

310/1780-2

ICTP-INFN Advanced Tranining Course on FPGA and VHDL for Hardware Simulation and Synthesis 27 November - 22 December 2006

DIGITAL DESIGN 2

Pirouz BAZARGAN SABET
Lip 6
University Pierre et Marie Curie (VI)
Department ASIM
4, place Jussieu
75252 Paris Cedex 05
FRANCE

- Digital CMOS Design
 - Boolean Algebra
 - ─ Basic Digital CMOS Gates
 - ─ Combinational and Sequential Circuits
 - Coding Representation of Numbers

How to implement Boolean functions in CMOS technology?

Which functionality is available

N-MOS transistor

P-MOS transistor

The eletrical behaviour of a MOS transistor is very complex

Desgin of a multi-million transistor circuit?

In digital circuit a MOS transistor can be modelized as a switch

$$G \longrightarrow S \longrightarrow S$$

$$D = S$$
 when $G = 1$

$$D = S$$
 when $G = 0$

When driving a MOS transistor can be seen as a Resistor

$$R \propto \frac{L}{W}$$

For the same size, a P-MOS is twice more resistive than an N-MOS

The N-MOS and P-MOS are not exactly symetric

A N-MOS is a good tranmitter of 0

A P-MOS is a good tranmitter of 1

$$y = Not x$$

$$y = \overline{x_1 \cdot x_2}$$

The P-network must be the dual of the N-network

Series — Parallel Parallel — Series

Take care of the size of transistors

- To set the output to 0 a path has to be created through the N network
- A series of N-transistor must be conducting

$$\prod x_i = 1$$

Only negative (inverting) functions can be created

Implementing a Boolean function with a CMOS gate?

- The function must be inverting in regard of all the variables
- Put the function in the form of $f = \overline{g}$
- Design the N-network of 9

Implementing a Boolean function with a CMOS gate?

- In the expression of g each '.' are two paths in series
- In the expression of g each '+' are two paths in parallel
- The P-network is the dual network of the N-network
- Avoid putting more than 3 transistors in series

Example:

$$f = \overline{a} + (\overline{b}.c)$$

$$f = \overline{a} + (\overline{b+c})$$

$$f = \overline{a \cdot (b+c)}$$

$$g = a \cdot (b+c)$$

Some gates:

Inverter: $f = \overline{a}$

Nand: $f = \overline{a.b}$

Nor: $f = \overline{a+b}$

Some gates:

Multiplexer:

$$f = a.s + b.\overline{s}$$

Some gates: Multiplexer:

$$f = a.s_1.s_2 + b.s_1.\overline{s}_2 + c.\overline{s}_1.s_2 + d.\overline{s}_1.\overline{s}_2$$

Some gates:

Multiplexer:

$$f = a.s + b.s$$

If
$$s = 1$$
 If $s = 0$
 $f = \overline{a}$ f is not defined

Tri-state driver

Some gates: Multiplexer:

Some gates: Multiplexer:

Some gates:

If
$$b = 1$$
 If $b = 0$
 $f = a$ f is not defined

If $a = 0$ then $a = 0$

If $a = 1$ then $a = 1$

Pass-transistor

Some gates:

Multiplexer:

$$f = \overline{a.s + b.s}$$

Some gates:

Nxor: $f = \overline{a.b} + \overline{a.b}$

I need $\frac{1}{4}$ and $\frac{1}{5}$

Some gates:

Nxor with Pass-transistors:

$$f = \overline{a.b} + \overline{a.b}$$

a	Ь	f
0	0	1
0	1	0
1	0	0
1	1	1-

