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Nodal Domain Theorem for the ∆p Introduction

Eigenvalues, eigenfunctions

−∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,
(1)

∫
Ω
|∇uλ|p−2∇uλ · ∇v − λ

∫
Ω
|uλ|p−2uλv = 0 (2)
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Nodal Domain Theorem for the ∆p Illustration

Spectrum of the ∆p
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Nodal Domain Theorem for the ∆p Introduction

Courant Nodal Domain Theorem for ∆

Theorem 1 (Courant Nodal Domain Theorem)
Assume that uλn is an eigenfunction associated with the n-th
eigenvalue, λn, of −∆2.
Then uλn has at most n nodal domains.

Simple examples demonstrate that no similar lower bound is possible.
(Consider Ω = [0, π] × [0, Lπ] for large L.)

[1] P. Drábek and S.B. Robinson
On the Generalization of the Courant Nodal Domain Theorem,
Journal of Differential Equations 181 (2002), 58-71.
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Nodal Domain Theorem for the ∆p Introduction

In Drábek and Robinson [1] we define a sequence of variational
eigenvalues, {λk}∞k=1, for the p-Laplacian and proceed to prove several
theorems. We prove that previous theorem generalizes completely if
we assume either that −∆p satisfies a unique continuation property or
that λ < λn+1. For the general case we prove that, if uλn is an
eigenfunction associated with λn, then uλn has at most 2n − 2 nodal
domains. Also, if uλn has n + k nodal domains, then there is another
eigenfunction corresponding to λn with at most n − k nodal domains.
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Nodal Domain Theorem for the ∆p Unique Continuation Property

Unique Continuation Property

(UCP) If uλ is a nontrivial eigenfunction of −∆p, then {x : uλ(x) = 0}
has empty interior.

It is well known that the unique continuation property holds for the case
p = 2. The counterexample in Martio [2] may indicate that the unique
continuation property does not extend, or is difficult to extend. On the
other hand there are p − 1 homogeneous quasilinear operators, such
as Lu := −∇ · (|u|p−2∇u), that do satisfy the unique continuation
property. See Ling [3].

[2] O. Martio
Counterexamples for unique continuation,
Manuscripta Math. 60 (1988), 21-47.

[3] J.Ling
Unique continuation for a class of degenerate elliptic operators,
J. Math. Anal. Appl. 168 (1992), no.2, 511-517.
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Nodal Domain Theorem for the ∆p Illustration

Unique Continuation Property
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Nodal Domain Theorem for the ∆p Preliminaries

Let λ be an eigenvalue and let u ∈ W 1,p
0 (Ω) be an associated

eigenfunction. Then
∫

Ω
|∇u|p−2∇u · ∇v − λ

∫
Ω
|u|p−2uv = 0 (3)

holds for any v ∈ W 1,p
0 (Ω).

Lemma 2
Let uλ be an eigenfunction associated with the eigenvalue λ and let Ωλ

be a nodal domain for uλ. Define

φ :=
{

uλ(x) : x ∈ Ωλ

0 : x /∈ Ωλ

Then φ ∈ W 1,p
0 (Ω). Moreover,

∫
Ω |∇φ|p = λ

∫
Ω |φ|p.
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Nodal Domain Theorem for the ∆p Preliminaries

Lemma 3
Assume that there exists K > 0 such that λ ∈ (0,K). Let Ωλ be any
nodal domain of uλ. Then |Ωλ| ≥ c1(K) > 0, where c1 = c1(K) is a
constant depending only on K. (|Ω| denotes the Lebesgue measure of
Ω.)

It follows from previous lemma that any eigenfunction of −∆p has a
finite number of nodal domains.

Lemma 4
Let λ be an eigenvalue with a corresponding eigenfunction
uλ ∈ W 1,p

0 (Ω) . Then there exists an η ∈ (0, 1) such that uλ ∈ C1,η(Ω).

Pavel Drábek 24th October 2006 9 / 25



Nodal Domain Theorem for the ∆p Preliminaries

Lemma 5
Let λ be an eigenvalue not equal to λ1, and let uλ be a nontrivial
eigenfunction associated with λ. Let Ω1 be any nodal domain for uλ.
Then there is another nodal domain Ω2, a point x0 ∈ (∂Ω1

⋂
∂Ω2) \ ∂Ω,

and an ε > 0 such that Bε(x0)
⋂

∂Ω1
⋂

∂Ω2 is a smooth manifold
separating Bε(x0)

⋂
Ω1 and Bε(x0)

⋂
Ω2. Moreover, if uλ > 0 in Ω1

(respectively, uλ < 0 in Ω1), then ∂uλ
∂ν < 0 (> 0), where ν represents the

unit outward normal to ∂Ω1 at x0.
When the (UCP) is not available then the following technical result is
helpful:

Lemma 6
Let Ω1 and Ω2 be nodal domains for an eigenfunction uλ, and let
x0 ∈ (∂Ω1

⋂
∂Ω2) \ ∂Ω and ε > 0 such that Bε(x0)

⋂
∂Ω1

⋂
∂Ω2 is a

smooth manifold separating Bε(x0)
⋂

Ω1 and Bε(x0)
⋂

Ω2. Suppose
that u∗

λ is another eigenfunction such that u∗
λ = γiuλ on Ωi. Then

γ1 = γ2.
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Nodal Domain Theorem for the ∆p Preliminaries

Our variational arguments rely on the following deformation theorem:
Theorem 7
Let X be a C1 Finsler manifold, and let J ∈ C1(X ,�). Let C be a
compact subset of X . Assume that there is an ε > 0 such that
||J ′(u)||∗ ≥ 2ε > 0 for all u ∈ C. Then there exists a continuous
one-parameter family of homeomorphisms ψ : X × [0, 1] → X such
that

(i) dist(ψ(u, t), u) ≤ 2t for every u ∈ X ;
(ii) J(ψ(u, t)) ≤ J(u) − εt for every u ∈ C, t ∈ [0, 1].

In particular, if X is a submanifold of a Banach space satisfying
−X = X and if J(−u) = J(u) for u ∈ X , then the deformation can be
chosen to preserve the symmetry, i.e. we also have
(iii) ψ(−u, t) = −ψ(u, t) for every u ∈ X and t ∈ [0, 1].
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Nodal Domain Theorem for the ∆p Variational eigenvalues

There are several ways to characterize a sequence of variational
eigenvalues for −∆p. In Drábek and Robinson [4] we define a
sequence of variational eigenvalues as follows:

Let us consider the even functional

I(u) :=

∫
Ω |∇u|p∫
Ω |u|p , ∀u ∈ W 1,p

0 (Ω) \ {0},

and the symmetric manifold S := {u ∈ W 1,p
0 (Ω) :

∫
Ω |u|p = 1}. Clearly,

the eigenvalues and eigenfunctions of −∆p correspond to the critical
values and critical points of I|S . Using a standard compactness
argument we proved in Drábek and Robinson [4], Lemma 4, that I|S
satisfies the Palais-Smale condition.

[4] P. Drábek and S.B. Robinson
Resonance problems for the p-Laplacian,
Journal of Functional Analysis 169 (1999), 189-200.

Pavel Drábek 24th October 2006 12 / 25



Nodal Domain Theorem for the ∆p Variational eigenvalues

For k ∈ N let

Fk := {A ⊂ S : A is the image of a continuous odd function h : Sk−1 → S},

where Sk−1 represents the unit sphere in �k. Define

λk := inf
A∈Fk

sup
u∈A

I(u).

It is straightforward to check that {λk}∞k=1 is a sequence of eigenvalues
for −∆p. Moreover, λk → ∞ as k → ∞.

Theorem 8
Suppose that −∆p satisfies (UCP) and suppose that uλn is an
eigenfunction associated with λn. Then uλn has at most n nodal
domains.
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Nodal Domain Theorem for the ∆p Proof

Assume that uλn has n + k nodal domains where k ≥ 1. Call them
{Ω1, ...,Ωn+k}. Let ui := uλn · χΩi , where χΩi is the characteristic
function over the set Ωi. Let

A := {
n∑

i=1

γiui :
n∑

i=1

|γi|p
∫

Ωi

|ui|p = 1}.

It is easy to see that A is symmetric and homeomorphic to Sn−1. If
u ∈ A, then ∫

Ω |u|p =
∑n

i=1

∫
Ωi

|u|p
=

∑n
i=1 |γi|p

∫
Ωi

|ui|p
= 1,

so A ⊂ S. Hence A ∈ Fn.
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Nodal Domain Theorem for the ∆p Proof

Also, using the results of Lemma 2 as well as the fact that
{x : ui(x) 
= 0}⋂{x : uj(x) 
= 0} has measure zero for i 
= j, we get

∫
Ω |∇u|p =

∑n
i=1

∫
Ωi

|∇u|p
=

∑n
i=1 |γi|p

∫
Ωi

|∇ui|p
=

∑n
i=1 |γi|pλn

∫
Ωi

|ui|p
= λn.

Thus I ≡ λn on A. Observe that if u ∈ A then u ≡ 0 on Ωn+1, so u
cannot be an eigenfunction, else (UCP) would be contradicted. Thus I
has no critical points on A. Since A is compact, there is an ε > 0 such
that ||I ′(u)||∗ ≥ 2ε > 0 for u ∈ A. Apply Theorem 7 with C = A to
obtain a symmetry preserving flow ψ. Let A∗ := ψ(A, 1). Now we have
A∗ ∈ Fn with sup

u∈A∗
I(u) < λn, a contradiction.

Pavel Drábek 24th October 2006 15 / 25



Nodal Domain Theorem for the ∆p Illustration

Proof of Theorem 8
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Nodal Domain Theorem for the ∆p Simple eigenvalues, Nonvariational eigenvalues

Theorem 9
Suppose λ < λn+1 is an eigenvalue with associated eigenfunction uλ.
Then uλ has at most n nodal domains.

Suppose uλ has nodal domains {Ω1, ...,Ωn+k} for some k ≥ 1. Let
ui := uλ · χΩi , as in the previous proof. Let

A := {
n+k∑
i=1

γiui :
n+k∑
i=1

|γi|p
∫

Ωi

|ui|p = 1}.

As in the previous proof we can verify that A ∈ Fn+k and that I(u) = λ
for u ∈ A. But the characterization of λn+k implies that
λ = supu∈A I(u) ≥ λn+k ≥ λn+1 > λ, a contradiction.

In the previous theorem λ is not required to be a variational eigenvalue.

Let us assume that all variational eigenvalues are simple. Then
λn < λn+1 for all n and the estimates above give a direct generalization
of the Courant Nodal Domain Theorem.
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Nodal Domain Theorem for the ∆p General case

Theorem 10
Let uλn be an eigenfunction associated with λn. Then uλn has at most
2n − 2 nodal domains.

We begin the proof by dividing Ω into nodal domain neighborhoods.
Let Ω1 be a nodal domain for uλn . By Lemma 5 there is another nodal
domain, Ω2, a point x0 ∈ (∂Ω1

⋂
∂Ω2) \ ∂Ω, and an ε > 0 such that

Bε(x0)
⋂

∂Ω1
⋂

∂Ω2. For convenience we will write Ω1 ∼ Ω2, and say
that these sets are neighbors. The nodal domain neighborhood for Ω1

will refer to the collection of nodal domains, Ωk, such that Ω1 and Ωk

are connected by a finite sequence of neighbors, i.e. there is a set of
nodal domains {Ω′

1, ...,Ω
′
j} where Ω′

i ∼ Ω′
i+1 for each 1 ≤ i ≤ j − 1,

Ω′
1 = Ω1, and Ω′

j = Ωk. Using this notation we can organize all of the
nodal domains for uλn into neighborhoods
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Nodal Domain Theorem for the ∆p Proof

{Ω11, ...,Ω1j1},
{Ω21, ...,Ω2j2},
· · ·
{Ωm1, ...,Ωmjm},

Now suppose that uλn has n + k ≥ 2n − 1 nodal domains. Let N
represent the cardinality of I := {(i, j) : 1 ≤ i ≤ m, j > 1}. Notice that
{Ωij : (i, j) ∈ I} includes all of the nodal domains except the first in
each neighborhood. Since each nodal domain neighborhood contains
at least two members, we have N ≥ 1

2(2n − 1), so N ≥ n. Let
uij := uλn · χΩij and define

A := {
∑
I

γijuij :
∑
I

|γij |p
∫

Ωij

|uij |p = 1}.

Pavel Drábek 24th October 2006 19 / 25



Nodal Domain Theorem for the ∆p Illustration

Proof of Theorem 10

Pavel Drábek 24th October 2006 20 / 25



Nodal Domain Theorem for the ∆p Proof

As in the previous proofs, it is straightforward to check that A ∈ FN

and that I(u) = λn for u ∈ A. Suppose that u∗
λn

∈ A is a critical point
for I, and thus an eigenfunction. Notice that u∗

λn
≡ 0 on the nodal

domains Ωi1 for 1 ≤ i ≤ m. By Lemma 6 it follows that u∗
λn

≡ 0 on
every nodal domain that can be connected to an Ωi1 by a finite
sequence of neighbors. Therefore u∗

λn
≡ 0 in Ω, which is a

contradiction because 0 
∈ A ⊂ S. Hence A contains no critical points.
Now the proof can be finished exactly as in the proof of Theorem 8.

In particular, the second eigenfunction has at most 2 nodal domains.

Since it has to change sign, it has exactly 2 nodal domains.
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Nodal Domain Theorem for the ∆p Refinement

Theorem 11
Let uλn be an eigenfunction associated with λn such that uλn has n + k
nodal domains, then there exists another eigenfunction u∗

λn
with at

most n − k nodal domains.

Divide Ω into nodal domain neighborhoods exactly as in the proof of
Theorem 10. Notice that there must be at least k + 1 neighborhoods,
else the cardinality of {Ωij : 1 ≤ i ≤ m, j > 1} will be at least n, and we
can apply the proof of Theorem 10 to obtain a contradiction. Now
define an index set
I := {(i, j) : 1 ≤ i ≤ k, j > 1}⋃{(i, j) : i ≥ k + 1, j ≥ 1}, so that
{Ωij : (i, j) ∈ I} omits one nodal domain in each of the first k nodal
domain neighborhoods, but includes all of the nodal domains from the
remaining neighborhoods. Thus I has cardinality n.
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Nodal Domain Theorem for the ∆p Proof

Let
A := {

∑
I

γijuij :
∑
I

|γij |p
∫

Ωij

|uij |p = 1}.

As in previous proofs we can show that A ∈ Fn with I ≡ λn on A. A
must contain a critical point of I, else we could derive a contradiction
as in previous proofs. Let u∗

λn
∈ A be a critical point of I, i.e. another

eigenfuction associated with λn. Since u∗
λn

∈ A we know that u∗
λn

≡ 0
in Ωi1 for 1 ≤ i ≤ k. As in the proof of Theorem 10, it follows that
u∗

λn
≡ 0 on each of the first k nodal domain neighborhoods. Notice that

the nodal domains for u∗
λn

are a subset of the nodal domains in the
remaining nodal domain neighborhoods. By removing the first k nodal
domain neighborhoods we have removed at least 2k nodal domains
from consideration. Hence there are at most n − k remaining nodal
domains where u∗

λn
can be nontrivial.

Corollary 12
For each n there is an eigenfunction, uλn , associated with λn, such
that uλn has at most n nodal domains.
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Nodal Domain Theorem for the ∆p Illustration

Theorem 11
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Nodal Domain Theorem for the ∆p Proof

Thank you very much for your attention
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