ICTP-INFN Advanced Tranining Course on

 FPGA and VHDL for Hardware Simulation and Synthesis27 November - 22 December 2006

DIGITAL DESIGN 2

Pirouz BaZargan sabet

 Lip 6University Pierre et Marie Curie (VI)
Department ASIM
4, place Jussieu
75252 Paris Cedex 05
FRANCE

Outline

D Digital CMOS Design

- Boolean Algebra

Basic Digital CMOS Gates
Combinational and Sequential Circuits
Coding - Representation of Numbers

Basic CMOS Gates

How to implement Boolean functions in CMOS technology ?

Which functionality is available

\qquad

Basic CMOS Gates

- N-MOS transistor

ழi
Pirouz Bazargan Sabet
ICTP
November 2006

Basic CMOS Gates

Q P-MOS transistor

டi
Pirouz Bazargan Sabet
ICTP
November 2006

Basic CMOS Gates

The eletrical behaviour of a MOS transistor is very complex

Desgin of a multi-million transistor circuit?

Basic CMOS Gates

In digital circuit a MOS transistor can be modelized as a switch

$$
D=S \text { when } G=1
$$

$D=S$ when $G=0$

Basic CMOS Gates

When driving a MOS transistor can be seen as a Resistor

$$
R \propto \frac{L}{W}
$$

For the same size, a P-MOS is twice more resistive than an $\mathrm{N}-\mathrm{MOS}$

Basic CMOS Gates

The N-MOS and P-MOS are not exactly symetric

A N -MOS is a good tranmitter of 0

A P-MOS is a good tranmitter of 1

Basic CMOS Gates

$$
y=\operatorname{Not} x
$$

Pirouz Bazargan Sabet

Basic CMOS Gates

$$
y=\overline{x_{1} \cdot x_{2}}
$$

Li
Pirouz Bazargan Sabet

Basic CMOS Gates

The P-network must be the dual of the N -network

Series \longrightarrow Parallel
Parallel \longrightarrow Series
Take care of the size of transistors

Basic CMOS Gates

(To set the output to 0 a path has to be created through the N network
(A series of N -transistor must be conducting

$$
\Pi_{x_{i}=1}
$$

Only negative (inverting) functions can be created

Basic CMOS Gates

Implementing a Boolean function with a CMOS gate ?

T The function must be inverting in regard of all the variables
(3) Put the function in the form of $f=\bar{g}$
(Design the N -network of g

Basic CMOS Gates

Implementing a Boolean function with a CMOS gate ?

(In the expression of g each '.' are two paths in series
(1) In the expression of g each ' + ' are two paths in parallel

The P-network is the dual network of the N -network

Avoid putting more than 3 transistors in series

Basic CMOS Gates

Example :

$$
\begin{aligned}
& f=\bar{a}+(\bar{b} \cdot \bar{c}) \\
& f=\bar{a}+(\overline{b+c}) \\
& f=\overline{a \cdot(b+c)} \\
& g=a \cdot(b+c)
\end{aligned}
$$

Basic CMOS Gates

Some gates :

Inverter: $f=\bar{a}$
Nand: $\quad f=\overline{a . b}$
Nor: $\quad f=\overline{a+b}$
$b-y$

4
Pirouz Bazargan Sabet

Basic CMOS Gates

Some gates :

Multiplexer :

$$
\begin{gathered}
f=\overline{a . s+b \cdot \bar{s}} \\
\text { a }-a_{s}-y
\end{gathered}
$$

ழ

Basic CMOS Gates

Some gates : Multiplexer :

$$
f=\overline{a \cdot s_{1} \cdot s_{2}+b \cdot s_{1} \cdot \bar{s}_{2}+c \cdot \overline{s_{1}} \cdot s_{2}+d \cdot \overline{s_{1}} \cdot \overline{s_{2}}}
$$

Basic CMOS Gates

Some gates :

Multiplexer :

$$
f=a . s+b . \bar{s}
$$

Basic CMOS Gates

Basic CMOS Gates

$$
\text { If } s=1 \quad \text { If } s=0
$$

$f=\bar{a}$
fis not defined

Tri-state driver

Basic CMOS Gates

Some gates: Multiplexer :

Li
Pirouz Bazargan Sabet
ICTP

Basic CMOS Gates

Some gates : Multiplexer :

Basic CMOS Gates

Some gates :

Basic CMOS Gates

Some gates :
Multiplexer :

$$
f=\overline{a . s+b . \bar{s}}
$$

Basic CMOS Gates

Some gates :
Nxor: $f=\overline{\bar{a} \cdot b+a \cdot \bar{b}}$

I need \bar{a} and \bar{b}

Pirouz Bazargan Sabet

Basic CMOS Gates

Some gates :
Nxor with Pass-transistors :
$f=\overline{\overline{\bar{a} \cdot b+a \cdot \bar{b}}}$

4

