

310/1780-13

ICTP-INFN Advanced Transning Course on FPGA and VHDL for Hardware Simulation and Synthesis 27 November - 22 December 2006

VHDL & FPGA - Session 5

Nizar ABDALLH ACTEL Corp. 2061 Stierlin Court Mountain View, CA 94043-4655 U.S.A.

Lectures: VHDL & FPGA Architectures

Outline

- Introduction to FPGA & FPGA design flow
- Synthesis I Introduction
- Synthesis II Introduction to VHDL
- Synthesis III Advanced VHDL
- Design verification and timing concepts
- Programmable logic & FPGA architectures
- Actel ProASIC3 FPGA architecture
- System-on-Chip concepts

Programmable Logic and FPGA Architectures

Introduction

Progress Driven by two Forces [Bell78]:

- □ Technology Push: inventions, manufacturing improvements, ...
- Market Pull:
 needs for specific products with short development cycles and short time-to-market.

PLD Market Growth

- New adopters are in high volume segments
 - Consumer grows from 6% to 18%
 - ◆ Up \$1,013M
 - Automotive grows from 0% to 3%
 - ◆ Up \$205M
- Traditional ASIC-crossover segments also growing well
 - Industrial is up \$793M
 - Mil/Aero is up \$261M
- While high-end FPGA markets decline in share
 - Comm down 16% in share
 - Data proc down 3% in share

PLD Market Growth

Cost: The exploding ASIC NRE

Technology Advances vs. Crossover Volume

Industry Dynamics & Time-to-Market

New products are taking less time to go into volume. At the same time, new products also stay in volume for shorter

Time-to-Market Dimension...

- Missing a market window, because of a long development/debugging cycle can have a profoundly negative effect on the profitability of a product over its life...
- □ Late market entry has a larger effect on profits than development cost overruns or a product price that is high.

Cost: System Re-configurability

- □ Lack of re-configurability in ASICs is a huge opportunity
- FPGAs offer flexible life cycle management

Volume Requirement for ASICs

> 50% of the market available today for FPGAs

Gate Count Requirement for ASICs //ctel

FPGA can address a very large part of the market today

12 **VHDL & FPGA Architectures** November, 2005 © 2005 Nizar Abdallah

Performance Requirement for ASICs

■ FPGA can address a very large part of the market today

Performance Requirement for FPGAs

Maximum On-Chip Clock Frequencies (Megahertz) — FPGA Design Starts

Source: Gartner Dataquest (January 2003)

■ FPGA can address a very large part of the market today

IP in FPGAs

- 7 years ago, FPGAs were only gates & routing ~25000 gates
- Today, there are several system-level features. ~5,000,000 gates
- The trend to add more IP in FPGAs continues

Once upon the time, there were... ROMs:

- Expensive
 - Need for creating an application specific mask set by the vendor
- Long development cycle
 - Changes = New mask set by the vendor

PROMs: Programmable Read Only Memories

- ✓ First field programmable devices
- Slow access time
 - Not useful for applications where speed is an issue
- Limited number of inputs
- Require different technology
 - Extra masks
 - Extra processing steps
 - SExtra development time

PLAs: Programmable Logic Arrays

- □ Classified as a simple programmable logic device (SPLD)
- □ The first programmable logic device introduced in the early 1970s by Philips.
- Based on the idea that logic functions can be realized in sum-of-products form.
- A programmable AND array followed by a programmable OR array.
- □ HDLs to convert Boolean equations into connections
 - **⇔** ABEL
 - ♥ PALASM

PLAs: Programmable Logic Arrays

PALs: Programmable Array Logic

- □ A device similar to PLA.
- □ Introduced to overcome the weaknesses of PLAs at that time (programmable switches were hard to fabricate correctly and introduced significant propagation delays).
- □ A programmable AND array followed by a fixed OR array.
 Inverters at the inputs and outputs.
- □ HDLs to convert Boolean equations into connections
 - ♦ ABEL
 - Spalasm Palasm

PALs: Programmable Array Logic

First idea of an FPGA/CPLD different from a PLD:

□ 1984: Ross Freeman / Zilog, Inc.

☼ Xilinx, Inc. with \$4.25M in venture capital

□ 1983: Altera Corp.

■ 1985: Actel Corp. with FPGAs based on antifuse switching elements

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 **2**

Complex Programmable Logic Devices (CPLDs)

Large number of PALs in a single chip

CPLD Architecture (Altera)

Complex Programmable Logic Devices (CPLDs)

Function Block

- Typically similar to a PAL architecture
- Same technology and programming tools than a PAL
- □ Additional specialized logic in each FB:
 XOR (difficult in a PAL), Muxes, FFs...
- □ Additional embedded devices in the CPLD:
 - SRAM and Flash memories
 - Microcontrollers and microprocessors
 - ♦ Digital Signal Processors (DSPs)
 - Phased Locked Loops (PLLs)
 - Network processors

Complex Programmable Logic Devices (CPLDs)

Selection criteria

- □ The programming technology
 ⇔ Equipment for device programming
- □ The FB capability
 ∜#FFs, #inputs, built-in XORs ...
- □ The number of FB in the device
- □ The kind of FF control available
- Embedded devices
- The number and type of IO pins
- □ The number of clock input pins

What is an FPGA?

Field

Programmable

Gate

Array

A large number of logic gates in an IC array that can be connected (configured) electrically

■The Four Components of FPGAs

- **■** The Configuration Element
- The Logic Module
- **■** The Memory
- Control Circuits/Special Features

The Key Element of an FPGA

■ The Interconnect Switch

FPGA Industry Interconnect (Switch) Technologies

FPGA Technologies Compared

Flash

Anti-fuse

Reprogrammable

Large Switch

expensive wires

Low Logic Utilization

typ 60%

Best of Both Worlds

Reprogrammable & Nonvolatile

Small Switch

cheap wires

High Logic Utilization

typ >85%

Nonvolatile

Smallest Switch

cheapest wires

Highest Logic Utilization

typ >90%

Flash Switch

ProASIC, ProASICPlus, ProASIC III Routing Switch

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 **30**

Types of FPGAs (Switch)

- Volatile (loses its configuration when power is turned off)
 - Reprogrammable: SRAM process and device technology
 - ◆ Xilinx, Altera, Lattice
- Non-Volatile (keeps its configuration)
 - One Time Programmable (OTP): Anti-fuse
 - Actel, Quicklogic
 - Reprogrammable: Flash
 - Actel

Field Programmable Gate Arrays (FPGAs)

Regular array of logic

Field Programmable Gate Arrays (FPGAs)

Configurable logic blocks

Field Programmable Gate Arrays (FPGAs)

Selection criteria

- Programming technology
- □ Configurable logic block ∜#FFs, #inputs, ...
- The number of logic blocks in the device
- Embedded devices
- □ The number and type of IO pins
- □ The number of clock input pins

CPLD or FPGA?

	CPLD	FPGA
Architecture	PAL-like	Gate array like
Speed	Fast, predictable	Application dependent
Density	Low to medium	Medium to high
Interconnect	Crossbar	Routing
Power consumption	High per gate	Low per gate

ASIC Design Methodology

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 **37**

Specifications

- External block diagram (chip in the system)
- Internal block diagram
- Description of the IO pins
- □ Timing & power constraints
 ♥Clock frequency, external setup, external hold, ...
- □ Gate count estimate
- □ Package type
- Price target
- Test procedure

Choosing Device and Tools

□ Synthesis∜Coding style for the HDL

...

Design

- □ Top-down flow
- Work with the device architecture
- Do synchronous design
- Protect against metastability
- Avoid floating nodes

Verification

- □ Simulation
- Design review
- Synthesis
- □ Place & Route
- Timing analysis
- Power analysis
- □ Formal verification