
310/1779-4

Fourth Workshop on Distributed Laboratory Instrumentation
Systems

(30 October - 24 November 2006)

���

Linux Refresher (1)

Razaq Babalola IJADUOLA

These lecture notes are intended only for distribution to participants

Linux Refresher
Fourth Workshop on

Distributed Laboratory
Instrumentation Systems

(Trieste - Italy)

Razaq Ij aduola
30 October to 24 November 2006

Introduction

Linux is a 'UNIX'-like operating system
It was launched in 1991 by Linus Torvalds, a
Finnish student.
Hundreds of people contributed to it and
thousands tested and reported bugs.
It is therefore extremely stable.
Millions of people, institutes and firms are using it
now.
It is distributed under the 'GNU General License'
and it is practically cost-free.
You can download it at no cost at all.

At the risk of boring those who know Linux already, I
will present some of its features and show you a few
commands which hopefully will turn out to be useful in
your work during the next weeks (and later!).

Practically all present day operating systems are sort of
descendants of UNIX: even MSDOS and Windows
have taken features of it.

Linux is the interface between the hardware of the
machine and programs running on it.

A program requests services from the system via a
system call.

Such a system call could request to read a given sector
from disk, or to allocate a block of memory, or to send
out a character on the serial port, etc.

A user, sitting in front of his terminal, interacts with the
system via a command interpreter or shell.

The shell translates from some 'jargon' which is not too
difficult to understand into sequences of mysterious
system calls.

There are a number of shells in circulation
('sh', 'ash', 'ksh', 'csh', 'tosh1, etc.).
You are supposed to use bash, the 'Bourne Again Shell'.

Features of Linux
Here are some of the features of Linux:

rFiles are stored in a hierarchical tree structure of
directories and subdirectories (/ = top level).
Shorthand for directories:

• . stands for 'present directory'
•.. stand for 'parent directory'
• ~ stands for user's home directory.

Preference files (hidden files) starts with "."
.bashrc, .mozilla/

rFiles have access permissions (drwxr-xr-x).
file type I owner I group I others (everyone else)

Features of Linux
rFiles are a collection of bytes. No distinction
between file types.
rFilenames are not limited to eight characters, there
no suffixes.
rLinux is a multi-tasking, multi-user, time-sharing
system.
rPrograms of a user are protected against incursions
by other users.
rMemory can be allocated dynamically.
rYou must also strongly resist pushing 'reset' or
-hitting 'Ctrl-Alt-Delete'.

Linux, with the help of the 'shell1 is very flexible:
•Most commands have (lots of) options.
•You may change the name of the commands, or define (a

set of) standard options for each of them: aliases.
Examples:

alias ts "cd /usr/local/micros/m6809/src/tests"
alias cp "cp -p"

•You can also access files with a sort of 'pseudonym',
using 'symbolic links'.

In-s targetname linkname
•Command 'completion':

You type:
less longf tab' (longf, followed by a 'tab')
and the shell translates into:
less longfilename.longpostfix

if that is an unambiguous, existing filename.

r User environment - a collection of specially named
variables that have specific values.

• They are called environment variables:
to view the environment use:

• env or printenv (depending on the type of shell)
EX=/usr/local/micros/m6809/bin
r If you now type: $EX/ccO9 -v -o myprog myprog.c the

shell will launch execution of:
/usr/local/micros/m6809/bin/cc09 -v -o myprog

myprog.c
• Use the echo command to list specific environment

variable:
' echo $HOME or echo $EX

•An important environment variable is PATH.
PATH contains the list of directories where shell will
look for the executable specified (by you) on the
command line. You can set the PATH:
PATH=$PATH:/home/razaq/workarea

"Getting help
•You can get help on practically all commands from the
man pages (manual pages).

man command
•It is wise to invoke xman & after logging in.
•Other way to find help is to use -t for the command
option.

Using the commands
rYou must get accustomed to command names:
r'passwd' for changing the password
•'cp' for copy,
•'rm' for del,
-'Is' for directory list.
•'mv' for moving or renaming a file
•'mkdir1 for creating a directory
•'chmod' for changing the permission on a file or dir.
r'less' or 'more' or 'cat' for listing the contents of a file
r'ps' for reporting a snapshot of the current processes
r'pwd' for showing the current location or current
working directory

When you have logged in, you will find yourself
working in your home directory.
When login for the first time, you may want to
change your password using passwd. You will be
asked for your current password and a new one.

The contents of the any directory can be listed:
Is

You move to another directory with:
cd dir-path, where 'dir-path' is either a full or a
relative pathname.

r If I am in /home/razaq and I want to
/home/jim/1 do:
cd /home/jim/ or
cd ../jim/
cd $EX takes me straight to:
/usr/local/micros/m6809/bin

:o to

If you are lost and don't know where you are, usin,
pwd will show your current location,
creating a new directory:
mkdir newdirname

moving a file from one directory to another:
mv source existing_dir.
can also use mv to rename a file or directory

mv source newname
To delete a directory:
rmdir dir_to_delete
To delete a file(s) or directory:
rm filename
THINK TWICE BEFORE USING rm and rmdir !!!!
You can change the permission mode for file and dir.

chmod [ugoa] [+-=] [rwx]
1 To display information about the active processes one
can use ps:
ps [options]

• Pipes:
command 1 I command2 means:
Output from 'command 1' is fed into 'command2' as
its input, 'command 1' and 'command2' are so-called
filters.

• Normally when shell launches a command, it
waits for its completion. Appending an '&' to a
command changes this behaviour:

the shell takes back control immediately
after having launched the command.

• Consecutive commands:
• ; separates two commands; they will be executed

one after the other.

Redirection:
- > file —Output destined for the screen
(stdout) is written to 'file'. The file is overwritten.
• » file —As above, but output is appended to

existing file.
• 2> file and 2 » file: same as above, but now

concerning error output (stderr).
• < file —Input is taken from 'file', instead of

keyboard (stdin).

"Grouping commands:
•(comml ; comm2) any
comml and then comm2 will be executed before
'any' thing following after the ')' will be done

So, the following is perfectly legitimate (and
even very useful!):

dump /usr/local f -1 (cd /mnt/usr/local; restore f -)

• Shell scripts:
You may collect a series of shell commands into a file
After having set the execute permission for this file,
you can execute its contents with a single command:
the name of the shell script.

The first executable line in the script must be:

#!/bin/sh or #!/bin/bash or similar.

• Utility Programs
There are a number of utility programs you should
be aware of. They can be very useful and you may
find yourself using them repeatedly when you are
developing software.

• The programs we want to talk about very
briefly are:
cat, more, less, whereis, find, grep, tar, and sed.

• We will also dwell on:
make, gcc, gdb , to conclude with the
development cycle:
—> edit —> compile —> debug -->

cat, more or less
cat filename lists a text file to your screen, you can
read the last few lines.

• more filename does the same, but shows one
screenful at a time.

(SPC) scrolls one entire page, (RET) one line.

• less filename does it better: you can go back also,
one screenful at a time, typing a' '.

• cat filel file2 filen > newfile
concatenates the files and writes result to newfile.
• You may also try head and tail.

whereis, find
whereis name-of-executable will show where the
executable file is stored.

• find is of much more substance. It will find files of a
given name, date, or length or older than date, longer
than length, etc.

What is more, once a satisfactory file is found, you can
make 'find' to do something with it.

whereis, find cont.
• One can explain 'find' for hours. For now, four

"simple" examples:
find /usr/bin -name unzip

find. -cmin -60

find .. -size +11 Ok

find .. -size +110k -printf "\t %s \t %p \ri

find .. -size +110k -exec tar zcvf {};

whereis, find cont
Reading the 10 or so man pages is a MUST , if
you wish to make reasonable use of 'find'.

'tar' stands for 'tape archiving' which was the original
aim of this useful program. It is now often used to
make a nice compressed package of a (large) number
of files:
tar zcvf parcel.tar.gz filel file2 filen or
tar zcvf parcel2.tgz ./*

The latter will create (option 'c') verbosely (V)
a compressed ('z') tar' file (') parcel2.tgz
from all files in the current directory.

Once created, you can inspect the contents:
tar ztvf parcel2.tgz I less

tar continue...
You can unpack your 'parcel2.tgz' with
tar zxvf parcel2.tgz

'sed' is a "stream editor" or "filter". It works on the
contents of an entire file to delete, insert, append lines
or replace a string and more. It works non-interactively

For this reason you will see sometimes in a
Makefile things looking like:
itmp="echo $$itmp I sed 's;\.\./;;'"

sed continue...
More down-to-earth use are:

sed -e 'l,10d' sample.txt

-e option to sed tells it to use the next item as
command.
d command tells sed to delete lines 1 through 10 of

the input stream sample.txt.

sed cont...
sed s/Jim/Pablo/g infile > outfile;

s means substitute Jim with Pablo.

Note that you can use 'sed' in pipes:

cat infile I sed -e s/Jim/Pablo/g >outfile

'grep' is a most useful program:

grep -n string *.c *.h
will print for you all lines in all '.c' and
'.h' files in the current directory where the
string has been found, preceded by the
filename and the linenumber.
Is -1 — I grep Vps
will show all your '.ps' files and only those

grep continue...

Similarly for creation dates:
Is -1 — I grep May or even:
Is -1 — I grep \.ps I grep -v May

The '-v' option will show all lines that do NOT
contain the strins.

