
310/1779-5

Fourth Workshop on Distributed Laboratory Instrumentation
Systems

(30 October - 24 November 2006)

���

Linux Refresher (2)

Razaq Babalola IJADUOLA

These lecture notes are intended only for distribution to participants

make

'make' is a command generator.

From a description file and general templates it
creates commands for the shell.

'make' sorts out dependencies among files.

TV)3KG continue..
A program often consists of several source files,
header files, libraries.

When one of these is modified, you must rebuild the
program, by re-compiling some of the files, but not
necessarily all, and then re-linking the object files,
'make' decides what must be done, basing itself on the
dependencies and the last modification date/time of
each file.

If file A depends on file B and B was modified after A
had been built, then A must be re-built:
compiled, linked, edited, substituted in a library or
what have you.

TV)3KG continue..

Generally you invoke 'make' by typing:

make myprogram

'myprogram' is the target, it is built from one or more
files, the 'prerequisites' or 'dependencies'.

The dependencies are specified in a description file
(Makefile or makefile), together with the commands
to be executed to build the target.

IT)3KG continue..
Example of a Makefile:

program : main.o iodat.o dorun.o lo.o /usr/lib/crtn.a
cc -o program main.o iodat.o dorun.o lo.o /usr/lib/crtn.a

main.o : main.c
cc -c main.c

iodat.o : iodat.c
cc -c iodat.c

dorun.o: dorun.c
cc -c dorun.c

lo.o: lo.s
as -o lo.o lo.s

Note that there are dependency lines or rule lines containing a':' and
command lines, starting with a 'tab' character.

TV)3KG continue..

The example is rather clumsy, repetitive. Things
become simpler by using macros and by exploiting
the suffix rules.

A macro is defined as:

name = "a text string" ('quoted1 if necessary)

You refer to a macro with:

$(name) or ${name}

IT) 3 KG continue..

Example:
LIB = -1X11
objs = drawable.o plot_points.o root_data.o
CC = /usr/bin/gcc
23 = "This is the 23rd run"
OPT = # empty now, use later
DB = -g
BINDIR = /usr/local/bin
plot: ${objs}

${CC} -oplot${DB} ${OPT} ${objs} ${LIB}
mv plot ${ BINDIR}

TV)3KG continue..

When you now type: make plot the shell will receive
the following commands:

/usr/bin/gcc -o plot -g drawable.o plot_points.o
root data.o -1X11

mv plot /usr/local/bin

1713KG continue..
Macros can be nested. The order of definition is
immaterial, 'make' has also macros defined
internally.

Shell environment variables can be used as macros in
a Makefile. So, if you have a shell environment
variable:

DIR = /usr/proj
and you have 'exported' it:
export DIR (for bash) or:
setenv DIR /usr/proj (for tcsh)

TV)3KG continue..
then you may use ${DIR} in your Makefile
SRC = ${DIR}/src

myprog :
cd${SRC}

TV)3KG continue..

These are the very essentials only of 'make1. For the
details (many!), see the man pages or the book by
A.Oram and S.Talbott, Managing projects with
make. The examples were taken from this book.

'make' is absolutely essential for developing software
of some complexity, especially if done by a team of
programmers.

gcc stands for "GNU Compiler Collection."
It contains compilers for C, C++, Objective C,
Fortran, Java and a few more.

QCC continue..

Usually the compiler chain is invoked with:

gcc [-options] -o Prog filel.c file2.c...filek.s

(or something similar), where Prog is the name of
the executable file that is to be produced as the end
product.

QCC continue..
C compiler consists of a chain of programs:

• preprocessor (cpp) transforms the '.c' program
into a '.i1 file, using the '.h1 files.

• compiler (ccl) does the real job:
translates C code into assembly code ('.s1 file)
• assembler (as) translates the '.s' file into object

code ('.o' file)
• linker (Id) 'glues' all '.o' files together
and includes functions from libraries.

A cross-compiler has an overall wrapper
program, usually called xgcc.

CJCC continue..
The most important options are:

; produce information for the debugger.
•-I incdir include '.h' files from 'incdir'.
•-L libdir search libdir' for libraries.
•-1 libname search the library libname'

for functions to link' in.
•-o prog name the executable: 'prog'.

1 produce only '.s' file(s). Don't assemble
•-c produce object ('.o') files. Don't call

the linker to produce an executable.
•-Wall give all possible warnings.
•-O2 optimize the code produced,
•-v verbose mode (I find it useful).

CJCC continue..

Normally, you will wisely specify the options
to use in your Makefile.

gdb is a symbolic debugger, which means that you
can use line numbers and names of variables and
functions as defined in the C source code.

The executable to be debugged must have been
compiled using the '-g' option of gcc.

What Next?
Finally, after this workshop those who are new to linux
and windows users can continue to work in a linux
environment such as:

•cygwin can be use to run unix commands and
applications in windows. Can also be use to connect to
linux remotely, http://www.cygwin.com

•There are projects like Ubuntu, knoppix etc for those
who are new to linux.They are easy to install and work
with.

http: //www. ubuntulinux. org/

What Next? continue...

w Small linux - Damn Small Linux(DSL) and Puppy
Linux. These are fully functional linux that can fit on
a small CD or jumpdrive between 50-70Meg.

http ://w w w. damnsmalllinux. org/
http://www.puppyos.com/

For the various distributions of linux, try:
http://distrowatch.com

More information about linux from:
http://www.linux.org

