat the easiest case: suppose that both V and g are equal to zero.

Then, we have the problem:

−∆u = λu, x ∈ R
N . (1.8)

Exercise 1.1. Suppose that u ∈ H1(RN) is a solution of (1.8) for some λ ∈ R. Prove

that u = 0.

Then, the linear Schrödinger equation without potentials does not admit standing

waves. Let us see what happens for nontrivial potentials. We are concerned now with

a linear equation in the form:

−∆u+V (x)u = λu, x ∈ R
N . (1.9)

We will say that λ is an eigenvalue if this problem has a nontrivial solution in

H1(RN). Such a solution is called eigenfunction.

Exercise 1.2. Suppose that V : R
N → R is continuous and lim|x|→+∞V (x) = +∞.

Prove that there exists an increasing sequence of eigenvalues {λk}k∈N of (1.9).

Hint: Suppose that inf V ≥ 0, and consider the Hilbert space H = {u ∈ H1(RN) :R
RN V (x)u2(x)dx < +∞}, with the norm:

‖u‖ =
(Z

RN
|∇u(x)|2 +V (x)u2(x)dx

)1/2

.
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A more difficult example is the following:

Example 1.4. (Kato theorem) Suppose that V ≥ 0 is a continuous function satisfying

that:

lim
|x|→+∞

|x|V (x) = 0.

Then there is no eigenvalue for problem (1.9).

As we see from the above examples, the existence or not of eigenvalues depends

strongly on the behavior of the potential V (x).
For more information on the eigenvalues and, in general, the spectrum of an oper-

ator in the form −∆+V (x), we recommend [8].

1.3 Semiclassical states

Let us write the nonlinear Schrödinger equation in the form:

ih̄ψt = − h̄2

2m
∆ψU(x)ψ−g(|ψ|)ψ. (1.10)

Let us define ε2 = h̄
2m . In order to study standing waves for this problem, as we

have seen above, we are led with the equation:

−ε2∆u+V (x)u = g(|u|)u. (1.11)

If we consider a problem with a mass m at a macroscopic scale, the value of ε will

be then very small. That is, for normal masses the quantum effect is negligible and the

motion is described by classical mechanics. On the other hand, if m is a very small

quantity (for instance, if we deal with electrons or other microscopic particles), then ε
becomes significant.

We will be interested not only in the existence of solutions for (1.11), but also in

their behavior as ε → 0. In a sense, this will give us the transition between classical

and quantum mechanics. The solutions that are found for ε very small are called

semiclassical states. Typically, the solutions may tend to concentrate around a certain

point, as ε → 0; in such case, the solutions are called spikes.
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Chapter 2
Spikes for the Nonlinear Schrödinger

Equation

2.1 The problem

In this chapter we will study the problem:

−ε2∆u+V (x)u = |u|p−1u, u ∈ H1(RN). (2.1)

We assume that 1 < p < N+2
N−2

and V satisfies 0 < a ≤V (x) < b. For technical reasons,

we also assume that:

[H] V ∈C2 and ∇V (x), D2V (x) are uniformly bounded.

In general, the existence of solution of (2.1) is not an easy matter, and still there

are important open problems. In the following examples, we show that the existence

will depend strongly on the potential V :

Proposition 2.1. Suppose that ∇V (x) · ξ > 0 for a. e. x ∈ R
N and some fixed ξ ∈

R
N −{0}. Then the unique solution of (2.1) is u = 0.

Proof. Let u ∈ H1(RN) be a solution of (2.1). Observe that (V (x)−1)u also belongs

to H1(RN). So, we can apply the bootstrap method to the problem:

−ε2∆u+u = |u|p−1u− (V (x)−1)u, u ∈ H1(RN).

In such way, we obtain that u ∈ H2(RN), and the above equation holds in L2(RN).
Suppose for simplicity that ξ = (1,0 . . .0), and denote v = ux1

∈ H1(RN). We

multiply equation (2.1) by v and integrate to obtain:

ε2
Z

RN
∇u ·∇v+V (x)uv−|u|p−1uv = 0.

But: Z
RN

∇u ·∇v =
d

dt

∣∣∣∣
t=0

1

2

Z
RN

|∇u(x+ tξ)|2 dx = 0,

9
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Z
RN

|u|p−1uv =
d

dt

∣∣∣∣
t=0

1

2

Z
RN

|u(x+ tξ)|p+1 dx = 0,

Z
RN

V (x)uv =
d

dt

∣∣∣∣
t=0

1

2

Z
RN

V (x)u2(x+ tξ)dx =
d

dt

∣∣∣∣
t=0

1

2

Z
RN

V (y− tξ)u2(y)dy =

−1

2

Z
RN

∇V (y) ·ξ u2(y)dy.

By assumptions, u must be equal to zero.

Exercise 2.1. In the above proof we have used the derivation under the integral sign.

Is it justified? Can you prove the result without using this?

Example 2.2. Suppose that V (x) = λ > 0, ε = 1. Then problem (2.1) has a positive

radial function.

Proof. It suffices to consider the Sobolev space of radial functions:

H1
r (RN) = {u ∈ H1(RN) : u◦g = u a.e. x ∈ R

N , ∀g ∈ O(N)},

where O(N) is the group of linear isometric transformations of R
N . A well-known

result of Strauss [25] establish that the inclusion H1
r (RN) ⊂ Lp(RN) is compact for

2 < p < 2N
N−2

. Let us consider the functional:

I : H1
r (RN) → R, I(u) =

Z
1

2

(|∇u|2 +λu2
)− 1

p+1
u

p+1
+ .

Exercise 2.2. Check that the hypotheses of the mountain pass theorem are verified by

I.

Once the exercise is done, the mountain pass theorem of Ambrosetti-Rabinowitz

[6] implies the existence of a critical point of I. Then, there is a solution u ∈ H1
r (RN)

of the problem:

−∆u+λu = u
p
+.

Finally, the maximum principle implies that u is positive.

Remark 2.3. From now on we denote by Uλ the solution obtained above, and U =U1.

It is easy to check that Uλ(x) = λ
1

p−1 U(
√

λx). It is also well-known that U is C∞ and it

and its derivatives have an exponential decay (see [25]).

In this chapter we are interested in studying concentration phenomena for ε → 0.

In other words, we want to answer to the questions: are there solutions concentrating

around a certain point? Which points are eligible?

In this chapter we will state and prove the following theorem, that answers to both

questions. It was first stated by Floer and Weinstein [18] for p = 3 and N = 1; a general

proof was given in [1, 15, 19, 21]. The proof we give is based on the monograph [3].
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Theorem 2.4. Let x0 be a nondegenerate critical point of V . Then there exists ε0 > 0

such that for any ε ∈ (0,ε0) there exists a positive solution vε of the problem:

−ε2∆v+V (x)v = |v|p−1v, v ∈ H1(RN). (2.2)

Moreover vε is a spike at x0, that is,

‖vε‖L∞ ∈ [c,C], 0 < c < C,

∀δ > 0, ‖ vε|RN−B(x0,δ)‖L∞ → 0 (ε → 0).

For the proof, observe that we can assume x0 = 0; if not, it suffices to make a

convenient translation. By making the change of variables u(x) = v(εx), we are lead

with the equation:

−∆u+V (εx)u = up , u(x) > 0. (2.3)

We use a variational perturbative scheme. The solutions of (2.3) correspond to

critical points of the functional Iε : H1(RN) → R,

Iε(u) =
Z

RN

1

2

(|∇u|2 +V (εx)u2
)− 1

p+1
|u|p+1.

A first attempt could be trying to obtain solutions uε by using the Implicit Function

Theorem to the operator I′0, where I0 : H1(RN) → R is the unperturbed functional:

I0(u) =
Z

RN

1

2

(|∇u|2 +V (0)u2
)− 1

p+1
|u|p+1.

The problem is that I0 has a degenerate manifold of critical points due to its trans-

lation invariance; this manifold is:

{UV (0)(·−ξ) : ξ ∈ R
N}.

So, the Implicit Function Theorem is not directly applicable. Instead, the idea is to

use a Lyapunov-Schmidt reduction.

Roughly speaking, if a solution z of (2.3) takes its relevant values around a cer-

tain point ξ (that may depend on ε), then z should be similar to z(x) = UV (εξ)(x− ξ)
when ε → 0. Motivated by this idea, we define the manifold of “possible approximate

solutions":

Z = Zε = {zεξ = UV (εξ)(·−ξ) : ξ ∈ B(0,ε−1)}.
For every zεξ ∈ Z, we define W = Wz = TzZ

⊥, P = Pz : H → W the orthogonal

projection onto W . Our approach is to find a pair z ∈ Z, w ∈Wz such that I′ε(z+w) = 0,

or equivalently: {
a) PI′ε(z+w) = 0,
b) (I−P)I′ε(z+w) = 0.

(2.4)

The fist equation above is called auxiliary equation, and the second one receives

the name of bifurcation equation.

The general idea of the proof is to find, for ε small and any z ∈ Zε, a function

wz ∈ Wz solving the auxiliary equation; this is possible because in this equation we

do not have the degenerate effect of the translations. After that we will try to find a

solution for the bifurcation equation among the set of pairs {z+wz : z ∈ Z}.
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2.2 The auxiliary equation

As we said before, we will be able to solve the auxiliary equation because, working

on W , we do not have the invariance given by the translations. The proof does not

follow directly from the Implicit Function Theorem, but the application of the ideas of

its proof will give us the result.

We first give an abstract result, that may be applied in many problems of this kind.

Consider a Hilbert space H, z ∈ H, and let Φ ∈C1(H,H) be an operator. Suppose

that for some fixed δ > 0, there holds:

‖Φ(z)‖ < δ, (A1)

Φ′(z) : H → H is invertible and ‖Φ′(z)−1‖ ≤ c, c > 0. (A2)

Take ρ ≥ 2c and define:

B = {u ∈ H : ‖u‖ ≤ ρδ}.
We further assume that

‖Φ′(z+u)−Φ′(z)‖ <
1

ρ
∀u ∈ B. (A3)

Theorem 2.5. Under the assumptions (A1), (A2) and (A3), there exists a unique u ∈ B

such that Φ(z+u) = 0.

Remark 2.6. Theorem 2.5 holds for any δ > 0; however, condition (A3) is more likely

to be satisfied when δ is a small quantity.

Proof. Let us define the map S : B 
→ H by setting

S(w) = w− [Φ′(z)]−1(Φ(z+w)). (2.5)

Clearly, a fixed point u of S will give rise to a solution of the equation Φ(z + u) = 0.

We apply now the Banach contraction theorem to the operator S.

For any v ∈ H, w ∈ B, one has

S′(w)[v] = v− [Φ′(z)]−1(Φ′(z+w)[v]) = [Φ′(z)]−1(Φ′(z)[v]−Φ′(z+w)[v]).

Thus we find

‖S′(w)[v]‖ ≤ c

ρ
‖v‖ ≤ 1

2
‖v‖. (2.6)

Therefore we conclude that S is a contraction. We finish the proof if we show that S

maps B into itself. With that purpose, let us compute:

‖S(0)‖ = ‖[Φ′(z)]−1(Φ(z))‖ ≤ cδ.

On the other hand, for any w ∈ B we can use (2.6) to deduce:

‖S(w)−S(0)‖ ≤ c

ρ
‖w‖ ≤ cδ.
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By using the triangular inequality of the norm, we obtain:

‖Sε(w)‖ ≤ 2cδ ≤ ρδ.

This shows that S(B) ⊂ B and completes the proof of the lemma.

Let us fix z = zε,ξ ∈ Zε. We intend to apply Theorem 2.5 to find a zero for the

operator Φ : W →W , Φ(w) = PI′ε(z+w). Let us verify that the conditions (A1), (A2)

and (A3) are satisfied:

(A1) ‖PI′ε(z)‖ ≤C1ε for all z ∈ Z.

We compute:

I′ε(z)(v) =
Z

RN
∇z∇v+V (εx)zv−|z|p−1zv =

Z
RN

V (εx)−V (εξ)zv ≤Cε
Z

RN
|x−ξ|zv ≤

Cε
(Z

RN
|x−ξ|2|UV (εξ)(x−ξ)|2 dx

)1/2

‖v‖L2 ≤Cε.

In the last inequality we have used the exponential decay of the function U , see Remark

2.3.

(A2) ‖[PI′′ε (z)]−1‖ ≤C2 for all z ∈ Z.

This is the reason why we have had to restrict ourselves to W .

First of all, let us compute the second derivative of Iε:

I′′ε (z)[ϕ1,ϕ2] =
Z

RN
∇ϕ1 ·∇ϕ2 +V (εx)ϕ1ϕ2 − pzp−1ϕ1ϕ2. (2.7)

The following nondegeneracy result of the limiting problem is well-known, and

will be the main tool in our arguments. For a proof, see for instance [3].

Proposition 2.7. Let λ > 0 and Uλ ∈ H1(RN) the unique positive radial solution of

the problem:

−∆U +λU = U p.

Define the quadratic operator Q : H1(RN) → R in the form:

Qλ[v] =
Z

RN
|∇v|2 +λv2 − pU

p−1

λ v2.

We denote (Uλ)k = ∂U
∂xk

. Then there holds:

1. Qλ[Uλ] = (1− p)‖Uλ‖2<0.

2. Qλ[(Uλ)k] = 0, k = 1 . . .N.

3. Qλ[v] ≥ c‖v‖2 for all v⊥Uλ, v⊥(Uλ)k, k = 1 . . .N.
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Recall that: z(x) = UV (εξ)(x− ξ) = V (εξ)
1

p−1 U
(√

V (εξ)(x−ξ)
)

. The space TzZ

is spanned by the functions:

zk =
∂zε,ξ

∂ξk
= −V (εξ)

1
p−1

∂U

∂xk

(√
V (εξ)(x−ξ)

)
+O(ε). (2.8)

So, for ε very small, the space TzZ becomes “very close" to the space spanned by

{ ∂UV (εξ)
∂xk

(x−ξ)}.

We now decompose W = (TzZ)⊥ as an orthogonal sum of the spaces W = A⊕B,

where A is the space spanned by z and B = A⊥∩W . By using Proposition 2.7, one can

prove that for ε small enough, there exists c > 0 such that:

1. PI′′ε (z)[z,z] ≥ c > 0.

2. PI′′ε (z)[u,u] ≤−c < 0 for all u ∈ B.

We conclude the proof of (A2) thanks to the following result, which is left as an

exercise:

Exercise 2.3. Let H be a Hilbert space and L : H → H a linear self-adjoint operator

(that is, 〈Lu,v〉 = 〈u,Lv〉 for all u, v ∈ H). We define its associated quadratic form

Q : H ×H → R, Q(u,v) = 〈Lu,v〉.
Suppose that there exists E ⊂ H a finite dimensional space, c > 0 such that:

1. Q[u,u] ≤−c‖u‖2 for all u ∈ E,

2. Q[u,u] ≥ c‖u‖2 for all u ∈ E⊥.

Prove that L is invertible.

Remark 2.8. (and hint!) When E = {0}, the above result is nothing but the well-

known Lax-Milgram Theorem. Conversely, the Lax-Milgram Theorem is the key for

the proof of the exercise.

(A3) For any fixed δ > 0, we can take ε small enough so that ‖PI′′ε (z)−PI′′ε (z +
u)‖ ≤ δ for all z ∈ Z, u ∈ B = B(0,Cε), where C = 2C1C2, Ck being the constants given

in the previous steps.

Here this property is clearly satisfied: it suffices to observe that I′′ε is uniformly

continuous in bounded sets.

Hence, the Proposition 2.7 yields the existence of a unique w ∈ B solving the

auxiliary equation. Observe that ‖w‖ ≤Cε for certain positive constant C > 0.

We can define Z̄ = {z + wz : z ∈ Z}, where wz is the unique solution mentioned

above.

In the next section we are concerned with the problem of finding solutions to the

bifurcation equation on Z̄.
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2.3 The reduced functional

Before trying to solve the bifurcation equation, we consider again the set Z̄ε. In the

next result, among other things, we obtain that Z̄ε is a C1 manifold.

Proposition 2.9. For ε sufficiently small, the application w : B(0,ε−1) ⊂ R
N → W,

w(ξ) = w(zε,ξ) is of class C1. Moreover,
∣∣∣ ∂w

∂ξk

∣∣∣→ 0 (uniformly in z ∈ Z as ε → 0).

Proof. The fact that wε,ξ is C1 with respect to ξ follows from the Uniform Contraction

Theorem studied in the mini-course of Ernest Fontich. Recall that w has been found

by applying the Banach contraction principle to an operator that depends on ξ in a C1

form.

In order to estimate the derivatives of w(ξ), recall that

PI′ε(z+w) = 0 ⇒ I′ε(z+w) =
N

∑
k=1

〈I′ε(z+w) , zk〉 zk

‖zk‖2
,

where z = zε,ξ, w = wε,ξ and zk is the partial derivative with respect to ξk, see (2.8).

We compute the derivatives with respect to ξ j, and obtain:

I′′ε (z+w)[z j +w j] =

(
N

∑
k=1

〈I′′ε (z+w)[z j +w j], zk〉 zk

‖zk‖2
+

〈I′ε(z+w), z j,k〉 zk

‖zk‖2
+ 〈I′ε(z+w), zk〉 ∂

∂ξ j

zk

‖zk‖2

)
.

In order to obtain estimates about the differential, we recall the condition (A1) to

obtain:

I′ε(z+w) = I′ε(z)+ I′′ε (χ)(w) = O(ε) (for some χ ∈ [z,z+w]).

Moreover, taking into account (2.8), we have

I′′ε (z+w)[z j]− I′′ε (z)[z j] ≤ ‖I′′ε (z+w)− I′′ε (z)‖ ‖z j‖ = o(1) (independently of z ∈ Z)

Finally, from (2.7), (2.8) and Proposition 2.7 we have the estimate:

I′′ε (z)[z j] = O(ε). (2.9)

Hence, we arrive to the conclusion that PI′′ε (z + w)[w j] = o(1). We use now (A2)

to conclude that ‖w j‖ = o(1).

Remark 2.10. Recall that by the arguments of the previous section, the set Z̄ is very

close to Z. The Proposition 2.9 implies that Z̄ varies very little from Z in a C1 sense.

In next proposition we show that Z̄ is a natural constraint for Iε; in other words:

Proposition 2.11. The critical points of Iε that are located in Z̄ are exactly the critical

points of Iε|Z̄ .
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Proof. Because of the definition of Z̄, I′ε(z+w) is orthogonal to W .

If w is a critical point of Iε|Z̄ , it means that 〈I′ε(z+w),vk〉 = 0 for all vk ∈ Tz+wZ̄.

Because of Proposition 2.9, we have that H1(RN) = Wz ⊕Tz+wZ̄ is a continuous

decomposition (even if it is not orthogonal). Therefore, I′ε(z+w) = 0 and we are done.

Definition 2.12. In general, the restriction of the functional Iε to the natural constraint

Z̄ receives the name of reduced functional. Its critical points yield solutions of the

problem under consideration.

So, in order to conclude the proof, we just need to estimate the reduced functional:

φε : Z̄ → R

φε(z+w) = Iε(zε,ξ +wε,ξ).

By using the parametrization of Z, we need to compute the critical points of the func-

tion:

αε : B(0,ε−1) → R, αε(ξ) = Iε(zε,ξ +wε,ξ).

Recall that w is an unknown function but is small (actually, of order ε). We try

then to to approximate the values of αε by computing:

βε : B(0,ε−1) → R, βε(ξ) = Iε(zε,ξ).

First of all, we compute the difference by using a Taylor expansion:

Iε(zε,ξ +wε,ξ)− Iε(zε,ξ) = I′ε(zε,ξ)(w)+
1

2
I′′ε (χ)[w2],

with χ ∈ [z,z+w]. By using (A1) and (A2), we get:

αε(ξ)−β(ξ) = Iε(zε,ξ +wε,ξ)− Iε(zε,ξ) = O(ε2) (2.10)

We now compute the difference between the derivatives; in the computations below

we denote zk, wk to the derivatives of z, w with respect to ξk:

∂
∂ξk

αε(ξ) = I′ε(z+w)(zk +wk),
∂

∂ξk
βε(ξ) = I′ε(z)(zk);

∂
∂ξk

(αε(ξ)−βε(ξ)) = I′ε(z+w)(wk)+ I′ε(z+w)(zk)− I′ε(z)(zk).

Clearly, for some χ ∈ [z,z + w], I′ε(z + w)(wk)− I′ε(z)(wk) = I′′ε (χ)[w,wk] = o(ε). On

the other hand,

I′ε(z+w)(zk)− I′ε(z)(zk) = I′′ε (χ)[zk,w] =

I′′ε (χ)[zk,w]− I′′ε (z)[zk,w]+ I′′ε (z)[zk,w] ≤
‖I′′ε (χ)− I′′ε (z)‖ ‖zk‖ ‖w‖+‖I′′ε (z)(zk)‖ ‖w‖⇒

∂
∂ξk

(αε(ξ)−βε(ξ)) = o(ε). (2.11)
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In the last estimate we have used (2.9) and the fact that Iε is uniformly C2 in

bounded sets.

Finally, let us compute the function βε and its derivatives:

βε(ξ) =
1

2

Z
RN

|∇zε,ξ|2 +V (εx)z2
ε,ξ dx− 1

p+1

Z
RN

z
p+1

ε,ξ =

1

2

Z
RN

(V (εx)−V (εξ))z2
ε,ξ +

1

2

Z
RN

|∇zε,ξ|2 +V (εξ)z2
ε,ξ dx− 1

p+1

Z
RN

z
p+1

ε,ξ =

1

2

Z
RN

|∇Uλ|2 +λU2
λ dx− 1

p+1

Z
RN

U
p+1

λ +O(ε),

where λ = V (εξ). We now recall that Uλ(x) = λ
1

p−1 U(
√

λx); after some computations,

we obtain that:

βε(ξ) = CV (εξ)θ +
1

2

Z
RN

(V (ε(x+ξ))−V (εξ))UV (εξ)(x)
2 dx =

CV (εξ)θ +O(ε),

where C =
(

1
2
− 1

p+1

)
‖U‖2 > 0 and θ = p+1

p−1
− N

2
> 0. Moreover:

∂
∂ξk

βε(ξ) = CθV (εξ)θ−1ε
∂V

∂ξk
(εξ)+o(ε).

In conclusion, we observe that αε is very close to the function CV (εξ)θ in a C1

sense; then, if V has a nondegenerate critical point at 0 ∈ B(0,1), also αε will have a

critical point at ξε such that εξε → 0. And this corresponds to a critical point of Iε, and

hence a solution of (2.3).

Moreover, the solution uε that we have found is of the form uε ∼ UV (εξε)(x− ξε).
Recalling the change of variables u(x) = v(εx), we get a solution vε of (2.2) in the

form:

vε(x) ∼UV (0)

(x

ε

)
.

Remarks 2.13.
In Theorem 2.4 we stated that there are spikes around nondegenerate critical points

of V . The condition of nondegeneracy can be relaxed: actually, it suffices that V has a

critical point which is preserved under small C1 perturbations of V . For instance, this

is verified by any strict minimum or maximum.

Observe that we have not proved that ξε converges to zero, but that εξε does. Ac-

tually, the convergence of ξε will depend on the behavior of V near x0.

There is a different approach to the study of semiclassical states, that have been

developed by Del Pino and Felmer, see [15, 16, 17]. It consists of finding critical

points of a conveniently penalized energy functional. The method is more complicated,

specially if the critical point of V is not a minimum, but allows us to study situations

in which there is no information available about the linearized operator (in our case,

Proposition 2.7).

If V has several critical points one can prove the existence of multibump solutions,

that is, solutions that concentrate around several points (see [21]). Actually, for any set
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A = {x1 . . .xm} of nondegenerate critical points of V , and ε small enough, there exists

a solution vε of (2.2) such that:

vε(x) ∼
m

∑
k=1

UV (xk)

(
x− xk

ε

)
.



Chapter 3
Recent results

In this chapter we just give a short overview on some recent results in the study

of semiclassical states for the Nonlinear Schrödinger equation. For convenience of the

reader, we state again the problem under consideration:

−ε2∆u+V (x)u = |u|p−1u, u ∈ H1(RN). (3.1)

We assume that 1 < p < N+2
N−2

and V satisfying the [H] condition:

[H] V ∈C2 and ∇V (x), D2V (x) are uniformly bounded.

3.1 Decaying potentials

In Theorem 2.4 some hypotheses were assumed on V . Some of them are of technical

type (namely [H]), but some are not. In particular, the condition:

0 < a ≤V (x) < b

reveals to be essential at many points of the proofs. Some recent studies have been

concerned with the case of potentials that decay to zero at infinity, see [2, 5]. The

following result has been proved in [5]:

Theorem 3.1. Suppose that there exists a, b positive constants such that:

b ≥V (x) ≥ a

1+ |x|2 .

Let x0 be a nondegenerate critical point of V . Then there exists ε0 > 0 such that

for any ε ∈ (0,ε0) there exists a positive solution uε of (2.1) satisfying that:

‖uε‖L∞ ∈ [c,C], 0 < c < C,

∀δ > 0, ‖ uε|RN−B(x0,δ)‖L∞ → 0.

In order words, Theorem 2.4 holds if we permit V to have a decay like |x|−2 at

infinity. In a sense this result is optimal: if V has a decay of order |x|−α for some

α > 2, solutions in H1(RN) of (3.1) are not to be expected.

One of the main difficulties is that the solutions we are trying to find do not have

an exponential decay. Similar results have also been obtained in [9].

19
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3.2 The critical case V (x0) = 0

Suppose now that liminf|x|→+∞V (x) = a > 0, V (x) ≥ 0 and V (x0) = 0. Obviously, x0

is a minimum for V , but its critical value is zero. A paper by Byeon and Wang ([10])

deals with this problem

This case is more complicated, and the asymptotic behavior of the solutions will

depend much on how V approaches to zero at x0. Actually, in [10] it is proved that:

Theorem 3.2. We have the following results:

1. Suppose that x0 = 0 is an isolated minimum of V and that V (x)∼ |x|2m for x → 0

and m ∈ N. Then for ε small enough there exists a solution uε of (3.1) such that:

ε−
2m

(p−1)(m+2) uε

(
ε

2
m+2 x

)
→ w,

where w ∈ H1
R

N is a positive radial solution of the problem:

−∆w(x)+ |x|2mw(x) = w(x)p.

2. Suppose now that A = {x ∈ R
N : V (x) = 0} is such that int A is nonempty and

connected. Then for ε small enough there exists a solution uε of (3.1) such that:

ε−
2

p−1 uε → w

in a certain sense, where w ∈ H1(RN), w ≥ 0 satisfies that:

−∆w(x) = wp(x) x ∈ int A,
w(x) = 0 x ∈ R

N − int A.

The proofs of these results do not use the perturbative scheme shown in Chapter 2,

but the approach by Del Pino and Felmer [15].

3.3 Multibump solutions around maxima of the potential

In the previous chapter we gave a comment about multibump solutions. Typically,

multibumps appear around different critical points of the potential V . However, in [20]

a quite surprising result is given; under some hypotheses, Kang and Wei prove the

existence of multibumps whose maxima converge to a single point. In this case the

interaction among the bumps is not negligible, as it is in the work of Li [21].

Actually, one has the following:

Theorem 3.3. Suppose that 0 < a ≤ V (x) < b and that V attains a strict relative

maximum at x0. Then, for any k ∈ N there exists εk > 0 such that for 0 < ε < εk there

exists a solution uε of (3.1) with the following property:

uε has exactly k local maxima at points {pε
1 . . . pε

k} such that pε
i → x0 as ε → 0.

Moreover,
|pε

i − pε
j|

ε
≥V (x0)−1/2 ln

(c

ε

)
.

It is quite remarkable that this kind of solutions do not exist around minima of V ,

for instance.
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3.4 Radial solutions concentrating on spheres

So far we have considered spikes or multibumps, that is, solutions concentrating on

one or several points. Suppose now that we have a radial potential V (x) = V (|x|). One

could think of other type of concentration, namely, solutions concentrating on certain

spheres. This phenomenon has been studied by Ambrosetti, Malchiodi and Ni in [4].

The main result is as follows:

Theorem 3.4. We denote r = |x|, and suppose that 0 < a ≤V (r) < b. Let r̄ be a strict

maximum or minimum of

M(r) = rN−1V (r)θ,

where θ = p+1
p−1

− 1
2
. Then, for ε > 0 small enough, (3.1) has a radial solution uε which

concentrates near the sphere |x| = r̄. Actually, one has:

uε(r) ∼WV (r̄)

(
r− r̄

ε

)
,

where Wλ is the unique even positive solution of the ODE problem:

−W ′′(r)+λW (r) = W (r)p. (3.2)

Several comments are in order. First, observe that here the concentration does

not hold at critical values of V . Actually, they hold at critical values of the auxiliary

potential M(r) defined above. The role of M(r) is to balance the volume energy and

the energy due to the potential V.

Secondly, observe that the profile of the solution is similar to the solution of the

ODE problem.

Solutions concentrating around spheres for vanishing potentials have also been

obtained in [7]

3.5 Schrödinger-Poisson systems

The Schrödinger-Poisson system considers a Nonlinear Schrödinger equation in which

the potential is not fixed, but is given by the own wave function. Generally, the charge

of the wave function ψ is |ψ|2, and hence the Coulomb potential generated φ(x) satis-

fyies the Poisson equation:

−∆φ = |ψ|2.
If we are looking for standing waves, the model is:{ −ε2∆u+u+φ(x)u = up

−∆φ = 1
ε u2(x).

(3.3)

In the above equation ε > 0, u ∈ H1(R3), φ ∈ D1,2(R3) and 1 < p < 5. Observe that

the problem is invariant under translations.

The system (3.3) (for ε = 1) has been studied in [12, 13, 24]. However, in this

section we are interested in semiclassical states, that is, in concentration of solutions

for ε → 0.

The existence of spikes is easy, and is a direct consequence of the Implicit Function

Theorem:
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Proposition 3.5. Let U be the unique positive radial solution in R
3 for the problem:

−∆u+u = up.

Then, for ε small enough there exists a solution of the problem (3.3) such that uε ∼
U( x

ε).

Recently the existence of solutions concentrating on spheres has been studied, see

[14, 23]. The following result has been obtained:

Theorem 3.6. For any p ∈ (1,11/7) and ε small, there exist solutions uε of (3.3)

concentrating around a sphere of radius r̄, where

r̄ =
1

M0

a

(a+1)
5−p

2(p−1)

(3.4)

with M0 =
R
R

W 2
1 and a = 8(p−1)

11−7p . More precisely, we have the asymptotic:

uε(r) ∼Wa+1

(
r− r̄

ε

)
.

As we see, again the profile of the solutions is given by the functions Wλ defined

in (3.2). Observe also that if p → 11
7

, then r̄ → 0.

For any comments or remarks concerning these notes, please do not hesitate and

contact me:

David Ruiz

daruiz@ugr.es,
ruiz@sissa.it.
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