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IC design methodology and Tools

• Dealing with complexity – design methodology
• Low power
• Design styles
• Design tools:

– Schematics
– Layout, 
– Simulation, 
– HDL: VHDL and Verilog, 
– Place and route, 
– Synthesis
– Design verification
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Evolution (revolution) of IC design
• If cars had the same rate of improvement as 

Integrated circuits a car today could:
– Drive at the speed of light
– Drive years on one single tank of petrol
– Transport a whole city in one car

• The micro electronics industry only stays well alive 
(continuous growth) because of this rapid progress. 
(performance doubles every ~2 years)
– This rate of progress MUST be maintained to keep 

IC industry in good shape.
– The life time of a technology generation is ~5 years

• Production is cheap in large quantities because of 
lithographic processing (“like printing stamps”)

• Design is complicated and very expensive
(design mistakes costs lot of time and money)
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How to put together millions of transistors 
and make it work ?

• Well chosen design methodologies
• Well chosen architectures
• Extensive use of power full CAE tools
• Strict design management
• Well chosen testing methodologies
• Design re-use
• One can NOT use same design 

methodologies and architectures when 
complexity increases orders of magnitude
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Design Methodology
• Specification
• Trade-off’s
• Design domains - abstraction level
• Top-down - Bottom up
• Schematic based
• Synthesis based
• Getting it right – Simulation and verification
• Lower power
• Design styles
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Specification
• A specification of what to construct is the first major step.
• Compromise between what is wanted and what can be made

Requires extensive experience to define best compromise

• A detailed specification must be agreed upon with the system 
people. Major changes during design will result in significant 
delays.

• Requirements must be considered at many levels
System, sub-system, Board, Hybrid, IC

• Specifications can (must) be 
verified by system simulations.

• Specification is 1/4 - 1/3 of total 
IC project !.
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Trade offs

Chip size

Power

Technology

Reliability

Packaging

Production
costs

Speed

Integration

Testing

Tools

Development
costs

Time
Schedule

Man power

Flexibility

Availability
Partitioning

Radiation
hardness
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Design domains

Structural Behavioral

Geometric

Processor, memory

ALU, registers
Cell

Device, gate

Transistor

Program

State machine
Module

Boolean equation
Transfer function

IC

Macro

Functional unit

Gate

Masks

Gajski chart
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Abstraction levels and synthesis

Architectural level Logic level Circuit level
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For I=0 to I=15
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Logic
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Circuit
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Layout level

Layout
synthesis

Silicon compilation (not a big success)

(Library)
(register level)
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Top - down design
• Choice of algorithm (optimization)
• Choice of architecture (optimization)
• Definition of functional modules
• Definition of design hierarchy
• Split up in small boxes - split up in small boxes - split up in small boxes

• Define required units ( adders, state machine, etc.)
• Floor-planning
• Map into chosen technology 

(synthesis, schematic, layout)
(change algorithms or architecture if speed or chip size problems)

• Behavioral simulation tools
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Bottom - up
• Build gates in given technology
• Build basic units using gates
• Build generic modules of use
• Put modules together
• Hope that you arrived at some reasonable 

architecture
• Gate level simulation tools

Old fashioned design methodology a la discrete logic

Comment by one of the main designers of a Pentium processor
The design was made in a typical top - down , bottom - up , 

inside - out design methodology
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Schematic based
• Symbol of module defines interface
• Schematic of module defines function
• Top - down: Make first symbol and then schematic
• Bottom - up: Make first Schematic and then symbol

Symbol

Schematic

Basic gate Logic module

Long and tedious
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Synthesis based
• Define modules and their behavior in a proper 

language (also used for simulation)
• Use synthesis tools to generate schematics (netlists)

always @(posedge clk)
begin
if (set) coarse <= #(test.ff_delay) offset;
else if (coarse == count_roll_over)

coarse <= #(test.ff_delay) 0;
else coarse <= #(test.ff_delay) coarse + 1;
end

Only possible way to make designs with millions of gates
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Getting it right - Simulation
• Simulate the design at all levels (transistor, gate, system)
• Analog simulator (SPICE) for transistor level
• Digital gate level simulator for gate based design
• Mixed mode simulation of mixed analog-digital design
• Behavioral simulation at system/module level (Verilog, VHDL)
• All functions must be simulated and verified.
• Worst case data must be used to verify timing
• Worst - Typical - Best case conditions must be verified

Process variations, Temperature range, Power supply voltage
Factor two variation to both sides ( speed: ½ : 1 : 2)

• Use programming approach to verify large set of functions
(not looking at waveform displays)
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Low power design

• Low power design gets 
increasingly important:
Gate count increasing > increasing power.
Clock frequency increasing > increasing power.
Packaging problems for high power devices.
Portable equipment working on battery.

• Where does power go:
1: Charging and dis-charging of capacitance: Switching nodes
2: Short circuit current: Both N and P MOS conducting during transition
3: Leakage currents: MOS transistors (switch) does not turn completely off

• The power density of modern ICs are 
at the same level as the hot plate on 
your stove and is approaching the power 
density seen in a nuclear reactor !

Vdd

Gnd

P = Nswitch* f * C * Vdd
2 2 +  N+  Nswitch switch * f * E* f * Eshortshort +  N  *I+  N  *Ilea klea k* V* Vdddd

C

K*Vdd2
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Decrease power
• Lower Vdd: 

5v > 2.5v gives a factor 4 !
New technologies use lower Vdd because of risk of gate-oxide break-down and 
hot electron effect.

• Lower Vdd and duplicate 
hardware

• Lower number of 
switching nodes
The clock signal often 

consumes 50% of total power

Functional
unit

One functional unit:
frequency = 1
Vdd = 1

Functional
unit 1

Two functional units:
frequency = 1/2
Vdd = 1/2 (optimistic)

Functional
unit 2

P= 1 * 12 = 1
P = 2 * 1/2 * (1/2)2 = 1/4

Clock

Unit 1

Ena

Unit 2

Ena

Unit 3

Ena

Clock gating
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Design styles

• Full custom
• Standard cell
• Gate-array
• IP-blocks - Macro-cell
• “FPGA”
• Combinations
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Full custom
• Hand drawn geometry
• All layers customized
• Digital and analog
• Simulation at transistor level (analog)
• High density
• High performance
• Looong design time

IN Out

Vdd

Gnd
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Standard cells
• Standard cells organized in rows (and, or, flip-flops,etc.)
• Cells made as full custom by vendor (not user).
• All layers customized
• Digital with possibility of special analog cells.
• Simulation at gate level (digital)
• Medium- high density
• Medium-high performance
• Reasonable design time Routing

Cell

IO cell
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Gate-array
• Predefined transistors connected via metal
• Two types: Channel based, Sea of gates 
• Only metal layers customized
• Fixed array sizes (normally 5-10 different)
• Digital cells in library (and, or, flip-flops,etc.)
• Simulation at gate level (digital)
• Medium density
• Medium performance
• Reasonable design time

Sea of gates Channel based

Oxide isolation

Gate isolation
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IP blocks
• Functional blocks from specialized companies

– Rely on external expertise to reduce design time
– Quite a large selection now available

• Hard blocks
– Full custom by vendor, Technology dependent
– All layers customized: High density, High performance
– Digital and analog (ADC)
– Simulation at behavioral or gate level (digital)
– Memories, ADC, DAC, PLL, CPU, etc.

• Soft blocks
– Synthesizable HDL model, Technology independent
– User to synthesize into given technology using available 

libraries and perform himself timing and design 
verification

– Digital blocks: DSP, processor, MPEG, etc.
• Use standard on-chip busses (like on boards)

– New trend: on-chip networks (like computer networks)
• “System On Chip”: SOC
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FPGA = Field Programmable Gate Array
• Programmable logic blocks, Digital only
• Programmable connections between logic blocks (and memories)
• No layers customized (standard devices)
• Low - medium performance (up to a few hundred MHz)
• Low - medium density (~1M gates)

– Be careful with how FPGA companies quote gate equivalents !
• Hardwired blocks can increase performance significantly

– Memory, CPU, DSP, high speed serial, PLL, DLL, etc.
• Programmable: SRAM, EEROM, Flash, Anti-fuse, etc
• Easy and quick 

design changes
• Cheap design tools
• Low development cost
• High device cost
• NOT a real ASIC

(Application Specific 
Integrated Circuit)

• Not part of my lecture
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High performance devices
• Mixture of full custom, standard cells and macro’s
• Full custom for special blocks: Adder (data path), etc.
• Macro’s for standard blocks: RAM, ROM, etc.
• Standard cells for non critical digital blocks

Pentium Power PC
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Example: High resolution TDC for HEP

High resolution TDC
25 ps binning
40 MHz external clock
320 MHz internal TDC clock from PLL
“Only” 1 million transistors
0.25 um CMOS
2 full custom macros
5 memory macros
50k Standard cells
~5 man  years design
~2 man years test and design fix
Total design price: ~1 million $
Production cost: 10$/chip
Production volume: ~50k chips
Total production cost: 500k$
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Tools for Cell development (Analog/digital)
• Schematic entry (transistor symbols)
• Analog simulation (SPICE models)
• Layout (layer definitions)
• Design Rule Checking, DRC ( design rules)
• Extraction (extraction rules and parameters)
• Electrical Rule Checking, ERC (ERC rules)
• Layout Versus Schematic, LVS ( LVS rules)
• Analog simulation.
• Characterization: delay, setup, hold, loading sensitivity,etc.
• Generation of digital simulation model with back annotation.
• Generation of synthesis model
• Generation of “black-box” for place & route
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Tools for Digital design
• Behavioral simulation
• Synthesis (synthesis models)
• Gate level simulation (gate models)
• Floor planning
• Loading estimation (loading estimation model)
• Simulation/timing verification with estimated back-annotation
• Place and route (place and route rules)
• Design Rule Check, DRC (DRC rules)
• Loading extraction (rules and parameters)
• Simulation/timing verification with real back-annotation
• Design export
• Testing: Test generation, Fault simulation, Vector translation

Or direct schematic entry
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Design entry
• Layout

– Drawing geometrical shapes: Defines layout hierarchy
Defines layer masks

Requires detailed knowledge about CMOS technology
Requires detailed knowledge about design rules (hundreds of rules)
Requires detailed knowledge about circuit design
Slow and tedious
Optimum performance can be obtained
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• Schematic
– Drawing electrical circuit: Defines electrical hierarchy

Defines electrical connections
Defines circuit: transistors, resistors,,,

Requires good circuit design knowledge for analog design
Requires good logic design knowledge for digital design (boolean logic, state machines)
Gives good overview of design hierarchy
Significant amount of time used for manual optimization

Transistor level Gate level Module level
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• Behavioral + Synthesis
– Writing behavior (text): Defines behavioral hierarchy

Defines algorithm
Defines architecture

– Synthesis tool required to map into gates
– Often integrated with graphical block diagram tool.

always @(posedge clk)
begin
if (set) coarse <= #(test.ff_delay) offset;
else if (coarse == count_roll_over)

coarse <= #(test.ff_delay) 0;
else coarse <= #(test.ff_delay) coarse + 1;
end

module add_and_mult( a,b,c, out)
input[31:0] a,b,c;
output[31:0]   out;
wire[31:0] internal_add;

adder32 add1(a,b, internal_add);
multiplier32 mult1( internal_add, c, out);
endmodule

assign #(test.logic_delay)
bsr_clk = ~(m_extest | m_sample | m_intest) | clk_dr, 
bsr_shift = (m_extest | m_sample | m_intest) & shift_dr,;
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Verification
• Design Rule Check (DRC):

Checks geometrical shapes: width, length, spacing, overlap, etc.

• Electrical rule check (ERC):
Checks electrical circuit: unconnected inputs

shorted outputs
correct power and ground connection

• Extraction:
Extracts electrical circuit: transistors, connections, capacitance, 

resistance

• Layout versus schematic (LVS):
Compares electrical circuits: transistors: parallel or serial
(schematic and extracted layout)

a

b

IN Out

Vdd

Gnd

10 10 10 10 10 10 40

EXT LVS

?
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Simulation
• Simulates behavior of designed circuit

– Input: Models (transistor, gates, macro)
Textual netlist (schematic, extracted layout, behavioral) 
User defined stimulus

– Output: Circuit response (waveforms, patterns), Warnings
• Transistor level simulation using analog simulator (SPICE)

– Time domain
– Frequency domain
– Noise

• Gate level simulation using digital simulator
– Logic functionality
– Timing: Operating frequency, delay, setup & hold violations

Timing calculator needed to calculate delays from extracted 
parameters

• Behavioral simulation
– System and IC definition ( algorithm, architecture )
– Partitioning
– Complexity estimation

Normally same
simulator
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Gate level models
• Border between transistor domain 

(analog) and digital domain
• Digital gate level models introduced to 

speed up digital simulation.
• Gate level model contains:

– Logic behavior
– Delays depending on: operating conditions, process, 

loading, signal slew rates
– Setup and hold timing violation checks

• Gate level model parameters extracted 
from transistor level simulations and 
characterization of real gates.



Trieste 2006 J.Christiansen/CERN 33

Place and Route
• Generates final chip from gate level netlist

– Goals: Minimum chip size
Maximum chip speed.

• Placement:
– Placing all gates to minimize distance between connected 

gates
• Floor planning tool using design hierarchy
• Specialized algorithms ( min cut, simulated annealing, etc.)
• Timing driven
• Manual intervention

– Very compute intensive
Hierarchy based floor planning

Simulated annealing

High temperature:
move gates randomly

Low temperature:
Move gates locally

Min cut

Keep cutting design
into equal sized pieces

For each cut:
Move gates around
until minimum connection
across cut



Trieste 2006 J.Christiansen/CERN 34

• Routing:
– Channel based: Routing only in channels between gates 

(few metal layers: 2)
– Channel less: Routing over gates

(many metal layers: 3 - 6)
– Often split in two steps:

• Global route: Find a coarse route depending on local routing 
density

• Detailed route: Generate routing layout

Channel based Channel less
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• Performance of sub-micron CMOS IC’s are to a large 
extent determined by place & route.
– Loading delays bigger than intrinsic gate delays
– Wire R-C delays becomes important in sub-micron
– Clock distribution over complete chip gets critical at 

operating frequencies above 100Mhz.

Number of wires

Wire length

Local connections

Global connections

Delay

Technology
1.0u 0.5u 0.25u 0.1u

25ps

50ps

100ps

200ps

Gate delay

Wire load delay
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Design tool framework
• Design tools from one vendor normally integrated into 

a framework which enables tools to exchange data.
– Common data base
– Automatic translation from one type to another
– (Allows third part tools to be integrated into framework)

• Few standards to allow transport of designs between 
tools from different vendors.
– VHDL and Verilog behavioral models and netlists
– EDIF netlist, SPICE netlist for analog simulation
– GDSII layout
– Standard Delay Format (SDF) for gate delays.
– Small vendors must be compatible with large vendors.

Transporting designs between tools from 
different vendors often cause problems



Trieste 2006 J.Christiansen/CERN 37

Source of CAE tools
• Cadence, Mentor

– Complete set of tools integrated into framework

• Synopsis + Avant
– Power full synthesis tools
– VHDL simulator
– Power full place and route tools
– Hspice simulator with automatic characterization tools

• Div commercial: 
– View-logic, Summit, Tanner, etc.

• Complete set of commercial high performance CAE 
tools cost ~1 M$ per seat ! (official list price).
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• Free shareware: 
– Spice, Magic, Berkley IC design tools, Aliance
– Diverse from the web.

• University programs: tools ~10K$, MPW runs
– Europe: Europractice: Tools and MPW
– US: Mosis: Now private MPW run

Each tool supplier have separate university 
programs



Trieste 2006 J.Christiansen/CERN 39

Hardware describing languages (HDL)

• Describe behavior not implementation
• Make model independent of technology
• Model complete systems
• Specification of sub-module functions
• Speed up simulation of large systems
• Standardized text format
• CAE tool independent
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• VHDL
– Very High speed integrated circuit Description Language
– Initiated by American department of defense as a 

specification language.
– Standardized by IEEE

• Verilog
– First real commercial HDL language from gateway 

automation (now Cadence)
– Default standard among chip designers for many years
– Started as proprietary language
– Now also a IEEE standard because of severe competition 

from VHDL. Result: multiple vendors
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• Compiled/Interpreted 
– Compiled:

• Description compiled into C and then into binary or 
directly into binary

• Fast execution
• Slow compilation

– Interpreted:
• Description interpreted at run time
• Slow execution
• Fast “compilation”
• Many interactive features

– VHDL normally compiled
– Verilog exists in both interpreted and compiled versions
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HDL design entry

• Text:
– Tool independent
– Good for describing algorithms
– Bad for getting an overview of a large design



Trieste 2006 J.Christiansen/CERN 43

• Add-on tools
– Block diagrams to get overview of hierarchy
– Graphical description of final state machines (FSM)

• Generates synthesizable HDL code
– Flowcharts
– Language sensitive editors
– Waveform display tools

From Visual HDL, Summit design
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Synthesis and Technology dependence

Algorithm

Architecture

Register level

Gate level

Logic synthesis

Behavioral synthesis

For i = 0 ; i = 15
sum = sum + data[I]

Data[0]

Data[15]

i

Sum

Data[0] Data[15]

Sum

MEM

Clock

Clear
address

Clear
sum

0% technology dependent

10% technology dependent

20% technology dependent

100% technology dependent
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Logic synthesis
• HDL compilation (from VHDL or Verilog)

– Registers: Where storage is required
– Logic: Boolean equations, if-then-else, case, etc.

• Logic optimization
– Logic minimization (similar to Karnaugh maps)
– Finds logic sharing between equations
– Maps into gates available in given technology
– Uses local optimization rules

6 basic CMOS gates

3 basic CMOS gates

3 logic gates
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Synthesis goals
• Combined timing - size optimization

– Smallest circuit complying to all timing constraints

Size

Delay

Design space

Requirements

– Best solution found as a combination of special optimization 
algorithms and evaluation of many alternative solutions
(Similar to simulated annealing)



Trieste 2006 J.Christiansen/CERN 47

• Problems in synthesis
– Dealing with “single late signal”
– Mapping into complex library elements
– Regular data path structures:

• Adders: ripple carry, carry look ahead, carry select,etc.
• Multipliers, etc.
Use special guidance to select special adders, multipliers, etc..

Performance of sub-micron technologies are dominated by 
wiring delays (wire capacitance + R-C delays)

• Synthesis in many cases does a better job than a 
manually optimized logic design.

(in much shorter time)
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Timing estimation in synthesis

• Wire loading
Timing optimization is based on a wire loading model.

Loading of gate = input capacitance of following gates + wire capacitance

Gate loading known by synthesizer
Wire loading must be estimated
R-C delay calculation very complicated

Wire capacitance

Relative number

Large chip
Small chip

Average AverageDelay

Technology
1.0u 0.5u 0.25u 0.1u

25ps

50ps

100ps

200ps

Gate delay

Wire load delay
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• Estimate using floor plan

Inside local region:
Estimate as function of number
of gates and size of region

Between regions:
Use estimate of physical distance
between routing regions.

Region 1

Region 2

Region 3

Advantage: Realistic estimate
Disadvantage: Synthesizer most work with complete design

In sub-micro CMOS technologies Synthesis and Place & Route 
must work hand in hand
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Trends in synthesis
• Integration of synthesis and P&R
• Synthesizable standard modules (Processor, PCI 

interface, Digital filters, etc.), IP blocks
• Automatic insertion of scan path for production 

testing.
• Synthesis for low power
• Synthesis of self-timed circuits (asynchronous)
• Behavioral synthesis
• Formal verification
• Hardware and software co-design

– What to put in hardware and what in software ?
• System C tools


