310/1780-5

ICTP-INFN Advanced Tranining Course on

 FPGA and VHDL for Hardware Simulation and Synthesis 27 November - 22 December 2006
DIGITAL DESIGN 5

Pitouz BAZARGAN SABET University Pierre et Marie Curie (VI)

Department ASIM
Department ASIM
75252 Paris Cedex 05
FRANCE

Outline

\square Digital CMOS Design

- Boolean Algebra

Basic Digital CMOS Gates

- Combinational and Sequential Circuits
(Coding - Representation of Numbers

Representing Numbers

How values can be coded ?

In a digital circuit each signal can take 2 values $(0,1)$ (Boolean world)

A vector of n bits can represent up to 2^{n} values

Representing Numbers

How values can be coded ?
What is the meaning of 01000110 ?
The character ' F '
The character ' Φ '
The number 46
The number 70
The number 123
Any symbol in a set where the Card $=256$

Representing Numbers

How values can be coded ?

by itself a code has no signification

Representing Numbers

How values can be coded ?

arithmetics : dealing with numbers

How can I represent a number ?
Natural numbers
Relative numbers
Rational numbers
Real numbers

Representing Numbers

How can I represent a Natural number ?
I need at least n bits for a Natural ranging from 0 to $2^{\mathrm{n}}-1$
Standards

Pirouz Bazargan Sabet

Representing Numbers

How can I represent a Natural number ?

Natural Binary Code :

The bits represents the sucessive powers of 2

Representing Numbers

How can I represent a Natural number?

Binary Coded Decimal :

The bits represent the sucessive powers of 2
Each quartet represents a sucessive powers of 10

Representing Numbers

How can I represent a Natural number?

Binary Coded Decimal - Unpacked :

The bits represent the sucessive powers of 2
Each byte represents a sucessive powers of 10
In each byte the 4 Msb are 0

$$
01000110 \text { = Illegal } \underbrace{00000110}_{10^{0} 2^{2}}=6
$$

Representing Numbers

How can I represent a Relative number ?

Sign + Value
The bits represent the sucessive powers of 2
The Msb represents the sign (1 means negative)
2's complemented
The bits represent the sucessive powers of 2
The Msb represents $-2^{\text {n }}$

Representing Numbers

How can I represent a Relative number ?

Sign+Value :

4

6 \qquad 2^{0}

Representing Numbers

How can I represent a Relative number ?

2's complemented :

$$
11000110=2^{1}+2^{2}+2^{6}-2^{7}=-58
$$

Representing Numbers

How can I represent a Relative number ?

2's complemented :

$$
01000110=2^{1}+2^{2}+2^{6}=70
$$

70

$$
\begin{array}{ll}
2^{7}=2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}+1 \\
2^{7}=2^{0} & +2^{3}+2^{4}+2^{5} \\
10111010 \quad-1+70 \\
-70 & =2^{0} \\
-70 & +2^{3}+2^{4}+2^{5} \\
-7 & +2^{3}+2^{4}+2^{5}
\end{array}
$$

Representing Numbers

How can I represent a Real number ?

Range
Precision

Representing Numbers

How can I represent a Real number ?

2's complement Fixed Point :

The bits represents the sucessive powers of 2

Representing Numbers

How can I represent a Real number ?

Wide range
High precision
Floating Point :
Logarithmic representation

Representing Numbers

How can I represent a Real number ?

$$
R=(-1)^{S} \times M \times 2^{E}
$$

Normalized scientific representation
S : Sign (1 if negative)
M : Mantisse ($\in[1,2[$)
E : Exponent (Relative number)

Representing Numbers

$$
R=(-1)^{S} \times M \times 2^{E}
$$

M : Mantisse ($\in[1,2[$) 23 bits

Single Precision
32 bits
1 bit

8 bits

Double Precision 64 bits
$\mathrm{S}: \operatorname{Sign}$ (1 if negative) $\quad 1$ bit $\quad 1$ bit

52 bits
E: Exponent
11 bits

Representing Numbers

$$
R=(-1)^{S} \times M \times 2^{E}
$$

Single precision :

The code 00000000
means - 127

Fixed point positive real number

The 1 is not represented !!

Natural Binary Code by Excess of 127

Representing Numbers

$$
R=(-1)^{S} \times M \times 2^{E}
$$

Single precision : Special cases

(128) means $\pm \infty$ or an error other values mean error (NaN)
\qquad

Representing Numbers

$$
R=(-1)^{S} \times M \times 2^{E}
$$

Single precision : Special cases

(-127) indicates
denormalized
Mantisse

Pirouz Bazargan Sabet

