

SMR1777/20

School on Nonlinear Differential Equations

(9 - 27 October 2006)

Nodal Domain Theorem for the *p*-Laplacian

Pavel Drábek Department of Mathematics University of West Bohemia Plzen, Czech Republic

Nodal Domain Theorem for the *p*-Laplacian

Pavel Drábek

Centre of Applied Mathematics, Faculty of Applied Sciences University of West Bohemia, Pilsen

Abdus Salam ICTP, Trieste, October 26th, 2006

Pavel Drábek

3

▲□▶ ▲圖▶ ▲≣▶ ▲ ≣▶ ---

Eigenvalues, eigenfunctions

$$\begin{aligned} -\Delta_p u &= \lambda |u|^{p-2} u & \text{in} \quad \Omega, \\ u &= 0 \quad \text{on} \quad \partial\Omega, \end{aligned} \tag{1}$$

$$\int_{\Omega} |\nabla u_{\lambda}|^{p-2} \nabla u_{\lambda} \cdot \nabla v - \lambda \int_{\Omega} |u_{\lambda}|^{p-2} u_{\lambda} v = 0$$
 (2)

12

590

< ロ > < 団 > < 豆 > < 豆 >

Spectrum of the Δ_p

3 / 25

Courant Nodal Domain Theorem for Δ

Theorem 1 (Courant Nodal Domain Theorem)

Assume that u_{λ_n} is an eigenfunction associated with the n-th eigenvalue, λ_n , of $-\Delta_2$. Then u_{λ_n} has at most n nodal domains.

Simple examples demonstrate that no similar lower bound is possible. (Consider $\Omega = [0, \pi] \times [0, L\pi]$ for large *L*.)

[1] P. Drábek and S.B. Robinson

On the Generalization of the Courant Nodal Domain Theorem, Journal of Differential Equations 181 (2002), 58-71.

500

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In Drábek and Robinson [1] we define a sequence of variational eigenvalues, $\{\lambda_k\}_{k=1}^{\infty}$, for the *p*-Laplacian and proceed to prove several theorems. We prove that previous theorem generalizes completely if we assume either that $-\Delta_p$ satisfies a unique continuation property or that $\lambda < \lambda_{n+1}$. For the general case we prove that, if u_{λ_n} is an eigenfunction associated with λ_n , then u_{λ_n} has at most 2n - 2 nodal domains. Also, if u_{λ_n} has n + k nodal domains, then there is another eigenfunction corresponding to λ_n with at most n - k nodal domains.

(日)

Unique Continuation Property

(UCP) If u_{λ} is a nontrivial eigenfunction of $-\Delta_p$, then $\{x : u_{\lambda}(x) = 0\}$ has empty interior.

It is well known that the unique continuation property holds for the case p = 2. The counterexample in Martio [2] may indicate that the unique continuation property does not extend, or is difficult to extend. On the other hand there are p - 1 homogeneous quasilinear operators, such as $Lu := -\nabla \cdot (|u|^{p-2}\nabla u)$, that do satisfy the unique continuation property. See Ling [3].

[2] O. Martio

Counterexamples for unique continuation,

Manuscripta Math. 60 (1988), 21-47.

[3] J.Ling

Unique continuation for a class of degenerate elliptic operators,

J. Math. Anal. Appl. 168 (1992), no.2, 511-517.

SQ (P

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unique Continuation Property

- 1

590

< ロ > < 団 > < 豆 > < 豆 >

Let λ be an eigenvalue and let $u \in W^{1,p}_0(\Omega)$ be an associated eigenfunction. Then

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v - \lambda \int_{\Omega} |u|^{p-2} uv = 0$$
 (3)

holds for any $v \in W_0^{1,p}(\Omega)$.

Lemma 2

Let u_{λ} be an eigenfunction associated with the eigenvalue λ and let Ω_{λ} be a nodal domain for u_{λ} . Define

$$\phi := \begin{cases} u_{\lambda}(x) : x \in \Omega_{\lambda} \\ 0 : x \notin \Omega_{\lambda} \end{cases}$$

Then $\phi \in W_0^{1,p}(\Omega)$. Moreover, $\int_{\Omega} |\nabla \phi|^p = \lambda \int_{\Omega} |\phi|^p$.

SQA

<ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma 3

Assume that there exists K > 0 such that $\lambda \in (0, K)$. Let Ω_{λ} be any nodal domain of u_{λ} . Then $|\Omega_{\lambda}| \ge c_1(K) > 0$, where $c_1 = c_1(K)$ is a constant depending only on K. ($|\Omega|$ denotes the Lebesgue measure of Ω .)

It follows from previous lemma that any eigenfunction of $-\Delta_p$ has a finite number of nodal domains.

Lemma 4

Let λ be an eigenvalue with a corresponding eigenfunction $u_{\lambda} \in W_0^{1,p}(\Omega)$. Then there exists an $\eta \in (0,1)$ such that $u_{\lambda} \in C^{1,\eta}(\overline{\Omega})$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Lemma 5

Let λ be an eigenvalue not equal to λ_1 , and let u_{λ} be a nontrivial eigenfunction associated with λ . Let Ω_1 be any nodal domain for u_{λ} . Then there is another nodal domain Ω_2 , a point $x_0 \in (\partial \Omega_1 \bigcap \partial \Omega_2) \setminus \partial \Omega$, and an $\epsilon > 0$ such that $B_{\epsilon}(x_0) \bigcap \partial \Omega_1 \bigcap \partial \Omega_2$ is a smooth manifold separating $B_{\epsilon}(x_0) \bigcap \Omega_1$ and $B_{\epsilon}(x_0) \bigcap \Omega_2$. Moreover, if $u_{\lambda} > 0$ in Ω_1 (respectively, $u_{\lambda} < 0$ in Ω_1), then $\frac{\partial u_{\lambda}}{\partial \nu} < 0$ (> 0), where ν represents the unit outward normal to $\partial \Omega_1$ at x_0 .

When the (UCP) is not available then the following technical result is helpful:

Lemma 6

Let Ω_1 and Ω_2 be nodal domains for an eigenfunction u_λ , and let $x_0 \in (\partial \Omega_1 \bigcap \partial \Omega_2) \setminus \partial \Omega$ and $\epsilon > 0$ such that $B_{\epsilon}(x_0) \bigcap \partial \Omega_1 \bigcap \partial \Omega_2$ is a smooth manifold separating $B_{\epsilon}(x_0) \bigcap \Omega_1$ and $B_{\epsilon}(x_0) \bigcap \Omega_2$. Suppose that u_{λ}^* is another eigenfunction such that $u_{\lambda}^* = \gamma_i u_{\lambda}$ on Ω_i . Then $\gamma_1 = \gamma_2$.

Our variational arguments rely on the following deformation theorem: **Theorem 7**

Let \mathcal{X} be a C^1 Finsler manifold, and let $J \in C^1(\mathcal{X}, \mathfrak{R})$. Let \mathcal{C} be a compact subset of \mathcal{X} . Assume that there is an $\epsilon > 0$ such that $||J'(u)||_* \ge 2\epsilon > 0$ for all $u \in \mathcal{C}$. Then there exists a continuous one-parameter family of homeomorphisms $\psi : \mathcal{X} \times [0,1] \to \mathcal{X}$ such that

- (i) $dist(\psi(u,t),u) \leq 2t$ for every $u \in \mathcal{X}$;
- (ii) $J(\psi(u,t)) \leq J(u) \epsilon t$ for every $u \in \mathcal{C}, t \in [0,1]$.

In particular, if \mathcal{X} is a submanifold of a Banach space satisfying $-\mathcal{X} = \mathcal{X}$ and if J(-u) = J(u) for $u \in \mathcal{X}$, then the deformation can be chosen to preserve the symmetry, i.e. we also have

(iii)
$$\psi(-u,t) = -\psi(u,t)$$
 for every $u \in \mathcal{X}$ and $t \in [0,1]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

There are several ways to characterize a sequence of variational eigenvalues for $-\Delta_p$. In **Drábek and Robinson [4]** we define a sequence of variational eigenvalues as follows:

Let us consider the even functional

$$I(u) := \frac{\int_{\Omega} |\nabla u|^p}{\int_{\Omega} |u|^p}, \ \forall u \in W_0^{1,p}(\Omega) \setminus \{0\},$$

and the symmetric manifold $S := \{u \in W_0^{1,p}(\Omega) : \int_{\Omega} |u|^p = 1\}$. Clearly, the eigenvalues and eigenfunctions of $-\Delta_p$ correspond to the critical values and critical points of $I|_{\mathcal{S}}$. Using a standard compactness argument we proved in Drábek and Robinson [4], Lemma 4, that $I|_{\mathcal{S}}$ satisfies the Palais-Smale condition.

[4] P. Drábek and S.B. Robinson Resonance problems for the *p*-Laplacian,

Journal of Functional Analysis 169 (1999), 189-200.

For $k \in \mathcal{N}$ let

 $\mathcal{F}_k := \{ \mathcal{A} \subset \mathcal{S} : \mathcal{A} \text{ is the image of a continuous odd function } h : \mathcal{S}^{k-1} \to \mathcal{S} \},\$

where S^{k-1} represents the unit sphere in \Re^k . Define

$$\lambda_k := \inf_{\mathcal{A} \in \mathcal{F}_k} \sup_{u \in \mathcal{A}} I(u).$$

It is straightforward to check that $\{\lambda_k\}_{k=1}^{\infty}$ is a sequence of eigenvalues for $-\Delta_p$. Moreover, $\lambda_k \to \infty$ as $k \to \infty$.

Theorem 8

Suppose that $-\Delta_p$ satisfies (UCP) and suppose that u_{λ_n} is an eigenfunction associated with λ_n . Then u_{λ_n} has at most n nodal domains.

▲□▶▲□▶▲三▶▲三▶ 三 のの⊙

Assume that u_{λ_n} has n + k nodal domains where $k \ge 1$. Call them $\{\Omega_1, ..., \Omega_{n+k}\}$. Let $u_i := u_{\lambda_n} \cdot \chi_{\Omega_i}$, where χ_{Ω_i} is the characteristic function over the set Ω_i . Let

$$\mathcal{A} := \{ \sum_{i=1}^{n} \gamma_{i} u_{i} : \sum_{i=1}^{n} |\gamma_{i}|^{p} \int_{\Omega_{i}} |u_{i}|^{p} = 1 \}.$$

It is easy to see that A is symmetric and homeomorphic to S^{n-1} . If $u \in A$, then

$$\begin{split} \int_{\Omega} |u|^p &= \sum_{i=1}^n \int_{\Omega_i} |u|^p \\ &= \sum_{i=1}^n |\gamma_i|^p \int_{\Omega_i} |u_i|^p \\ &= 1, \end{split}$$

so $\mathcal{A} \subset \mathcal{S}$. Hence $\mathcal{A} \in \mathcal{F}_n$.

Also, using the results of Lemma 2 as well as the fact that $\{x : u_i(x) \neq 0\} \cap \{x : u_j(x) \neq 0\}$ has measure zero for $i \neq j$, we get

$$\begin{split} \int_{\Omega} |\nabla u|^p &= \sum_{i=1}^n \int_{\Omega_i} |\nabla u|^p \\ &= \sum_{i=1}^n |\gamma_i|^p \int_{\Omega_i} |\nabla u_i|^p \\ &= \sum_{i=1}^n |\gamma_i|^p \lambda_n \int_{\Omega_i} |u_i|^p \\ &= \lambda_n. \end{split}$$

Thus $I \equiv \lambda_n$ on \mathcal{A} . Observe that if $u \in \mathcal{A}$ then $u \equiv 0$ on Ω_{n+1} , so u cannot be an eigenfunction, else (UCP) would be contradicted. Thus I has no critical points on \mathcal{A} . Since \mathcal{A} is compact, there is an $\epsilon > 0$ such that $||I'(u)||_* \ge 2\epsilon > 0$ for $u \in \mathcal{A}$. Apply Theorem 7 with $\mathcal{C} = \mathcal{A}$ to obtain a symmetry preserving flow ψ . Let $\mathcal{A}^* := \psi(A, 1)$. Now we have $\mathcal{A}^* \in \mathcal{F}_n$ with $\sup_{u \in \mathcal{A}^*} I(u) < \lambda_n$, a contradiction.

▲□▶▲□▶▲□▶▲□▶ = のQ@

Illustration

Proof of Theorem 8

Theorem 9

Suppose $\lambda < \lambda_{n+1}$ is an eigenvalue with associated eigenfunction u_{λ} . Then u_{λ} has at most n nodal domains.

Suppose u_{λ} has nodal domains $\{\Omega_1, ..., \Omega_{n+k}\}$ for some $k \ge 1$. Let $u_i := u_{\lambda} \cdot \chi_{\Omega_i}$, as in the previous proof. Let

$$\mathcal{A} := \{ \sum_{i=1}^{n+k} \gamma_i u_i : \sum_{i=1}^{n+k} |\gamma_i|^p \int_{\Omega_i} |u_i|^p = 1 \}.$$

As in the previous proof we can verify that $\mathcal{A} \in \mathcal{F}_{n+k}$ and that $I(u) = \lambda$ for $u \in \mathcal{A}$. But the characterization of λ_{n+k} implies that $\lambda = \sup_{u \in \mathcal{A}} I(u) \ge \lambda_{n+k} \ge \lambda_{n+1} > \lambda$, a contradiction.

In the previous theorem λ is not required to be a variational eigenvalue.

Let us assume that all variational eigenvalues are simple. Then $\lambda_n < \lambda_{n+1}$ for all n and the estimates above give a direct generalization of the Courant Nodal Domain Theorem.

Theorem 10

Let u_{λ_n} be an eigenfunction associated with λ_n . Then u_{λ_n} has at most 2n-2 nodal domains.

We begin the proof by dividing Ω into nodal domain *neighborhoods*. Let Ω_1 be a nodal domain for u_{λ_n} . By Lemma 5 there is another nodal domain, Ω_2 , a point $x_0 \in (\partial \Omega_1 \bigcap \partial \Omega_2) \setminus \partial \Omega$, and an $\epsilon > 0$ such that $B_{\epsilon}(x_0) \bigcap \partial \Omega_1 \bigcap \partial \Omega_2$. For convenience we will write $\Omega_1 \sim \Omega_2$, and say that these sets are *neighbors*. The nodal domain *neighborhood* for Ω_1 will refer to the collection of nodal domains, Ω_k , such that Ω_1 and Ω_k are connected by a finite sequence of neighbors, i.e. there is a set of nodal domains $\{\Omega'_1, ..., \Omega'_j\}$ where $\Omega'_i \sim \Omega'_{i+1}$ for each $1 \le i \le j-1$, $\Omega'_1 = \Omega_1$, and $\Omega'_j = \Omega_k$. Using this notation we can organize all of the nodal domains for u_{λ_n} into neighborhoods

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶ ― 屋 ―

$$\{\Omega_{11}, ..., \Omega_{1j_1}\}, \\ \{\Omega_{21}, ..., \Omega_{2j_2}\}, \\ ... \\ \{\Omega_{m1}, ..., \Omega_{mj_m}\},$$

Now suppose that u_{λ_n} has $n + k \ge 2n - 1$ nodal domains. Let N represent the cardinality of $\mathcal{I} := \{(i, j) : 1 \le i \le m, j > 1\}$. Notice that $\{\Omega_{ij} : (i, j) \in \mathcal{I}\}$ includes all of the nodal domains except the first in each neighborhood. Since each nodal domain neighborhood contains at least two members, we have $N \ge \frac{1}{2}(2n - 1)$, so $N \ge n$. Let $u_{ij} := u_{\lambda_n} \cdot \chi_{\Omega_{ij}}$ and define

$$\mathcal{A} := \{ \sum_{\mathcal{I}} \gamma_{ij} u_{ij} : \sum_{\mathcal{I}} |\gamma_{ij}|^p \int_{\Omega_{ij}} |u_{ij}|^p = 1 \}.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Illustration

Proof of Theorem 10

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ 12 590 24th October 2006 20 / 25

As in the previous proofs, it is straightforward to check that $\mathcal{A} \in \mathcal{F}_N$ and that $I(u) = \lambda_n$ for $u \in \mathcal{A}$. Suppose that $u_{\lambda_n}^* \in \mathcal{A}$ is a critical point for I, and thus an eigenfunction. Notice that $u_{\lambda_n}^* \equiv 0$ on the nodal domains Ω_{i1} for $1 \leq i \leq m$. By Lemma 6 it follows that $u_{\lambda_n}^* \equiv 0$ on every nodal domain that can be connected to an Ω_{i1} by a finite sequence of neighbors. Therefore $u_{\lambda_n}^* \equiv 0$ in Ω , which is a contradiction because $0 \notin \mathcal{A} \subset \mathcal{S}$. Hence \mathcal{A} contains no critical points. Now the proof can be finished exactly as in the proof of Theorem 8.

In particular, the second eigenfunction has at most 2 nodal domains.

Since it has to change sign, it has exactly 2 nodal domains.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 11

Let u_{λ_n} be an eigenfunction associated with λ_n such that u_{λ_n} has n + k nodal domains, then there exists another eigenfunction $u_{\lambda_n}^*$ with at most n - k nodal domains.

Divide Ω into nodal domain neighborhoods exactly as in the proof of Theorem 10. Notice that there must be at least k + 1 neighborhoods, else the cardinality of $\{\Omega_{ij} : 1 \le i \le m, j > 1\}$ will be at least n, and we can apply the proof of Theorem 10 to obtain a contradiction. Now define an index set

 $\mathcal{I} := \{(i, j) : 1 \le i \le k, j > 1\} \bigcup \{(i, j) : i \ge k + 1, j \ge 1\}$, so that $\{\Omega_{ij} : (i, j) \in \mathcal{I}\}$ omits one nodal domain in each of the first k nodal domain neighborhoods, but includes all of the nodal domains from the remaining neighborhoods. Thus \mathcal{I} has cardinality n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Let

$$\mathcal{A} := \{ \sum_{\mathcal{I}} \gamma_{ij} u_{ij} : \sum_{\mathcal{I}} |\gamma_{ij}|^p \int_{\Omega_{ij}} |u_{ij}|^p = 1 \}.$$

As in previous proofs we can show that $\mathcal{A} \in \mathcal{F}_n$ with $I \equiv \lambda_n$ on \mathcal{A} . \mathcal{A} must contain a critical point of *I*, else we could derive a contradiction as in previous proofs. Let $u_{\lambda_m}^* \in \mathcal{A}$ be a critical point of *I*, i.e. another eigenfuction associated with λ_n . Since $u^*_{\lambda_n} \in \mathcal{A}$ we know that $u^*_{\lambda_n} \equiv 0$ in Ω_{i1} for $1 \le i \le k$. As in the proof of Theorem 10, it follows that $u_{\lambda_n}^* \equiv 0$ on each of the first k nodal domain neighborhoods. Notice that the nodal domains for $u^*_{\lambda_m}$ are a subset of the nodal domains in the remaining nodal domain neighborhoods. By removing the first k nodal domain neighborhoods we have removed at least 2k nodal domains from consideration. Hence there are at most n - k remaining nodal domains where $u_{\lambda_n}^*$ can be nontrivial.

Corollary 12

For each n there is an eigenfunction, u_{λ_n} , associated with λ_n , such that u_{λ_n} has at most n nodal domains.

Illustration

Theorem 11

Thank you very much for your attention

500