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ON COMPLEXITY AND MOTION PLANNING FOR CO-RANK ONE

SUB-RIEMANNIAN METRICS

Romero-Meléndez C.1, Gauthier J.P.2 and Monroy-Pérez F.3

Abstract. In this paper, we study the motion planning problem for generic sub-Riemannian metrics
of co-rank one. We give explicit expressions for the metric complexity (in the sense of F. Jean [10], [11]),
in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It
turns out that among the results we show, the most complicated case is the 3-dimensional. Besides
the generic C

∞ case, we study some non-generic generalizations in the analytic case.

Résumé. Dans cet article, nous étudions le problème de planification de trajectoires pour une métrique
sous-Riemannienne générique de co-rang un. Nous donnons des expressions explicites pour la com-
plexité métrique (au sens de F. Jean, [10], [11]), en terme des invariants élémentaires du problème.
Nous construisons aussi la synthèse optimale asymptotique. Il se trouve que, parmi les résultats
énoncés, le cas le plus compliqué est celui de dimension 3. Les résultats génériques sont obtenus dans
la catégorie C

∞, mais nous étudions aussi quelques généralisations non-génériques dans la catégorie
analytique.

1991 Mathematics Subject Classification. 53C17, 49J15, 34H05.

.

1. Introduction, notations and organization of the paper

The motion planning problem has been extensively studied in the literature. The problem is relevant both
theoretically and in applications in areas such as robotics and constructive controllability. A fair bibliographical
recount of the problem goes beyond the limits of this paper, we limit ourselves referring the reader to the
paper [15] and the book [7], together with all the references therein.

Roughly speaking, the problem has three elements, a smooth manifold M , a control system Ψ on M and a
pair of points mi, mf ∈ M . The motion planning problem then consists of finding a Ψ−admissible trajectory
c : [0, Tc] → M , satisfying c(0) = mi and c(Tc) = mf , with further requirements (avoiding certain obstacles,...),
and with “low cost ”. In general, this is achieved in two steps.

One starts by constructing a non-admisible trajectory Γ connecting mi, mf (and avoiding the obstacles).
This is a purely geometric problem and we will not consider it here.

Keywords and phrases: motion planning problem, metric complexity, normal forms, asymptotic optimal synthesis
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The second step consists of approximating Γ by a Ψ-admissible trajectory γ (with low cost if possible). The
complexity of the approximation then enters into the picture.

The precise statements and the rigorous convergence theorems are very involved and appear interspersed in
the literature under different approaches. For deriving our results on complexity and motion planning problem,
we adopt the Sub-Riemannian geometry view point which, on one hand, possesses enough generality to handle
the non-holonomic motion planning problem for controllable systems without drift, and on the other hand,
enables us to use strong geometric techniques, such as normal forms and geometric invariants. Furthermore, we
restrict ourselves to co-rank one sub-Riemannian metrics.

1.1. Definitions

Through all this paper, ΞN denotes a manifold of dimension N with N ≥ 3, everything is smooth, which
means at least C∞ and for technical reasons Cω when explicitly stated. A sub-Riemannian metric over ΞN is
a pair (∆, g), where ∆ is a distribution over ΞN and g is a Riemannian metric over ∆. An admissible curve is
an absolutely continuous curve σ : [0, Tσ] → ΞN , such that σ̇(t) ∈ ∆(σ(t)) a.e., the sub-Riemannian length of
such a σ(t) is defined as follows

`(σ) =

∫ Tσ

0

√
g(σ̇(τ), σ̇(τ)) dτ, (1)

and the sub-Riemannian distance between two arbitrary points p, q ∈ ΞN is defined as

d(p, q) = inf{`(σ) | σ : [0, Tσ] → ΞN , is admissible and σ(0) = p, σ(Tσ) = q}.
Sub-Riemannian geometry merges subtle differential geometric issues, together with a novel approach for tackling
problems in non-linear geometric control. We limit our discussion to the metric complexity associated to a sub-
Riemannian metric (∆, g) where ∆ is a co-rank 1 distribution. For a more general treatment of sub-Riemannian
geometry we refer the reader to the survey [14].

Definition 1.1. A motion planning problem on ΞN , N ≥ 3 is a triple Σ = (∆, g, Γ), where (∆, g) is a
sub-Riemannian metric over ΞN , and Γ : [0, 1] → ΞN is a smooth parameterized curve.

We shall consider generic motion planning problems, the set of all motion planning problems endowed with
the C∞ topology is denoted by S∞. In the analytic case, we use the notation Sω and we consider the trace on
Sω of the C∞ topology. Since Γ is compact and since the problem depends only on the germ of (∆, g) along Γ,
there is no need to consider the C∞ Whitney topology.

Definition 1.2. A motion planning problem Σ = (∆, g, Γ), is said to be relevant if Γ(t) is transversal to ∆(Γ(t))
for all t ∈ [0, 1].

We denote by S∞
R and Sω

R the corresponding sets of relevant systems, they form open subsets of S∞ and Sω

respectively.

In order to study the metric complexity associated to a motion planning problem Σ, we follow F. Jean’s
definition, see [10] and [11], we start by taking a small real parameter ε ≥ 0 and by denoting by Tε the
sub-Riemannian tube centered on Γ with radius ε, that is Tε = {x ∈ ΞN | d(x, Γ) ≤ ε}.

Definition 1.3. The metric complexity of Σ is defined as MCΣ(ε) = 1
ε
minγ{SR-length(γ)}, where the minimum

is taken among all admissible curves γ : [0, Tγ ] → ΞN , entirely contained in the tube Tε and joining Γ(0) to Γ(1),
that is, γ(0) = Γ(0) and γ(Tγ) = Γ(1).

Since we are interested in the asymptotic behavior of the metric complexity when ε → 0, it is convenient to
consider asymptotic equivalents. Although this is very elementary, to be perfectly clear, let us recall precisely
which kind of asymptotic equivalent we consider.
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Definition 1.4. Two functions ϕ1(ε) and ϕ2(ε) tending to ∞ when ε → 0 are said weakly equivalent (denoted

ϕ1
w' ϕ2), if ϕ2(ε)

ϕ1(ε)
and ϕ1(ε)

ϕ2(ε)
, are bounded when ε → 0. They are said strongly equivalent (denoted ϕ1

s' ϕ2),

if limε→0
ϕ1(ε)
ϕ2(ε) = 1.

In this paper, we shall take both, the metric complexity and its (weak or strong) equivalent, indistinctly.
Contrarily to the results of F. Jean [10], [11] and [12], most of our expressions for the metric complexity in this
paper, are in the sense of strong equivalence.

1.2. The fundamental 2-form.

Let ω be a one-form such that ∆ = kerω. We can choose it in such a way that ω(
dΓ

dt
(t)) = 1, for all t ∈ [0, 1].

This one-form ω is defined modulo multiplication by a smooth function f that takes value 1 on Γ.
We take α = dω and consider α̃ = α|∆. The map t 7→ α̃(Γ(t)) determines along Γ a field of 2-forms on ∆.

This field is well defined and it is independent of f . In fact, since

α̃ = d(fω)|∆ ,

then for all G, H sections of ∆, we have

α̃(G, H)(Γ(t)) = d(fω)(G, H) = df ∧ ω(G, H) + fdω(G, H) = 0 + fdω(G, H)

but f(Γ(t)) = 1, then α̃(Γ(t)) is independent of f .

Definition 1.5. We call α̃ the fundamental 2-form associated to Σ.

The form α̃ defines a skew symmetric (with respect to g) linear map A(t) : ∆(Γ(t)) −→ ∆(Γ(t)), in the
following way:

g(A(t)X, Y ) = α̃(X, Y ), for X and Y in ∆(Γ(t)).

Then, once an orthonormal frame Ft is given in ∆(Γ(t)), it defines an element of so(N − 1) given by the
matrix of A(t) in the basis Ft. This matrix shall be typically denoted by Ā(t).

1.3. Statement of our results

Let κ(t) = sup{|eigenvalues of A(t)|}. Let us denote by MCΣ(ε, T ) the metric complexity of the curve
Γ : [0, T ] → ΞN , for T < 1. The following theorems are our main results for the dimensions N ≥ 4 and N = 3.

Theorem 1.6. (N ≥ 4)There is an open and dense subset of S∞
R (and also of S∞, but in that case κ(t) is well

defined except on a finite subset of [0, 1]), such that

MCΣ(ε, T )
s' 2

ε2

∫ T

0

dt

κ(t)
. (2)

This integral is well defined and finite. Moreover, the function T 7→
∫ T

0

dt

κ(t)
is smooth , for Σ ∈ S∞

R .

Theorem 1.7. (N = 3)There is an open and dense subset of S∞
R (and also of S∞), such that

MCΣ(ε, T )
s

& − ln ε

ε2

M∑

i=1

C(ti), (3)

where ti ∈ [0, T ], Γ(ti) is a Martinet point of ∆ (i.e. Γ(ti) is a point at which ∆ has a Martinet singularity, i.e.
dκ
dt

(t+i ) = 0), and C(ti) are constants. If there are no Martinet points, then the formula for MCΣ(ε, T ) is still
(2) in Theorem 1.6.
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In this paper we do not compute explicitly the constants C(ti) for the general case, but we provide an example
for which the asymptotic inequality (3) becomes an asymptotic equality, together with some estimations for the
constants C(ti).

In the analytic case but non generic, under the assumption that the fundamental form α̃(t) never vanishes,
we prove that the asymptotics for the metric complexity is still given by (2), more specifically we prove the
following theorem:

Theorem 1.8. If α̃ is never zero, and Σ ∈ Sω
R (or Sω), then the asymptotics for the metric complexity is given

by formula (2) of Theorem 1.6. In this case, the map T 7→
∫ T

0

dt

κ(t)
is only C1, piecewise analytic and its second

derivative has jumps at isolated points.

Definition 1.9. A weak (strong) asymptotic optimal synthesis is a control strategy, depending on ε, that
realizes a weak (strong) equivalent of the metric complexity, when ε → 0, i.e., it is a family {γε}, of admissible
curves, γε([0, θε]) ⊂ Tε satisfying γε(0) = Γ(0) and γε(θε) = Γ(1), such that,

1

ε
(SR-length(γε)) ' MCΣ(ε).

In this paper, we will describe explicit asymptotic optimal syntheses (strong), in the case of Theorems 1.6,
1.8 above. We will also show a (weak) explicit optimal synthesis in the Martinet case.

Our results have to be compared to those of F. Jean in papers [10] and [11], on which the asymptotics
1

ε2

and − log ε

ε
already appear, however, with his technique, he only obtains weak equivalence. Also, in his papers,

there is no explicit construction of an asymptotic optimal synthesis. On the other hand, the weakness of our
paper with respect to F. Jean’s results is the fact that we consider distributions of codimension one only.

1.4. Remarks, comments and notations

Non-relevant motion planning problems: Generically, for Σ ∈ S∞ or Σ ∈ Sω, the distribution ∆ is
tangent to the curve Γ at isolated points. Around these points, since the curve Γ is almost admissible,
asymptotic optimal synthesis is rather trivial. In fact, if t0 is such a point we have that lim

t→t0
κ(t) = +∞,

the integral in (2) is well defined and still yields the metric complexity.

Regularity: First we assume that the curve Γ is regular, that is,
dΓ

dt
(t) 6= 0 for all t ∈ [0, 1]. Second, since

N ≥ 3, it is clear that the set of motion planning problems, with ∆ non integrable (otherwise it does
not define a sub-Riemannian metric), and with Γ having no double points, is an open and dense set in
S∞ (Sω). We limit ourselves to this case, and we denote again by S∞ (Sω) the set of such problems.

Orthonormal frames for g: We shall consider co-rank 1 distributions only, that is, the dimension of ∆x

is N − 1 for all x ∈ ΞN . A convenient way to specify the corresponding sub-Riemannian metric, is by
mean of N − 1 vector fields over ΞN that are everywhere independent, generate the distribution ∆, and
provide at each point an orthonormal frame for g. Since we are assuming that Γ does not have double
points and since our problem depends only on the germ of the (∆, g) along Γ, then it is always possible
to find an orthonormal frame F for the sub-Riemannian structure, globally defined in a neighborhod of
Γ. Therefore, we can restrict to the case where ΞN is a fixed open connected subset of RN , and the
metric is specified by a global orthonormal frame. Therefore we allow to write Σ = (F, Γ), where F is
an N -uple of independent vector fields globally defined. If a coordinate system (x, w) is fixed, we will
also write Σ = (Q, L, Γ), where: F = (F1, . . . , FN−1) and

Fj =
n∑

i=1

Qij(x, w)
∂

∂xi

+ Lj(x, w)
∂

∂w
, j = 1, . . . , N − 1. (4)
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1.5. Organization of the paper.

Apart from this introduction the paper contains five sections and one appendix. In section 2, we state and
prove some genericity results about co-rank 1 sub-Riemannian metrics and motion-planning problems.

In Section 3, we present normal forms and normal coordinates for motion-planning problems. These tools
are the key points in our treatment. The idea of normal coordinates and the resulting normal forms were
introduced for the 3-dimensional case in the papers [5] and [2], the general contact case is discussed in [3].
For the quasi-contact case, they were introduced in [6]. Here, we generalize these normal forms and normal
coordinates to generic motion-planning problems, and also to degenerate ones, in the analytic case.

The normal coordinates are the sub-Riemannian analogs of the classical normal coordinates in Riemannian
geometry. Normal forms in the Riemannian case, similar to those presented in this paper, were already well
known by Darboux.

In Section 4, we use these normal forms for N ≥ 4 (or N = 3, but contact) to construct in a rather natural
way an asymptotic optimal synthesis, then we obtain the asymptotics (2) for the metric complexity of Theorem
1.6 and Theorem 1.7.

Section 5 is devoted to the Martinet Case. We prove Theorem 1.7, and, for an example, we show in a
constructive way, the equality in the asymptotics (3), i.e., we exhibit an asymptotic optimal synthesis (but
weak).

In Section 6, we consider non generic situations, but analytic. We show that our normal forms of Section 3,
and formula (2) for the metric complexity still hold, as long as the fundamental 2-form does not vanish along
Γ. This is Theorem 1.8. In fact, the results are the same, the only difference is that the metric complexity
becomes non smooth: it has jumps on the second derivative. The strong asymptotic optimal synthesis turns
out to be slightly more complicated.

In the Appendix (Section 7), we collect a few technical facts that are needed along the paper. Results similar
to Lemma (7.1) can be found in the literature. But for the sake of completeness we provide a simple proof.

2. Genericity results

We consider the set S∞
R of relevant motion-planning problems Σ = (F, Γ) with the C∞ topology, we consider

also the field α̃Σ of fundamental 2-forms along Γ defined by Σ. As explained above, in the coordinates on ∆
defined by the frame F, to α̃Σ(Γ(t)) corresponds a skew symmetric matrix Ā(t).

As customary, so(N − 1) denotes the Lie algebra of square (N − 1) × (N − 1) skew symmetric matrices, we
have the following result for relevant motion-planning problems.

Theorem 2.1. The mapping ρ : S∞
R × [0, 1] −→ so(N − 1), (Σ, t) 7−→ Ā(t) is a submersion.

Proof. Let us consider a fixed Σ = (F, Γ) ∈ S∞
R , and an arbitrary t0 ∈ [0, 1]. It is always possible to choose a

neighborhood Vt0 of Γ(t0), and coordinates (x, w) = (x1, . . . , xN−1, w) on Vt0 such that:

Γ(t) = (0, t − t0), (5)

∆(0, w) = ker dw. (6)

Furthermore, each vector field Fj of the frame F = (F1, . . . , FN−1) can be written as (4), with L(0, w) = 0.

The matrix Q(x, w) is invertible, because Γ is transversal to ∆ and F is an orthonormal frame. Let Q−1
ij

denote the ij entry of the inverse matrix Ω̃(x, w) = Q−1(x, w).
Let Ω = (ω1, . . . , ωN ) be the coframe dual to the frame (F1, . . . , FN−1,

∂
∂w

). Then, by definition we have

dωN |∆(Γ(t)) = α̃(Γ(t)).

Set L(x, w) = (L1(x, w), . . . , LN−1(x, w)), the line vector with components L1, . . . , LN−1. Then, if dx is the
column vector with components dx1, . . . , dxN−1, we have:
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ωi = Ω̃i(x, w) dx, i = 1, . . . , N − 1.

ωN = L̃(x, w) dx + dw, (7)

where L̃ = −LQ−1 = −LΩ̃, and Ω̃i is the ith line of the matrix Ω̃.
Therefore

dωN (Fl, Fs) =

N−1∑

i,j,k=1

∂

∂xk

(LiQ
−1
ij )(QjlQks − QjsQkl) +

N−1∑

i,j=1

∂

∂w

(
LiQ

−1
ij

)(
LsQjl − LlQjs

)
,

and since L(0, w) = 0, we have:

dωN (Fl, Fs)|Γ =
N−1∑

i,j,k=1

∂Li

∂xk

Q−1
ij (QjlQks − QjsQkl). (8)

Let us fix Q, and leave L free. By definition we know that

Āsl(t0) = dωN (Fl, Fs)(Γ(t0)).

Let us consider the (N − 1) × (N − 1) matrices L̄ and L̂, the entries of which are given as follows

L̄jk =

N−1∑

i=1

∂Li

∂xk

Q−1
ij (Γ(t0)),

L̂ik =
∂Li

∂xk

(Γ(t0)).

Then L̄ = (Q−1)′L̂(Γ(t0)), and (8) can be rewritten:

Ā(t0) = Q′L̄′Q − Q′L̄Q = Q′(L̄′ − L̄)Q, (9)

where ′ denotes the corresponding transpose matrix. Then, Ā(t0) = 0 implies L̄ = L̄′, which means that L̄ is

symmetric, and that L̂ = Q′(Γ(t0))S, where S is any symmetric matrix.
Therefore, the kernel of the linear map

MN−1×N−1 −→ so(N − 1), L̂ 7−→ Ā(t0),

has dimension 1
2 (N − 1)N . Hence, its image has dimension 1

2 (N − 1)(N − 2) and consequently is surjective. It

follows then that ρ : S∞
R × [0, 1] −→ so(N − 1), (Σ = (F, Γ), t) 7−→ Ā(t), is a submersion, as claimed.

�

We apply now standard transversality techniques (see for instance [1], [4], and [8]), to the mapping ρ, and
to the closed stratified subsets A1, A2, A3, Ā4 of so(N − 1) which are defined in the Appendix 7, Section 7.2.
There is an open and dense subset S∞

∗ ⊂ S∞
R such that, for any Σ ∈ S∞

∗ the mapping

evρ(Σ) : [0, 1] −→ so(N − 1), t 7−→ ρ(Σ, t),

is transversal to the aforementioned closed stratified subsets of so(N − 1). It is enough to evaluate the codi-
mension of these sets to conclude that for Σ ∈ S∞

∗ one has that

(1) For all t ∈ [0, 1], Ā(t) is not an element of Ā4 ∪ A2 ∪ A3, and
(2) The set {t ∈ [0, 1]|Ā(t) ∈ A1} is finite.

In conclusion we have the following result:
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Theorem 2.2. There is an open and dense subset S∞
∗ ⊂ S∞

R , such that for all Σ ∈ S∞
∗ , the mapping t 7→ A(t)

has the following properties. For all t ∈ [0, 1]:

(1) A(t) has no double nonzero eigenvalues.
(2) The kernel of A(t) has dimension 1 if N = 2n.

(3) The kernel of A(t) has dimension 2 on a (may be empty) finite subset of [0, 1], and it is zero elsewhere
if N = 2n + 1.

In particular, and this will be a key point in the next sections, for Σ ∈ S∞
∗ and all t ∈ [0, 1], if N ≥ 4 then A(t)

has a nonzero eigenvalue.

3. Normal Coordinates and Normal Forms

The results in this section are very close to the results in the papers [6], [5], [2] and [3]. We refer the reader
to these references, and limit ourselves to explain in detail the points that are different. We recall that a sub-
Riemannian geodesic is by definition an admissible curve that minimizes the length functional given by (1). It
is well known that Pontryagin maximum principle provides necessary conditions for sub-Riemannian geodesics.

3.1. Normal Coordinates

Theorem 3.1. Let Σ = (F, Γ) ∈ S∞
R . Then there is a global coordinate system (ξ, w) ∈ RN−1 × R, defined on

a neighborhood of Γ([0, 1]), such that:

(1) Γ(t) = (0, t), ∆(Γ(t)) = ker dw and g|Γ(t) =

N−1∑

i=1

dξ2
i .

(2) Geodesics satisfying the Pontryagin Maximum Principle’s transversality conditions with respect to Γ are
the straight lines through Γ contained in the planes Sw0

= {(ξ, w) | w = w0}.
(3) For ε small enough, the sub-Riemannian cylinder Cε = {q | d(q, Γ) = ε} is the Riemannian cylinder

{‖ξ‖2 = ε}, (here d denotes the sub-Riemannian distance associated to Σ).

The coordinate system in the Theorem 3.1 is usually called a pre-normal coordinate system. The proof of
this theorem is included in the aforementioned references as well as in [6]. The paper [5] discusses dimension 3,
but in formal power series, whereas [2] does it in the smooth case. Reference [3] studies the contact case in any
odd dimension whereas reference [6] treats the quasi-contact in any even dimension. In fact, there is no need
for the contact or quasi-contact assumptions, since the only crucial point in those cases is that the curve Γ has
to be everywhere transversal to the distribution ∆, which is, by definition, the case in S∞

R .
Now, in a pre-normal coordinate system (ξ, w) along the curve Γ, the vector fields

∂

∂ξ1
, . . . ,

∂

∂ξN−1
, (10)

provide an orthonormal frame of ∆(Γ(t)). Let Ā(t) be the matrix of the linear map A(t) with respect to this
frame.

Theorem 3.2. (Normal Coordinates) Let Σ = (F, Γ) ∈ S∞
∗ . Then, there is a global coordinate system

(ξ, w), defined on a neighborhood of Γ([0, 1]), such that:

(1) (ξ, w) is a pre-normal coordinate system.
(2) In the coordinates ξ, the matrices Ā(t), t ∈ [0, 1] are (skew-symmetric) 2 × 2 block-diagonal. (plus a

1 × 1 block if N = 2n).

Proof. By Lemma 7.1, Appendix 7, we can smoothly block-diagonalize the matrix Ā(t) along the curve Γ, using

a smooth orthogonal transformation U(t). Now, setting (ξ̃, w) = (U(w)ξ, w) we obtain the desired coordinates,
because such a change of coordinates does not affect the properties of pre-normal coordinates in Theorem
3.1. �
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Normal coordinates are unique up to a change of coordinates of the form:

(ξ̃, w) = (T (w)ξ, w), (11)

where T (w) is a smooth curve in the natural maximal-torus of the orthogonal group SO(N − 1).
In the contact and quasi-contact cases, we can do even more, because in those cases we can consider, in

normal coordinates, the planes Sw0
= {(ξ, w)|w = w0}. Since the curve Γ is transversal to ∆, then the sub-

Riemannian metric g(ξ, w) projects on a Riemannian metric gw on the plane Sw. In fact, if Πw0
denotes the

projection

Πw0
: ΞN → Sw0

, (ξ, w) 7→ (ξ, w0),

we set

gw0
(X, Y ) = g((dΠw0

|∆)−1X, (dΠw0
|∆)−1Y ), for X, Y ∈ T(ξ,w0)Sw0

.

Theorem 3.3. If ∆ is contact or quasi-contact, we can chose T (w) in such a way that for all points (0, w)
on the curve Γ, the sectional curvatures of the metrics gw, with respect to the 2-dimensional real eigenspaces of
A(w) are zero.

This theorem is proved in [2] (3-dimensional case), [3] (general contact case), and [6] (quasi-contact case).
These normal coordinates are again unique, up to an element T (w0) of a maximal torus of SO(N − 1). (Once
the T (w0) in (11) is fixed for some w0, then, it determines T (w) for all w, for the sectional curvatures being
zero).

3.2. Normal Forms

Assume that Σ = (F, Γ) is given, we write the normal coordinates (ξ, w) along the curve Γ according to the
following notation: (ξ, w) = (x, y, w), for N = 2n + 1; and (ξ, w) = (x, y, z, w), for N = 2n. Clearly ξ = (x, y)
and ξ = (x, y, z) respectively, and

(x, y) = (x1, y1, . . . , xn, yn), for N = 2n + 1, whereas
(x, y) = (x1, y1, . . . , xn−1, yn−1), for N = 2n.

Then, as in section (2), formula (4), we write in coordinates Σ = (Q(ξ, w), L(ξ, w), Γ).
We expand Q(ξ, w) and L(ξ, w) in power series of the variables ξj , at ξ = 0, along Γ, as follows:

Q(ξ, w) = Q0(ξ, w) + Q1(ξ, w) + Q2(ξ, w) + · · · , (12)

L(ξ, w) = L0(ξ, w) + L1(ξ, w) + L2(ξ, w) + · · · , (13)

where Qk and Lk are homogeneous polynomial matrices of degree k, in the variables xj and yj (and z, if

N = 2n). Then, for Σ = (F, Γ) ∈ S∞
∗ , setting ı̇ =

√
−1, we know the following two facts:

a). For N = 2n, the eigenvalues of A(w) are smooth functions: ±ı̇α1(w), . . . ,±ı̇αn−1(w), 0, where αj(w) > 0
for all j. For all w, we have that αk(w) 6= αl(w), provided k 6= l. Hence, for all w, we can order the
eigenvalues as follows:

α1(w) > · · · > αn−1(w) > 0.

b). For N = 2n + 1, the eigenvalues of A(w) are smooth functions: ±ı̇α1(w), . . . ,±ı̇αn(w), where again for
all w we have that αk(w) 6= ±αl(w) for k 6= l, and one at most is zero, for isolated values of w. If none
of the α′

js vanishes somewhere, we proceed as in a). If one vanishes for some w0, then, we order the
eigenvalues at w0, as follows:

α1(w0) > · · · > αn−1(w0) > αn(w0) = 0,



TITLE WILL BE SET BY THE PUBLISHER 9

in any case, we can always conclude that for all w we have

α1(w) > · · · > αn−1(w) > αn(w),

and αn−1(w) > 0 for all w. This last point (αn−1(w) > 0) holds, because if it were not true, at some
point w′, then αn−1(w

′) = ±αn(w′) 6= 0, which is not possible.

In the normal coordinates, it might be eventually necessary to consider permutations (xj , yj) → (yj , xj), to
write:

dω|∆(Γ(t)) = α1(t)dx1 ∧ dy1 + · · · + αn(t)dxn ∧ dyn, and

dω|∆(Γ(t)) = α1(t)dx1 ∧ dy1 + ... + αn−1(t)dxn−1 ∧ dyn−1,

for N = 2n + 1, and N = 2n respectively.
Here the frame (4) along the curve Γ is orthonormal, as a frame of ∆, and the matrices Ā(t) of the linear

map A(t), with respect to this frame are the following:

Ā(w) =




0 −α1(w) 0 0 · · · 0 0
α1(w) 0 0 0 · · · 0 0

0 0 0 −α2(w) · · · 0 0
0 0 α2(w) 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −αn(w)
0 0 0 0 · · · αn(w) 0




,

for N = 2n + 1, and

Ā(w) =




0 −α1(w) 0 0 · · · 0 0 0
α1(w) 0 0 0 · · · 0 0 0

0 0 0 −α2(w) · · · 0 0 0
0 0 α2(w) 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 −αn−1(w) 0
0 0 0 0 · · · αn−1(w) 0 0
0 0 0 0 · · · 0 0 0




,

for N = 2n.

Theorem 3.4. (Normal Form) Let Σ = (F, Γ) ∈ S∞
∗ , and let (ξ, w) = (x, y, w) or (ξ, w) = (x, y, z, w), be a

fixed normal coordinate system. Then, there is a unique sub-Riemannian orthonormal frame F = (Q, L), (gauge
equivalent to F), with the following properties:

1) Q is symmetric
2) Q0(ξ, w) = Id

3) Q(ξ, w)ξ = ξ

4) L(ξ, w) · ξ = 0
5) Q1 = 0
6) L0 = 0
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7) The first order linear forms are given as follows:

L1 = (
α1(w)

2
y1,−

α1(w)

2
x1, . . . ,

αn(w)

2
yn,−αn(w)

2
xn), and

L1 = (−α1(w)

2
y1,−

α1(w)

2
x1, . . . ,

αn−1(w)

2
yn−1,

αn−1(w)

2
xn−1, 0),

for N = 2n + 1 and N = 2n respectively.

Proof. The identities 1) to 6) are proved in [3] for the contact case and in [6] for the quasi-contact one. Equation
5) is an interesting sub-Riemannian analog of a Bianchi identity in Riemannian geometry. We prove 7), which
is the only different point. We prove it for N = 2n + 1 only, (the case N = 2n is similar).

Here, dξ is the column vector with components dξ1, . . . , dξN−1. We already know (Section 2, proof of Theorem
2.1) that, if we take ωN = dw −LQ−1dξ, then α̃(Γ(w)) = dωN |∆(Γ(w)) has Ā(w) as matrix. Now, on one hand,
by definition of our coordinates, we have that

dωN |∆(Γ(w)) = α1(w)dx1 ∧ dy1 + · · · + αn(w)dxn ∧ dyn, (14)

and on the other hand that

dωN |∆(Γ(w)) = −d(LQ−1dξ)(Γ(w)).

Now, 6) implies

L = L1(ξ, w) + O2(ξ) = (L1
1, M

1
1 , . . . , Ln

1 , Mn
1 ) + O2(ξ),

and in consequence 4) yields,

L1
1x1 + M1

1 y1 + · · · + Ln
1xn + Mn

1 yn = 0.

Therefore, by writing for all k:

Lk
1 =

∑

j

(Lkj
1 xj + L̂

kj
1 yj), and

Mk
1 =

∑

j

(Mkj
1 xj + M̂

kj
1 yj),

we obtain

∑

j,k

(Lkj
1 xjxk + L̂

kj
1 yjxk + M

kj
1 xjyk + M̂

kj
1 yjyk) = 0,

which implies:

Lkk
1 = 0, M̂kk

1 = 0, L
kj
1 = −L

jk
1 , L̂

kj
1 = −M

jk
1 , and M̂

kj
1 = −M̂

jk
1 .

A straightforward calculation yields

d(L1dξ)|Γ = 2
∑

j<k

L
kj
1 dxj ∧ dxk + 2

∑

j<k

M̂
kj
1 dyj ∧ dyk +

∑

j,k

L̂
kj
1 dyj ∧ dxk +

∑

j,k

M
kj
1 dxj ∧ dyk,

or equivalently
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d(L1dξ)|Γ = 2


∑

j<k

(Lkj
1 dxj ∧ dxk + M̂

kj
1 dyj ∧ dyk) −

∑

j,k

L̂
kj
1 dxk ∧ dyj


 .

Now,

−d(LQ−1dξ)|∆(Γ(w)) = −d(Ldξ)|∆(Γ(w)),

(because Q−1 = Id + O2(ξ)), and,

−d(Ldξ)|∆(Γ(w)) = −d(L1dξ)|∆(Γ(w)).

By (14), we deduce that for all k and j

L
kj
1 = 0,

M̂
kj
1 = 0, and

2
∑

j,k

L̂
kj
1 dxk ∧ dyj = −

∑

j

αj(w)dxj ∧ dyj .

Hence,

L̂
kj
1 = 0, for k 6= j, and

L̂kk
1 = −Mkk

1 = −αk

2
.

This gives 7), changing (xi, yi) for (yi, xi).
�

Conversely, if we have a coordinate neighborhood of Γ and a frame F meeting conditions 1), 2), 3), 4), 7),
then 5), 6) are automatically satisfied, and the coordinates turn out to be normal.

3.3. Special Case: normal form in dimension 3

In dimension 3, the normal form is given by the frame F = {F1, G1}

F1 = (1 + y2β(x, y, w))
∂

∂x
− xyβ(x, y, w)

∂

∂y
+

y

2
γ(x, y, w)

∂

∂w
,

G1 = −xyβ(x, y, w)
∂

∂x
+ (1 + x2β(x, y, w))

∂

∂y
− x

2
γ(x, y, w)

∂

∂w
, (15)

where β and γ are smooth functions.
In the contact case, γ(0, 0, w) never vanishes, and we can take it positive. Furthermore, we can normalize

the function β by the condition β(0, 0, w) = 0, which is tantamount of saying that the curvature or the metric
gw, (projection of g on the cross section Sw = {w = constant}), is zero. This normal form has been first given
in [5], for the formal power series case, and after in [2] for the smooth case.
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4. Complexity and asymptotic optimal synthesis

We discuss now the metric complexity. The results of this section are valid for all N ≥ 4, and in the absence
of Martinet points along the curve Γ, they are also valid for N = 3.

Using Theorem 3.4 (Normal Form), and the notations of Section 3, we consider a normal coordinate neigh-
borhood (ξ, w) of the curve Γ, and a normal frame along Γ, that we write as:

F = (F1, G1, . . . , Fn, Gn), for N = 2n + 1 or

F = (F1, G1, . . . , Fn−1, Gn−1, Hn), for N = 2n,

where

Fi = (1 + O2(ξ))
∂

∂xi

+ (
yi

2
αi(w) + O2(ξ))

∂

∂w
,

Gi = (1 + O2(ξ))
∂

∂yi

+ (−xi

2
αi(w) + O2(ξ))

∂

∂w
, (16)

Hn = (1 + O2(ξ))
∂

∂xN−1
+ O2(ξ)

∂

∂w
.

All the functions denoted by Oi(ξ) are (different) smooth functions in the variables (ξ, w), that are in the ith

power of the ideal generated by ξi, i = 1, . . . , N − 1.

Let us now consider any (smooth) admissible curve δ : [0, T ] → Tε, t 7→ δ(t) = (ξ̂(t), ŵ(t)) entirely contained
in the sub-Riemannian tube Tε, (hence, in normal coordinates, contained in the Riemannian tube, because in
normal coordinates, they are the same). Furthermore, let us assume that the following conditions hold:

ŵ(0) = w0, and ŵ(T ) = w1.

Assume that the curve δ is parameterized by arc length, assume also that the corresponding control functions
are ui(·) with i = 1, . . . , N − 1. The length of δ is T , and

N−1∑

i=1

u2
i (t) = 1, for all t ∈ [0, T ],

and also

dŵ

dt
=

N−1∑

i=1

(L1
i (ξ̂, ŵ) + O2(ξ̂))ui.

Let κ(w) = supi{|αi(w)|}, we have that κ is strictly positive on the interval [w0, w1]. Furthermore, for
N = 2n + 1 we have that

dŵ

dt
≤ κ(ŵ)

2
(|ŷ1| |u1| + |x̂1| |u2| + · · · + |ŷn| |uN−2| + |x̂n||uN−1|) + |O2(ξ̂)|,

whereas for N = 2n

dŵ

dt
≤ κ(ŵ)

2

(
|ŷ1| |u1| + |x̂1| |u2| + · · · + |ŷn−1| |uN−3| + |x̂n−1| |uN−2|) + |O2(ξ̂

)
|

≤ κ(ŵ)

2
〈|ξ̂|, |u|〉 + O2(ξ̂),
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where |ξ̂| and |u| are the vectors with entries |ξ̂i| and |ui| respectively. In any case, since ξ̂ is in the tube Tε,
and ‖u‖2 = 1, we have that

dŵ

dt
≤ κ(ŵ)

2
‖|ξ̂|‖2 ‖|u|‖2 + |O2(ξ̂)| ≤ ε

κ(ŵ)

2
+ Kε2,

for some constant K > 0. But then, there is a constant K ′ such that

dŵ

κ(ŵ)
≤ ε

dt

2
(1 + εK ′),

and consequently, there is a constant K ′′, such that

T ≥ 2

ε

∫ w1

w0

dw

κ(w)
(1 − εK ′′). (17)

Remark 4.1. In order to reduce the burden in the notation for the constants appearing in the estimates
(K, K ′, . . .), in the remaining of the paper, we shall abuse the notation using only one K for all the (different)
constants.

Now, we shall exhibit a (strong) asymptotic optimal synthesis. We know that, for ε small enough, the cylinder
Cε = {‖ξ‖ = ε} is transversal to the curve Γ. Let us consider also the following 2-dimensional cylinder

C1
ε = {ξ ∈ Cε | x2

1 + y2
1 = ε2}.

Then, for ε small enough, we have a (never vanishing) vector field Xε on C1
ε defined by the following three

conditions

a) Xε(ξ, w) ∈ ∆(ξ, w) ∩ T(ξ,w)

(
C1

ε

)
,

b) ‖Xε(ξ, w)‖g = 1, and

c) LXε
(w) > 0.

On the cylinder C1
ε , the integral curves of Xε satisfy:

ẇ =
α1(w)

2
ε + ε2F (ε, θ, w),

where F is a bounded function; and x1 = ε cos θ, y1 = ε sin θ. This can be shown by elementary but tedious
calculations using the normal form. This shows that, for ε sufficiently small, trajectories of Xε can join any w0

and w1 with w0 < w1 and (0, w0), (0, w1) ∈ Tε.
But then, since F is bounded on Tε and |α1(w)| > A > 0 for some constant A, there is a positive constant

K such that

ẇ

α1(w)
= ε

(
1

2
+ ε

F (ε, θ, w)

α1

)
≥ ε

2
− ε2K

2
.

In consequence, if T (ε) is the time to join w0 to w1, then:

∫ w1

w0

dw

α1(w)
≥ ε

2

(
1 − εK

)
T (ε),

and furthermore

T (ε) ≤ 2

ε

1

(1 − εK)

∫ w1

w0

dw

κ(w)
≤ 2

ε

∫ w1

w0

dw

κ(w)
(1 + εA),

for some A > 0, if ε is small enough.
Now, we can apply this to w0 and w1, such that:

Γ(0) = (0, w0), Γ(1) = (0, w1).
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Our trajectory does not join Γ(0) to Γ(1), since it is entirely contained in Cε. But then, any (ξ, w) ∈ Cε can
be joined to (0, w) in time ε, by definition of Cε, and by the fact that the rays through Γ in the planes Sw are

geodesics. Therefore, we can construct an admissible trajectory δ̂ from Γ(0) to Γ(1), entirely contained in Tε,
such that the time T (ε) to join Γ(0) to Γ(1) verifies:

T (ε) ≤ 2(1 + εA)

ε

∫ w1

w0

dw

κ(w)
+ 2ε, (18)

Since both curves are parameterized by arc-length, then (18) together with (17), imply

2(1 − εK)

ε2

∫ w1

w0

dw

κ(w)
≤ MCΣ(ε) ≤ 2(1 + εA)

ε2

∫ w1

w0

dw

κ(w)
+ 2.

As a conclusion we have that

MCΣ(ε)
s' 2

ε2

∫ w1

w0

dw

κ(w)
,

which finishes the proof of Theorem 1.6 and also that of Theorem 1.7 in the absence of Martinet points. Even
more, we have explicitly exhibited an asymptotic optimal synthesis that goes under the following steps:

a) Follow a horizontal geodesic, to go from Γ(0) to C1
ε ,

b) follow then the flow of Xε on C1
ε up to w1,

c) connect the point reached on C1
ε to Γ(1) by a horizontal geodesic.

5. Martinet Case

5.1. Proof of the Theorem 1.7

Now, we consider in R3 the orthonormal frame {F1, G1}, in normal form (15),

F1 = (1 + y2β(x, y, w))
∂

∂x
− xyβ(x, y, w)

∂

∂y
+

y

2
γ(x, y, w)

∂

∂w
,

G1 = −xyβ(x, y, w)
∂

∂x
+ (1 + x2β(x, y, w))

∂

∂y
− x

2
γ(x, y, w)

∂

∂w
.

Let us assume the existence of a single isolated Martinet point, at q = (x, y, w) = 0 (we know, generically
that Martinet points are isolated). Then:

γ(x, y, w) = γ0(w) + (x, y) · γ1(x, y, w), and γ0(0) = 0, (19)

here and from now, (x, y) · γ1 means the scalar product xγ1
1 + yγ2

1 .

For a generic problem Σ = (F1, G1, Γ), it is easy to check (we leave this to the reader), that
∂γ0

∂w
is non zero

at the Martinet point. In fact, |∂γ0

∂w
(0)| is an invariant of the problem.

We can change the parameterization of Γ using a smooth diffeomorphism Φ in such a way that, setting
w̃ = Φ(w), we get:

γ0(w̃)
∂

∂w̃
= −κw̃

∂

∂w̃
.

In what follows, we shall forget about w̃, and we shall take,

γ0(w) = −κw.
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Let us assume κ > 0 (the case κ < 0 is similar). Since the admissible curves are parameterized by arc length,
the controls u(t) and v(t) satisfy u2(t) + v2(t) = 1, and for a trajectory entirely contained in the tube Tε, we
have:

dw

dt
=
(
−κw + (x, y) · γ1(x, y, w)

)(y
2
u − x

2
v
)
. (20)

Let us take an admissible curve q(t) = (x(t), y(t), w(t)), such that w0 = w(0) < 0 < w(T ) = w1. And let us
consider t1 and t2 such that 0 < t1 ≤ t2 < T, w(t1) is zero for the first time, and w(t2) is zero for the last time
(continuity of q(t).)

Let us consider the piece w(·) > 0 of the curve (the piece w(·) < 0 is similar) and assume that q(t) is contained
in the ε-tube Tε. Then, on [t2, T ], we have:

∣∣∣y
2
u − x

2
v
∣∣∣ ≤ ε

2
, and

dw

dt
≤
(
κw + εK

)ε
2
,

since γ1(x, y, w) is bounded on the compact tube Tε.
Now, since w(·) is at least absolutely continuous then,

w̃(t) = w(t)e−
κ
2

ε(t−t2),

is also absolutely continuous. A direct estimation yields

dw̃

dt
=

dw

dt
e−

κ
2

ε(t−t2) − κε

2
w̃ ≤ κε

2
w̃ +

ε2

2
Ke−

κ
2
(t−t2) − κε

2
w̃,

but then

dw̃

dt
≤ ε2

2
Ke−

κ
2

ε(t−t2), and w̃(t) ≤ ε

κ
K
(
1 − e−

κ
2

ε(t−t2)
)

,

therefore

w(t) ≤ ε

κ
K
(
e

κε
2

(t−t2) − 1
)
≤ ε

κ
Ke

κε
2

(t−t2),

which means that:

(t − t2) ≥
2

εκ
ln

(
κw(t)

εK

)
= − 2

κ

(
ln ε

ε
− ln(κw(t)

K
)

ε

)
.

For the part of the curve corresponding to w(t) < 0, we get a similar estimation (changing w for −w in (20)
above, the computations are similar). At the end, if T is the time to connect w0 to w1, we obtain that:

T ≥ − 4

κ

ln ε

ε
+

2

εκ
ln

(
κ2w0w1

K2

)
,

which shows that:

MCΣ(ε) ≥ − 4

κ

ln ε

ε2
+

2

ε2κ
ln

(
κ2w0w1

K2

)
.

Now if we take any constant C such that 0 < C <
4

κ
, for ε small enough then

MCΣ(ε) ≥ −C
ln ε

ε2
. (21)

And the proof of Theorem 1.7 is complete.
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W

W=W1>0

W=Wc

0  W=W  < 0

Figure 1. The limit cycle

Remark 5.1. In fact, it can be proved that in general,

MCΣ(ε)
s' −C

ln ε

ε2
, where

4

κ
≤ C ≤ 12

κ
, (22)

however this estimation requires tedious calculations, that shall be discussed elsewhere. We limit ourselves to
analyze an example, for which the estimation (22) above holds.

5.2. An example.

Before starting with the example, we shall explain what should be a (weak) asymptotic optimal synthesis in
the general Martinet case (κ 6= 0 above). Starting with (20), we consider the cylinder Cε. Since Γ is transversal
to ∆, and Γ is compact, then for ε small enough, as in the section 4, ∆ is transversal also to Cε, and therefore,
∆ defines a vector field Xε on Cε, (see figure 1).

We see in equation (20) that, for |w| large, this vector field points in the direction of w = 0. Therefore, by
the Poincaré-Bendixon theorem, there is a limit-cycle.

It is possible to check that, for generic problems, this limit-cycle is not horizontal (not contained in a plane
{w=constant}), has size ε3, and is centered at a point wc of order ε2.

Then, a well defined synthesis goes under the following steps:

• Starting from w0, follow any integral curve of Xε, up to the first time it crosses the plane {w = wc}.
• Following horizontal geodesic, use at most 2ε units of time, to cross the plane {w = wc}.
• Following (in reversed time) a suitably chosen trajectory of Xε, reach the desired destination w1.

As we shall show in the example, this strategy gives a complexity which is strongly equivalent to −12

α
.

Example 5.2. Consider in R3 the frame
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F =
∂

∂x
+

y

2
γ

∂

∂w
,

G =
∂

∂y
− x

2
γ

∂

∂w
,

with γ = −αw + ax.
The fact that a is nonzero (an invariant fact in the general normal form) makes the distribution non-integrable,

and the limit-cycle non horizontal. In cylindrical coordinates, (w, θ, ε), it is to easy to see that:

Xε = −1

ε

∂

∂θ
+

ε

2
(−αw + aε cos θ)

∂

∂w
.

Then, we can explicitly compute the flow of Xε, to obtain

θ(t) = − t

ε
+ θ0, and

w(t) = e−
εα
2

tw0 +
ε2a

2

∫ t

0

e−
εα
2

(t−s) cos θ(s) ds.

After straightforward computations, we obtain

w(t) = (4 + α2ε4)−1

(
e−

εαt
2

[
4w0 + α2ε4w0 + aαe

εαt
2 ε5 cos(

t

ε
− θ0)

−aαε5 cos θ0 + 2ae
αεt
2 ε3 sin(

t

ε
− θ0) + 2aε3 sin θ0)

])
. (23)

The expression for the limit cycle is the following

θ(t) = − t

ε
,

w(t) =
aε3

4 + α2ε4

(
αε2 cos(

t

ε
) + 2 sin(

t

ε
)

)

which shows that wc = 0, and the size of the limit cycle is
a

2
ε3.

Now, starting from w0 > 0, we want to go to wc = 0, using (23). We get

0 = e−
εα
2

t
(
4w0 + 2aε3(sin θ0 + e

εα
2

t sin(
t

ε
− θ0))

)
+ O(ε4),

(where
O(ε4)

ε4
is bounded). We rewrite this:

4w0e
− εα

2
t = −2aε3

(
sin θ0e

− εα
2

t + sin(
t

ε
− θ0)

)
+ O(ε4). (24)

It is clear that this equation in t has a solution, for which:

e−
εα
2

t ' a

2w0
ε3.
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Hence,

t
s' − 6

αε
ln ε.

Taking into account the part w(t) < 0 of the trajectory, we get that the complexity C(ε) of our synthesis

(complexity =
1

ε
length):

C(ε) ' −12
ln ε

αε2
. (25)

6. The non generic case.

6.1. Normal form

Here we shall restrict ourselves to Cω (analytic) motion-planning problems. In this case, prenormal coordi-
nates of Theorem 3.1, Section 3 still exist, and they are Cω coordinates along the curve Γ.

Now, to obtain normal coordinates, (Theorem 3.2, Section 3), we need the analog of Lemma 7.1, Appen-
dix 7, for the analytic case. This is Lemma 7.2 of the same Appendix, which claims that in fact, the smooth
diagonalization property for the fundamental form α̃ always holds. Because of that, we have the following
theorem:

Theorem 6.1. Normal Coordinates in the Analytic Case. Let Σ = (F, G) ∈ Sω
R. Then, without any

extra assumption, the conclusions of Theorem 3.2, Section 3, still hold, and the normal coordinate system is
compatible with the analytic structure.

We have also the analog of the Theorem 3.4, Section 3.2 in the analytic context. Let us repeat it precisely:

Theorem 6.2. Analytic Normal Form Let Σ = (F, Γ) ∈ Sω
R, and let (ξ, w) be a fixed normal Cω coordi-

nate system along the curve Γ (it does exist by Theorem 6.1). Then, there is a family of analytic functions
α1(·), . . . , αn(·) : [0, 1] −→ R, such that the fundamental form α̃ along Γ is

α̃(w) = α1(w)dx1 ∧ dy1 + · · · + αn(w)dxn ∧ dyn, N = 2n + 1, or 2n + 2.

Also, there is an orthonormal analytic sub-Riemannian frame F = (Q, L), with the same properties 1) to 7) as
those of Theorem 3.4, Section 3.

The only difference is that these analytic functions α1(·), . . . , αn(·) are not necessarily positive everywhere
and their graphs might cross each other.

6.2. Metric Complexity

Let us make just the following assumption

κ(w) = sup
i

|αi(w)| 6= 0 for all w ∈ [0, 1]. (26)

In fact this is equivalent to say that the fundamental form α̃(w) 6= 0, for all w ∈ [0, 1]. Then, the statements
of Theorem 1.8 hold, namely
Complexity:

• Under assumption (26), formula (2) for the metric complexity is still valid.

• The function T 7→ 2

∫ T

0

dt

κ(t)
is of class C1, piecewise analytic, and its second derivative has jumps at

a finite number of times.
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6.3. Asymptotic optimal synthesis

We describe now the corresponding asymptotic optimal synthesis for the non-generic case. The function
κ : [0, 1] → R is clearly continuous, piecewise analytic, positive, with jumps on its derivative at a finite number
of points, say t1, . . . , tm. Between two successive times tj and tj+1, the supremum in assumption (26) is reached
by one of the eigenvalues moduli |αij

|. Also between the consecutive times tj and tj+1, we consider the cylinder

Cj
ε in the normal coordinates:

Cj
ε = {(ξ, w) : ‖ξ‖2

= ε2, x2
ij

+ y2
ij

= ε2}.
For ε small enough, ∆ is transversal to Cj

ε , and defines a vector field Xj
ε on Cj

ε .
Asymptotic optimal synthesis:

• between tj and tj+1: follow the flow (any trajectory) of Xj
ε

• at t = tj , or t = 0, or t = 1: follow horizontal geodesics in the planes {w=constant}, passing through Γ:
– at t = 0, in time exactly ε, reach C1

ε from Γ(0)
– at t = 1, in time exactly ε, go from Cm

ε to Γ(1)
– at t = tj , join Cj−1

ε to Cj
ε in time 2ε.

The proof of the fact that this is a strong asymptotic optimal synthesis, and the proof of Theorem 1.8, are
obvious modifications of the proof (Section 4) of Theorem 1.6: Theorem 6.2 allows us to repeat exactly the
same arguments between two successive crossing points tj and tj+1.

7. Appendix

7.1. Diagonalization of 1-parameter families of skew-symmetric matrices

Lemma 7.1. Let A : [0, 1] → so(N), t 7→ A(t), be a smooth (C∞) curve of real skew-symmetric matrices
satisfying that for each t ∈ [0, 1] :

a) The kernel of A(t) is at most 2-dimensional, and
b) A(t) has no double nonzero eigenvalue.

Then, A(t) is 2 × 2 block-diagonalizable by a smooth curve

[0, 1] −→ SO(N), t 7−→ U(t).

In the case N = 2n + 1, there is an extra 1 × 1 block.

Proof. First, let us consider the map [0, 1] → PN (R), t 7→ A2(t), where PN (R) denotes the space of real N ×N

symmetric matrices. By the assumptions a) and b), we have that for all t ∈ [0, 1], the eigenvalues of A2(t) are
double (at most one is identically zero and it is simple, if N = 2n + 1).
We take PA(t)(λ) to be either the characteristic polynomial of A(t), if N = 2n, or this polynomial divided by

λ, if N = 2n + 1. Then, PA(t)(λ) is a polynomial of degree n in X = λ2.
All the roots of polynomial PA(t)(X) are simple. Hence, for a root X0, we can take a t0 ∈ [0, 1], such that in a
neighborhood of t0, there is a smooth real-valued function t 7→ X(t) such that X(t0) = X0.

If X0 < 0, then, in a neighborhood of t0 we have that ± ı̇
√
−X(t), is a smooth couple of distinct eigenvalue of

A(t). The only thing that might be unclear is that if X0 = 0 then ±ı̇
√

−X(t) is smooth. In any case, we have
at least n − 1 positive smooth functions

[0, 1] −→ R, t 7−→ αj(t),

such that ±ı̇αj(t) are simple eigenvalues of A(t). These functions are smooth and globally defined on [0,1]. Now
fix one of these couples of eigenvalues ±ı̇ αj(t) and consider the maps:

[0, 1] −→ PN (R), t 7−→ A2(t) + α2
j (t)Id.
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The kernels Vt of these matrices A2(t) + α2
j (t)Id, are well defined, smooth and 2-dimensional. Then the set of

the couples (t, Vt) defines a smooth sub-bundle of the trivial bundle

Π : [0, 1]× RN → [0, 1].

This sub-bundle is a vector bundle of 2-planes over [0, 1]. Then, it is trivial and possesses a smooth nonzero
section t → Xt. We can assume that ‖Xt‖ = 1. The restriction of the Euclidean metric g on RN to this bundle
defines the following two smooth curves:

t 7−→ ±Yt, such that ‖Yt‖ = 1, 〈Xt, Yt〉g = 0.

We choose one of these curves, say t 7→ +Yt, and then, we have a smooth map t 7→
(
X(t), Y (t)

)
, defined on

[0, 1], such that for all t ∈ [0, 1], the couple (Xt, Yt) forms an orthonormal basis of the kernel:

ker
(
A2(t) + α2

j (t)Id
)
.

For N = 2n + 1, we have also the mapping t 7→ V̄t = kerA2(t), which defines a bundle of lines over [0, 1], that
has also a nonzero smooth section t → X̄t, with

∥∥X̄t

∥∥ = 1.

Now if N = 2n, it remains a single couple of eigenvalues, ±ı̇αn(t) such that α2
n(t) is smooth, but vanishes

somewhere, and it is not clear that αn(t) is smooth. But then the space:

Vt = ker
(
A2(t) + α2

n(t)Id
)
,

is still well defined and smooth (we may also get it as the one which is orthogonal to all the other smooth vector
bundles).
Then, in the same way, we obtain a couple

(
Xt, Yt

)
of smooth orthogonal vectors in this kernel. Now we have

the mapping:

[0, 1] −→ SO(N), t 7−→ U(t),

which is smooth, and block-diagonalizes the curve A(t). This shows moreover that t 7→ αn(t) is smooth.
�

In the analytic case, there is a much stronger result. Let us consider the real Cω map:

[0, 1] −→ so(N), t 7−→ A(t).

It follows from known results in perturbation theory for linear operators, see for instance [13], that in the
complex plane C, there is a neighborhood V ([0, 1]) ⊂ C of the interval [0, 1], and a holomorphic map,

V ([0, 1]) −→ MN (C), t 7−→ U(t),

such that U(t) is unitary when restricted to [0, 1], and diagonalizes A(t) for all t. The following lemma is an
immediate consequence of these considerations.

Lemma 7.2. Given any Cω map

[0, 1] −→ so(N), t 7−→ A(t).

There is a Cω map

[0, 1] −→ SO(N), t 7−→ U(t),

that 2 × 2 block-diagonalizes A(t) for all t. If N = 2n + 1, then there is an extra 1 × 1 block.



TITLE WILL BE SET BY THE PUBLISHER 21

7.2. Distinguished sets of the Lie algebra of skew-symmetric matrices

We consider in this paragraph basic properties of certain distinguished sets of the Lie algebra so(N) of
skew-symmetric matrices, such sets play a role in the proofs of our results. First it is easy to prove the following
general fact:

The subset Ân ⊂ so(N) of matrices with kernel of dimension exactly n, is a sub-manifold of

codimension
n(n − 1)

2
.

Observe that not all n are possible for each N , since both must have the same parity. As easy consequences of
this general result we have the following three properties.

F1. The subset A1 of so(2n) of matrices that have a nonzero kernel, is an algebraic closed set with codi-
mension 1.

F2. The subset A3 of so(2n + 1) of matrices that have a non-minimum kernel (i.e. not of dimension 1) is
an algebraic closed set with codimension 3.

F3. The subset A2 of so(2n) of matrices that have a kernel of codimension > 2 (i.e. ≥ 4) is algebraic,
closed, and of codimension 6.

The following property is less straightforward and we shall provide a proof.

F4. The subset A4 of so(N) of matrices with a double nonzero eigenvalue is semi-algebraic, of codimension
3. Its closure A4 has the same codimension.

Proof. The fact that A4 is semi-algebraic can be easily verified, we check only that the codimension of A4 is
≥ 3. In fact, this is the only result we use in the paper. The set A4 is the union of the orbits under conjugation
in SO(N) of block-diagonal matrices of the form:

{
diag(αJ, αJ, α3J, . . . , αnJ), if N = 2n, and
diag(αJ, αJ, α3J, . . . , αnJ, 0), if N = 2n + 1,

with α 6= 0 and J =

(
0 −1
1 0

)
.

Let D be the set of such matrices, and let Â4 ⊂ D be the set of generic elements of D, that is, those elements
for which the matrices

{
diag(α3J, . . . , αnJ), if N = 2n, and
diag(α3J, . . . , αnJ, 0), if N = 2n + 1,

are regular elements of so(N − 4), that further satisfy α 6= 0, α 6= ±αj and αj 6= 0.

Then, for D ∈ Â4 an easy computation shows that ker adD = g× cN−4, where cN−4 is a Cartan sub-algebra
of so(N − 4), and g is the Lie algebra of matrices of the form:




0 a c d

−a 0 −d c

−c d 0 e

−d −c −e 0


 .

Let now G be the 4-dimensional Lie group corresponding to g. The stabilizer S1 of D ∈ Â4 is S1 = T(N−4)×G,
where T(N − 4) is a maximal torus of SO(N − 4). Its dimension is dim(S1) = 4 + n− 2 = n + 2. Therefore, the
orbit under conjugation of D has dimension M − n − 2, where

M =
N(N − 1)

2
.

Stabilizers of non-generic points of D are bigger, hence the orbits of these points have lower dimension. At
the end, all of these orbits under conjugation of the elements of D have dimension ≤ M − n − 2. Since the
dimension of D is n− 1, it follows that the dimension of A4 is smaller than M −n− 2 + n− 1 = M − 3. Hence:
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codim A4 ≥ 3.

�
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