

310/1780-14

ICTP-INFN Advanced Transning Course on FPGA and VHDL for Hardware Simulation and Synthesis 27 November - 22 December 2006

VHDL & FPGA - Session 6

Nizar ABDALLH ACTEL Corp. 2061 Stierlin Court Mountain View, CA 94043-4655 U.S.A.

ProASICIBI ProASICIBE

Actel's 3rd Generation Flash FPGA Family

Designing with ProASIC3 *Agenda*

- Family Overview
- Architecture Overview
- System-Level Considerations
- Software for PA3
 - Designer Flow
 - Clock Conditioning Circuitry
 - Using Globals
 - Using I/Os
- Programming and Hardware Tools

ProASIC3 The Value Market FPGA

- World's Lowest-cost FPGA Solution
 - 130nm 7LM Flash-Based CMOS FPGA
 - Lowest Total System Cost
 - Flash Technology Eliminates SRAM FPGA Cost Penalty
- Unique Set of ASIC-like Attributes
 - High Performance *Twice* that of ProASICPLUS
 - On-Chip User Nonvolatile Flash Memory
 - Highly Secure
 - High Reliability / Firm-Error Immunity
 - Single Low-Power Chip, Live at Power-Up

Single Chip – Lower System Cost ProASIC3

Live-at-Power-Up CPLD Functions moved to FPGA

No need for SRAM FPGA brown-out protection

Smaller (Single Voltage) power supply needed

No Memory for FPGA Program Needed

Live-at-Power-Up
PLLs allows for
possible OSC removal

No unsecured BOOT PROM needed

ProASIC3/E Family

		9									111111111111111111111111111111111111111	
			A3P	A3P	A3P	A3P	A3P	A3P	A3P	A3PE	A3PE	A3PE
			030	060	125	250	400	600	1000	600	1500	3000
	System Gates		30K	60K	125K	250K	400K	600K	1M	600K	1.5M	3M
	Tiles (D-FF)		768	1536	3072	6144	9216	13824	24576	13824	38400	75264
		Ram K Bits		18	36	36	54	108	144	108	270	504
		4608-bit blocks	-	4	8	8	12	24	32	24	60	112
		Flash (ROM) bits	1K	1K	1K	1K	1K	1K	1K	1K	1K	1K
		Secure (AES) ISP	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		PLLs	-	1	1	1	1	1	1	6	6	6
		Globals	6	18	18	18	18	18	18	18	18	18
		I/O	Std, HS	Std+	Std+	Std+/LVDS	Std+/LVDS	Std+/LVDS	Std+/LVDS	Pro	Pro	Pro
	1/0	Banks (+ JTAG)	2	2	2	4	4	4	4	8	8	8
Double Ended VO (pairs)		QN132	81									
	Ž	VQ100	79	71	71	68/13						
	Single	FG144		96	97	97/22	97/22	97/22	97/22			
	T de	TQ144		86	104							
	End	PQ208			133	151/ <i>34</i>	151/33	154/35	154/35	147/49	147/65	147/65
	Ended and	FG256				157/34	178/38	179/45	179/45	165/68		
	nd	FG484					194/38	227/56	288/68	270/132	280/136	280/136
	Ĉ.	FG676									425/204	
		FG896										604/296

Architecture Actel

ProASIC3E Die

ProASIC3 Architectural Features

- Core Cell
- Routing Resources
- Clock Conditioning Circuits (CCCs) and PLLs
- **■** Embedded Features
 - RAM/FIFOs
 - FROM
 - AES
- I/Os
 - Standards
 - Options (Pull-ups, Pull-downs, Drive Strength, Slew Rates, DDR Send/Receive)

8

ProASIC3 vs. ProASIC3E Architectural Differences

I/O

- ProASIC3E Pro I/Os
 - All Supported Standards
- ProASIC3 Advanced I/Os
 - All Single-Ended Standards with Limited LVDS Support
 - ▶ Smaller Devices No LVDS
 - ► Larger Devices 2 Banks with LVDS Support

■ PLL

- ProASIC3E 6 PLLs
- ProASIC3
 - ◆ All Devices Except A3P030 1 PLL
 - ◆ A3P030 No PLL

ProASIC3 Typical Floorplan

Flash Switch

■ Flash Advantages

- Smaller size more switches for greater routing flexibility
- Low power: less capacitance and resistance
- Re-programmable <u>and</u> non-volatile

ProASIC3 Fine-Grained Architecture

- Up to 75,264 VersaTiles
 - Each VersaTile Can Be
 - 3-input Combinatorial Gate
 - Latch
 - D-Flip-flop with Enable
 - Register-intensive Applications Handled Easily
- All Input Signals
 Can Be Inverted
 - Easier Technology Mapping and Netlist Optimizations

Combinatorial
Any Function
of 3 Inputs (3 LUT
Equivalent)

Set or Reset-

From APA to ProASIC3 *Impact of Core Cell Changes*

- Improved Tile Utilization vis-à-vis APA
 - 8.2% Enable FF
 - 9.2% LUT3 Mapping
 - ~10% for Typical Design
 - Impact Can Be Significantly Higher
- Improved D-FFE
 - Eliminates One Logic Level in Path IF 4th Input (SET/CLR)
 Is Accessed via VersaNet Global Network

NOTE: If 4th Input NOT on Global, D-FFE 'Demoted' to Two-Tile Flip-Flop!

ProASIC3 Routing Resources

- Enhanced High-performance Routing Hierarchy
 - Ultra-fast Local Network (VersaTile-to-VersaTile)
 - Efficient Discrete Long-line Network (1, 2 and 4 VersaTiles Long)
 - High-speed Very-long-line Network
 - Nine Low-skew VersaNet Global Networks
 - Support Very High Silicon Utilization without Significantly Impacting Performance
- High Efficiency and Flexibility
 - Multiple Routing Path Alternatives for Low Congestion
 - Short Corner-to-corner Delays
 - Enables Rapid Timing Convergence

ProASIC3/E Routing Overview

- Locals (No Change from APA)
 - Guaranteed Access to All Neighbors
- Longs
 - 4 Drivers instead of 1
 (Allow Connecting 4 Longs and 2-Longs in
 Horizontal and Vertical
 Directions)
- Very-Longs
 - 4 Drivers (to Go in 4 Directions)
 - Direct Access from VersaTile
 - 2x16x16 Long Horizontal
 - 2x12x12 Long Vertical
 - ◆ 'Escape' Halfway
 - Completely Buffered
- Clocks:
 - 6 Globals
 - 3 Locals

Flash Routing Resources Hierarchy

Designing with ProASIC3

Flash Routing Resources Long Lines

Long Lines for Longer Distances or Higher-Fanout Nets

Flash Routing Simplified Architecture

Flash Routing Switch Requirements

- Nearest Neighbor (F/I Locals) 1 FLASH Switch
- Local Connection (J/K Longs) 3 FLASH Switches
- Long Connections (Very Long Lines) 5+ FLASH Switches

Flash Routing Resources Local Routing

Local Lines Connect VersaTile Output to Nearest-Neighbor VersaTile, I/O Buffer, or Memory Block

Clocks, Globals PLLs and CCCs

Clock Conditioning Circuitry

Clock Conditioning Circuitry Summary of Features

- 3 Global MUX Blocks
 - Steer Signals from Global Pads and Core into Global Networks
- PLL
 - One on ProASIC3 Devices and Six on ProASIC3/E Devices
- Delay Blocks (6 Programmable and 1 Fixed)
 - Provide Phase Advancement/Delay
- 5 Frequency Divider Blocks
 - Provide Frequency Multiplication/Division (PLL ONLY)
- Dynamic Shift Register
 - Provides CCC Dynamic Reconfiguration Capability (Not Shown)
- Clock Phase Adjustment
 - 0°, 90°, 180°, and 270° (PLL ONLY)
 - Programmable Delay/Advance (160 ps steps from -7.56 ns to +11.12 ns) - Clock Skew Minimization
- Clock Frequency Synthesis Capabilities

PLL and CCC Hardware Support

- All Devices Have 6 Clock Conditioning Circuitry (CCC) Blocks, BUT ...
 - ... Some Have CCCs without PLLs AND ...
 - ProASIC3E PQ208 4 Corner CCCs Do Not Have PLLs
 - ProASIC3
 - ► All But A3P030 Only West Central CCC Has PLL
 - ► A3P030 (Lowest-density Device) NO PLLs
 - ... All Non-PLL Functionality Still Available
 - **▶** Delay Elements
 - ► Global Access from I/O or Internal Signal
 - CCC Bypass PLL
 - Does Not Support Divider Mode
 - Note: This Behavior Is NOT Compatible with APA!
 - Use Additional Logic to Divide Clock

Global and Quadrant Clocks

■ 6 Global Clocks

- Reach All Tile Ports (Routed Clock)
- Global Clock Networks Serve All Tiles Including RAM, I/O, AUX and CCC Tiles
- Driven by Clock Conditioning Circuitry (CCC) in Middle Left and Middle Right of Die

■ 12 Quadrant Clocks (3 per Quadrant)

- Cannot Access Middle Two Rows
- Quadrant Clock Networks Serve All Tiles Including RAM, I/O, AUX and CCC Tiles
- Driven by Clock Conditioning Circuitry (CCC) in Four Corners of Die

Global Distribution Network

- Left and Right CCCs Provide 6 Global Clocks (Access from I/Os in Middle of Left and Right Sides)
- 12 Quadrant
 Clocks (3 per
 Quadrant Access
 from I/Os in 4
 Corners)
- Access to 9 Global Resources in Each Tile – Up from 4 in APA
- Access from PLLs and Internal Signals
 - Reduces Delays and Minimizes Resource Usage

Global Distribution Network Simplified View

Clock Aggregation Hardware Support

- Dedicated Clock Tile "Ribs" with Dedicated Routing/MUXing Resources in North, South and Central Regions of Chip
- I/Os Can Also Access North and South Ribs
- Clock Aggregation Allows Signal (Internal or I/O) to Access ...
 - ... Single Spine
 - ... Double Spine
 - ... Quadruple Spine
- More to Come in Software Section

Clock Aggregation Diagram

- Allows Multi-Spine Clock Domains
- MUX Tree Allows
 Long Lines or I/Os to
 Access Domains of
 One, Two, or Four
 Global Spines

Spine Selection Mux

Local Clocks

- Portion of Global and Quadrant Clock Networks Driven by Clock Spine Drivers
 - Global Clock Spine Drivers
 - Access Top and Bottom Spine Regions from Middle Clock Ribs
 - No Control Dependency between Top and Bottom Spines
 - ▶ If T1 Is Assigned to Net, then B1 Is Not Wasted and Can Be Used by Global Clock Network (Unlike APA!)
 - Local Clock Networks Cannot Access Middle Two Rows UNLESS Local Clock Uses BOTH Top AND Bottom SIMULTANEOUSLY
 - **►** Example (T1:B1)
 - Quadrant Clock Spine Drivers
 - Access Top Spine Regions from Top Clock Ribs
 - Access Bottom Spine Regions from Bottom Clock Ribs
 - Cannot Access Middle Two Rows

Local Clock Aggregation MUX Structure

Local Clock Aggregation 1-Spine

Local Clock Aggregation 2-Spine

Local Clock Aggregation 4-Spine

Clock Aggregation: Big Devices

Clock Aggregation 'Corner Cases'

- East and West PLL: access to all spine regions. (from 4 to 28 regions)
- Single spine access from tiles around spine (orange)
- Double spine access from left of spine (
- Quadruple spine access from right of spine (purple)

5 1 1 3 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2 1 4 2

Clock Aggregation Quadrant global mux detail

- Spine can be driven from
 - **1/0**
 - ► X1 6 I/O, X2 5 I/O (left), X4 5 I/O (right)
 - Quadrant Global Network
 - Array interconnect

RAM/FIFO Actel

ProASIC3/E Embedded Memory

- Up to 504K Bits Arranged in up to 112 Individuallyprogrammable 4608-bit Embedded Memory Blocks
 - 2 Read and 2 Write Ports True Dual-port
 - Synchronous Operation Up to 350 MHz
 - Fully programmable
 - Programmable aspect ratio
 - 4kx1, 2kx2, 1kx4, 512x9, 256x18
 - Cascadeable in Width and Depth
 - ACTgen Tool Automates Memory Generation
 - Independent Read and Write Port Widths
- FIFO Capability
 - Integrated Decoder, FIFO Controller, and Flag Logic
 - Programmable FIFO Depth and Flag Thresholds
- Changes from ProASICPLUS
 - No Asynchronous Read and Write Operations
 - No Parity Checking and Generation
 - Resetting RAM Block Outputs Is Possible in ProASIC3

ProASIC3/E Two RAM Elements

■ RAM4K9 - True Dual-port RAM which Supports

- Variable Aspect Ratios 4096x1, 2048x2, 1024x4 or 512x9
 - Independent Read and Write Port Widths
- Dual-port Options Both Read, Both Write, One Read & One Write; Same Clock Frequency or Two Different Clock Frequencies
- Pass-through of Write Data or Hold Old Data on Output

■ RAM512x18 - Two-port RAM which Offers

- Variable Aspect Ratios 512x9 or 256x18
 - Independent Read and Write Widths
- Dedicated Read and Write Ports

■ Both Elements Have

- Synchronous Write
- Synchronous Read Pipelined or Non-Pipelined
- Active-low Asynchronous Output Reset

Note: A3P030 Has NO RAM!

Designing with ProASIC3

ProASIC3/E RAM Read Cycle - Flow-Through Output

Flow-Through CLK1 – Addr -> Data

ProASIC3/E RAM Read Cycle - Pipelined Output

Pipelined CLK1 - Addr CLK2 -> Data

ProASIC3/E RAM Write Cycle - Output Retained

Output Retained CLK1 - Addr & Data

ProASIC3/E RAM Write Cycle - Output as Write Data

Flow-Through CLK1 – Addr & Data -> Data Pipelined CLK1 - Addr & Data CLK2 -> Data

ProASIC3/E Two-Port RAM Generation in ActGen

RAM	×							
Clocks Single Read/Write Clock Independent Read and Write Clocks								
RAM Type © Two Port C Dual Port	Reset Active Low Active High None							
Write Depth Write Width	Read Depth 1							
Write Width Write Clock Rising Falling	Read Clock Rising Falling							
Write Enable Active Low Active High	Read Enable Active Low Active High Read Pipeline A No Yes							
Write Mode A Retain Output Data Pass Write Data to Output								
Write Mode B C Retain Output Data. C Pass Write Data to Output	Read Pipeline B No Yes							
Generate Reset Port M	Mapping Help Cancel							

ProASIC3/E Dual-Port RAM Generation in ActGen

RAM	×							
Clocks Single Read/Write Clock Independent Read and Write Clocks								
PAM Type Two Port Dual Port	Reset Active Low Active High None							
Write Depth 1	Read Depth 1							
Write Width	Read Width							
-Write Clock-	Read Clock							
Rising	C Rising							
○ Falling	C Falling							
Write Enable Active Low Active High	Read Enable Active Low Active High							
-Write Mode A-	Read Pipeline A							
Pass Write Data to Output Write Mode B Retain Output Data	Read Pipeline B No							
Pass Write Data to Output	○ Yes							
Generate Reset Port M	Mapping Help Cancel							

ProASIC3 Memory *FIFO*

■ ProASIC3/E Has One FIFO Element

- FIFO4Kx18 Supports
 - ◆ Variable Aspect Ratios 4096x1, 2048x2, 1024x4, 512x9, or 256X18
 - ► Independent Read and Write Port Widths
 - Four FIFO Flags Empty, Full, Almost-empty, Almost-full
 - ► FIFO Empty/Full Flags Synchronized to Read Clock and Write Clock, Respectively
 - Programmable Threshold Values of 'Almost' Flags
 - Active-low Asynchronous Reset
 - Active-low Block Enable
 - Active-low Write Enable and Active-high Read Enable
 - FSTOP and ESTOP FIFO Counters Can Count after FIFO Is Full or Empty
 - ► Allows Writing to FIFO Once and Repeatedly Reading Same Contents without Rewriting Contents

Note: A3P030 Has NO RAM!

ProASIC3/E FIFO Generation in ActGen

AF / AE Flags Static	⊽						
-Pipeline	-Reset-						
No	Active Low						
Yes	C Active High						
Write Depth 2	Read Depth 2						
Write Width	Read Width						
-Write Enable	Read Enable						
Active Low	Active Low						
C Active High	C Active High						
-Write Clock-	Read Clock Rising						
Rising							
C Falling	○ Falling						
Continue counting Read Counter afte	r FIFO is empty						
Continue counting Write Counter after	FIFO is full						
- Almost Full	- Almost Empty						
Value 2	Value 1						
Units	Units						
○ Read word	C Read word						

FlashROM and FlashPoint

ProASIC3 Only FPGA with Flash ROM (FROM) Actel

■ FROM Features

- 1024 total bits
- 128 bits x 8 pages
- Extensive device serialization support in software
- FROM Applications
 - **Internet Protocol addressing**
 - **Device serial numbers**
 - Subscription model
 - **System calibration settings**
 - Secure crypto key storage
 - Asset management tracking
 - User preference storage
 - **Date stamping**
 - Versioning

Subscription use model

OEM programs Device Master Key (AES decryption key) and FROM with a unique TAG

Part is deployed in 'box'

OEM verifies payment and looks up DMK based on TAG supplied New feature-enabled design is encrypted with DMK and sent to customer via Internet, satellite or direct to 'box' for secure ISP

'Customer' requests additional feature by supplying credit card details and <u>TAG</u> value of 'box' over Internet

FlashROM (FROM) Memory

- ■8 pages of 128 bits (8x128!!!)
- FPGA Core and FlashROM Memory Can Be Programmed Separately
 - Allows Changing FROM without Erasing Core
 - Core Powered Down during FROM Programming
- Example Applications
 - IP Addressing
 - User/System Preference Storage
 - Device Serialization
 - Inventory Control
 - Subscription Models (Set-top Boxes)
 - Secure Key Storage
 - Presets
 - Date Stamping
 - Version Management

FlashROM Logical View

Every 128-bit Bank Can Be Reprogrammed Independently

FlashROM *Organization*

		Byte Number in Bank 4 LSB of ADDR (READ)															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bank of AD	О																
	1																
	2																
# DR	3																
	4																
	5																
MSB (EAD)	6																
0 00	7																

For Programming

- 8 Banks of 128 bits Each
- Each Bank Individually Programmable via External JTAG

For Reading

- Asynchronous Read Done on Byte Boundaries with Nominal 10 ns Access Time
- 7-bit Address and 8-bit Data Interface with FPGA Core
 - Upper 3 Address Bits Select Bank
 - Lower 4 Address Bits Select One of 16 Bytes

FlashROM Memory Design Flow

FlashROM Memory Configurator Starting from ActGen

May 2005

FlashROM Memory Configurator Example

FROM "Floor Planner"

User Selects
 Properties and Data
 Style for each
 Page/Region of
 FROM

Data Can Be:

- Static
- Read from External File
- Variable with Built-in Auto-increment / decrement Function
- Fixed or Modifiable

Programming & Security

■ Device Programming Scenarios

- First-time Programming
 - Specify Security Information
- Re-programming
 - Specify Previously-used Security Information
- Changing Security Settings

■ Environments

- Trusted Programming Environment
 - Users May Have Access to Pass Key and AES Key
- Un-trusted Programming Environments
 - Never Expose Pass Key or AES Key
 - Never Program Security Settings

FlashPoint Start-up Screen

FlashPoint Security Settings

Designing with ProASIC3

FlashPoint Custom Security Level

FlashPoint *FlashROM*

Designing with ProASIC3

Security Use Model 1 Subscription Example

Security Use Model 2 Secure OEM Manufacturing Example Actel

ProASIC3 I/Os Actel

I/O Functions *PA3/E*

■ Regular I/Os

Input, Output, Tristate and Bidirectional Buffers

■ Registered I/Os

- Built-in Input, Output and Output-Enable Registers
 - ◆ Each Register Equivalent to 1-tile Core Flip-flop
- Architecture Restrictions
 - **♦ SINGLE CLR/PRE Port Shared by All Three Internal Registers**
 - One CLK and One E Port Used for Input Register
 - Second CLK and Second E Port Shared by Output and Outputenable Registers

■ DDR I/Os

- Built-in Input and Output DDR Registers
- Architecture Restrictions
 - SINGLE CLR/PRE Port Shared by Input and Output DDR Functions

Technology Banks

- I/O Technology Banks
 - User I/Os Partitioned in Multiple Technology Banks
 - Number of Banks Die-dependent
 - ► Eight Banks in ProASIC3E Family
 - ► Two or Four Banks in ProASIC3 Family
 - Each Bank Has its Own VCCi Power Supply PAD
- Mini VREF Banks
 - I/O Technology Banks Partitioned in Multiple Mini VREF Banks
 - Each VREF Bank Contains ~16 User I/Os
 - Each User I/O in VREF Bank Can Be Configured as VREF Power Supply PAD (i.e., VREF Pin)
 - Only One VREF Pin Needed per VREF Bank

ProASIC3 I/O Tile

■ 3 Registers per

I/O (Input, Output, and Enable)

 Allow Implementation of Single- and Double-data-rate Transmissions

■ ProASIC3E I/O Tile
Designed to
Support DDR

ProASIC3E Pro I/Os

- Bank-Selectable
- Multiple I/O Standard Support
 - HSTL1, SSTL2/3, GTL+, LVTTL, LVCMOS
 - High-Speed 700Mb/s LVDS with External Resistors
 - LVPECL I/O
 - Hot Swappable
 - 1.5v 3.3v Configurable
- DDR Send/Receive Mode

ProASIC3 Advanced I/Os

- Bank-Selectable
- Multiple I/O Standard Support
 - Single-ended
 - **♦ LVTTL, LVCMOS**
 - ◆ PCI, PCI-X (except A3P030)
 - Differential
 - Supported by A3P250-A3P1000 East/West Banks
 - High-Speed 700Mb/s LVDS with External Resistors
 - **◆ LVPECL I/O**
- Hot Swappable A3P030 only
- 2 Programmable Slew Rates, 3 Drive Strengths, Weak Pull-up / Pull-down Circuits
- DDR Send/Receive Mode
 - On LVDS-supported A3P250-A3P1000 East/West Banks

Single-Ended I/O Standards

- Traditional TTL / CMOS / LVTTL / LVCMOS
- I/O Referenced to System GND
- Switching >200MHz Causes Excessive Noise and Power Consumption

Single-Ended Referenced Standards Actel

SSTL and HSTL

- Stub Series Terminated Logic, High-Speed Transceiver Logic
- I/O Referenced to Common Reference Voltage (approximately Mid-rail)
- Smaller Voltage Swing than LVTTL or LVCMOS
- Good for Data Switching up to 300MHz

Designing with ProASIC3

Single-Ended Referenced Standard Acte

- GTL and GTL+
 - **Gunning Transceiver Logic**
 - **Special Case of Single-Ended Referenced Standard**
 - Common Reference Voltage and High-level Rail
 - Smaller Voltage Swing than HSTL or SSTL
 - Patented by Intel Requires License to Use!

Differential Standards

- LVDS and CML
 - ◆ Low-voltage Differential Signaling, Current Mode Logic
 - ◆ Uses Two Conductors per Signal (Called "Signal Pair")
 - ◆ Signals in Signal Pair Are Referenced to each Other and to Common Reference Voltage
 - ◆ Smaller Swing than HSTL or SSTL, as Small as GTL
 - ◆ Much Better Noise Immunity than Single-Ended Standards

I/O Output Drive & Slew Options

ProASIC3 and ProASIC3E Support

		OUT_DRIVE (mA)				SLEW			
	2	4	6	8	12	16	24		
LVTTL	X	X	X	X	X	Χ	X	HIGH	LOW
LVCMOS25	X	X	X	X	X	X	X	HIGH	LOW
LVCMOS25_50	X	X	X	X	X	X	X	HIGH	LOW
LVCMOS18	X	X	X	X	X	X	N/A	HIGH	LOW
LVCMOS15	X	X	X	X	X	N/A	N/A	HIGH	LOW

- X Supported by ALL ProASIC3 devices except A3P030
- X Supported only by ProASIC3E devices
- •User can select drive strength (in mA) in software tools

ProASIC3E Support ONLY

	OUT_DRIVE
	Drive (mA)
PCI	PCI
PCIX	PCI
HSTL-I	8
HSTL-II	15
SSTL2-I	17
SSTL2-II	21
SSTL3-I	16
SSTL3-II	24
GTL33	25
GTL25	25
GTLP33	51
GTLP25	40
LVDS	24
LVPECL	24

I/O Performance Goals

Std.	Performance
PCI	200 Mhz
PCIX	200 Mhz
HSTL-I	300 Mhz
HSTL-II	300 Mhz
SSTL2-I	300 Mhz
SSTL2-II	300 Mhz
SSTL3-I	300 Mhz
SSTL3-II	300 Mhz
GTL+ 3.3	300 Mhz
GTL+ 2.5	300 Mhz
GTL+ 1.8	300 Mhz
GTL 3.3	300 Mhz
GTL 2.5	300 Mhz
GTL 1.8	300 Mhz
LVDS	350 Mhz
LVPECL	300 Mhz

Standard	1X	2X	3X	4X	5X
LVTTL/LVCMOS 3.3	33 Mhz	100 Mhz	180 Mhz	200 Mhz	200 Mhz
LVCMOS 2.5	33 Mhz	66 Mhz	133 Mhz	180 Mhz	250 Mhz
LVCMOS 1.8	X	33 Mhz	100 Mhz	133 Mhz	200 Mhz

Key:

ProASIC3 & ProASIC3E

ProASIC3E &

East and West Banks of

ProASIC3 250,400, 600 & 1000

ProASIC3E Only

I/O Timing Difference between PA3 and PA3E

ProASIC3 I/Os MUCH Faster than ProASIC3E!

- **◆ PCI Output Buffer Example (-2, High Slew)**
 - ► *Pro I/O (PA3E)* = 2.08ns
 - ► Regular I/O (PA3) = 1.635ns

	N-S I/O				
Standard	Tph (%)	Tpl (%)			
TTL 3.3v	-16.0%	-21.6%			
CMOS 1.5	-17.1%	-13.4%			
CMOS 1.8	-14.0%	-15.6%			
CMOS 2.5	-11.2%	-8.9%			
PCI	-13.1%	-17.0%			
PCIX	-11.6%	-10.0%			

Input Buffers

	E-W I/O					
Standard	Tph (%)	Tpl (%)				
TTL 3.3v	-15.5%	-22.5%				
CMOS 1.5	-16.6%	-13.9%				
CMOS 1.8v	-13.7%	-16.0%				
CMOS 2.5v	-10.9%	-9.1%				
PCI	-12.7%	-17.6%				
PCIX	-11.2%	-10.4%				
LVDS (typ)	-13.7%	-24.7%				
LVPECL (typ)	-13.6%	-14.1%				
LVDS (min)	-19.9%	-23.9%				
LVPECL (min)	-11.7%	-17.2%				
LVDS (max)	-22.1%	-22.1%				
LVPECL (max	-12.5%	-15.9%				

	N-S I/O				
Standard	Tph (%)	Tpl (%)			
TTL3.3v	-8.3%	-12.6%			
CMOS 1.5v	-8.3%	-13.2%			
CMOS 1.8v	-8.1%	-13.1%			
CMOS 2.5v	-8.1%	-13.1%			
PCI	-13.2%	-18.7%			

	E-W I/O				
Standard	Tph (%)	Tpl (%)			
TTL 3.3v	-2.2%	-5.2%			
CMOS 1.5v	-2.4%	-8.1%			
CMOS 1.8v	-2.4%	-7.6%			
CMOS 2.5v	-2.3%	-6.3%			
PCI	-2.6%	-7.2%			
PCIX	-2.6%	-7.2%			
LVDS	-2.8%	-2.1%			
LVPECL	-2.0%	-1.6%			

Output Buffers

Tables Indicate PA3 Improvement in Delay vs. PA3E

I/O Features Comparison ProASIC3/E

I/O Standard	Clamp	Hot	5V Input	Input/Output
	Diode	Insertion	Tolerance	Buffer
LVTTL/LVCMOS 3.3v	No	Yes	Yes ¹	
PCI 3.3v, PCIX 3.3v	Yes	No	Yes ¹	
LVCMOS 2.5v	No	Yes	No	
LVCMOS 2.5/5.0v	Yes	No	Yes ¹	
LVCMOS 1.8v	No	Yes	No	Enabled/Disabled
LVCMOS 1.5v	No	Yes	No	Litabled/Disabled
Voltage-referenced	No	Yes	No	
input buffer				
Differential	No	Yes	No	
LVDS/LVPECL				

1) Can be implemented with resistor divider, IDT bus switch, or external resistor

I/O Absolute Maximum Voltage Rating is 3.6V, and Any Voltage above 3.6V Will Cause Long-term Gate Oxide Failures

All 5V-tolerance Solutions Limit Voltage at I/O Input to 3.6V or Less

I/O Attributes ProASIC3E

IO_THRESH	I/O Standard
SLEW	Slew Rate (HIGH, LOW)
OUT_DRIVE	Output Drive Strength (Nominal in mA)
SKEW	Tristate-Enable Delay Enable
RES_PULL	Resistor Pull Circuit
OUT_LOAD	Output Load (to 1023 pF)
REGISTER	Register Combining
IN_DELAY	Input Delay Enable
IN_DELAY_VAL	Delay Value (3-bit Resolution)
SCHMITT_TRIGGER	Schmitt-Trigger Input Enable

Double Data Rate (DDR)

Input CLK
D1
Output PAD
CLR/Enable
OUTPUT

- In DDR Mode, New Data Is Present on Every Clock

 Transition
- ProASIC3/E Provide I/O Tile Support for DDR on Input AND Output Sides
 - 350MHz Input and Output
 - HSTL, SSTL, LVDS, and LVPECL

I/O Banks and User I/O Counts ProASIC3/E

		A3P	A3P	A3P	A3P	A3P	A3P	A3PE	A3PE	A3PE
		060	125	250	400	600	1000	600	1500	3000
	I/O	Std	Std	Std. + 2 banks LVDS	Std. + 2 Banks LVDS	Std. + 2 Banks LVDS	Std. + 2 Banks LVDS	Pro	Pro	Pro
	I/O Banks (+ JTAG)	2	2	4	4	4	4	8	8	8
	VQ100	63	63	63/12						
Sing	FG144	97	97	97/22	97/22	97/22	97/22			
	TQ144	97	105							
yle End <i>Ended</i>	PQ208		131	155/36	155/ 36	155/ 36	155/ 36	145/66	145/66	145/66
	FG256			155/36	183/40	183/40	183/ <i>40</i>	165/ <i>81</i>		
ed and I/O (pairs)	FG484					235/54	293/70	274/125	293/136	293/136
d airs)	FG676								445/210	
	FG896			_	_	_	_	_	_	600/290

System-Level Considerations

I/O Power-Up/Down

Functional – I/Os Meet

Speed/Performance Specs

- ProASIC3 I/Os Enabled If and Only If ...
 - ... Vcc/Vcci above Minimum Trip Points
 - ▶ Ramping Up 0.6v to 1v
 - ► Ramping Down 0.5v to 0.8v
 - ► Vcc and Vcci Have ~200mV of Hysteresis to Avoid Perpetual Current Stage Activation/Deactivation
 - ... Chip in Operating Mode
- During Programming, I/Os Become Inputs with Pull-ups
- Outputs Activated ~100ns after Inputs (Programming Complete)
- PLL and Charge Pump Power Supplies Have NO Effect on I/O Behavior

Hot Insertion

Hot Swapping Is Insertion or Removal of Card into/from Powered-up System

Level	Description	Power	Bus	GND connected	Circuitry
		Applied	State	to Device	Connected to
		to Device?			Bus pins
1	Cold Swap	No	-	-	-
2	Hot Swap during Reset	Yes	Held In reset	Must be made and maintained for 1 ms before, during, after insertion/ removal	-
3	Hot Swap with Bus Idle	Yes	Held idle (no active I/O processes during insertion/removal	Same as level 2	Must remain glitch-free during power- up/power down
4	Hot Swap on Active Bus	Yes	Bus may have active I/O processes, but device being inserted or removed must be idle	Same as level 2	Same as level 3

PA3E Meets LEVEL 4 : Active I/O Processes Are Unaffected by Swapping Activity

Software for PA3 Actel

Designer Software Flow

Import and Compile
MultiView Navigator
Layout

Import

- Netlist
- VHDL, Verilog and EDIF
- Physical Design Constraints (PDC)
 - Pre-compile PDC Import (Source File, Audited)
 - Floorplanning Constraints
 - Netlist Optimization
 - I/O Register Combining
 - Global Promotion/Demotion
 - Local Clock Assignment (Spine, Quadrant)
 - Buffer Deletion
- Post-compile PDC Import (Auxiliary File)
 - Floorplanning Constraints ONLY
 - I/O Attributes
 - Placement
 - Region
- Synopsys Design Constraints (SDC)
 - Pre-compile SDC Import (Source File, Audited)
- Post-compile SDC Import (Auxiliary File)

Import *Merge*

- User PDC Constraints Merged with Existing Constraints
- Keep Existing Constraint OFF
 - Only Placement (Unfixed) Kept from Previous Run
 - New PDC Constraints Never Conflict with Previous Initial Placement
- Keep Existing Constraint ON
 - If No DRC Error, then USER PDC Wins!
 - If DRC Error, then:
 - ► If Abort on PDC Error is ON, then Abort
 - If Abort on PDC Error is OFF, then
 - Warn that Constraint Cannot Be Satisfied and Proceed
 - I/Os Cannot Move if Fixed from Previous Run

Compile Options

■ Flow

- Displayed by Default when User Clicks on Compile Button (New in 6.1)
- All Compile Options Accessible using Tcl Options in Script Mode

■ Categories

- Physical Design Constraints
- Globals Management
- Netlist Optimization
- Display of Results

Compile Options (cont.)

■ Netlist Optimization

- I/O Register Combining
 - Compile Opportunistically Combines I/Os and Registers if Architecture Rules Are Satisfied
- Buffer/Inverter Deletion
 - Inverters Treated like Buffers (only Polarity May Change)
 - Buffer (Inverter) Trees Deleted if and Only if Resulting Fanout of Net Is Less than Maximun Fanout Value Specified
 - ► To Remove ALL Buffers and Inverters ...
 - ... Select Delete Buffer/Inverter Tree Option
 - Set Maxfanout = 100000 (infinite)

Compile Task Order

- Standard Netlist DRC
 - Unconnected Inputs, Multiple Drivers on Same Net...
- Tie-off
- Logic Combining
- **Removing Unused Logic Cones**
- Automatic Global Promotion
- User-defined Global Demotion (from PDC)
- User-defined Global Promotion (from PDC)
- Automatic Global Promotion
- Buffer Deletion
 - Buffers Always Removed on Global Nets
- **Enable Flip-flop Re-mapping**
 - CLR/SET Global Connection Architecture Rule
- I/O Register and DDR Combining
- Local Clock Legalization
 - Shared Instance between Non-overlapping Clock Regions

May 2005

Designing with ProASIC3

Compile Report

■ Standard Sections

- Designer Parameters
- Netlist Optimization
- Device Utilization

Advanced Sections

- Advanced I/O
- Advanced Net

Compile Report Designer/Compile Parameters

Family : ProASIC3E Device : A3PE600

Package : Fully Bonded Package

Source : D:\designs\PA3\brooklyn\brooklyn.edn

Format : EDIF

Topcell : brooklyn

Speed grade : -2

Temp : 0:25:70

Voltage : 1.58:1.50:1.42

Abort on PDC error : 1
Keep existing physical constraints : 0

combine register : 0 : 1 promote globals promote_globals_min_fanout : 200 set_max_globals demote globals delete buffer tree : 0 : 12 delete buffer tree max fanout localclock max shared instances : 12 localclock buffer tree max fanout : 12

Designing with ProASIC3

Compile Report Netlist Optimization Report

Netlist Optimization Report

Optimized macros:

- Dangling net drivers: 0
- Buffers: 0
- Inverters: 0
- Tieoff: 0
- Logic combining: 4

Total macros optimized 47

Warning: CMP503: Remapped 485 enable flip-flop(s) to a 2-tile implementation because the CLR/PRE pin on the enable flip-flop is not being driven by a global net.

Compile Report Device Utilization Report

Device utilization report:

CORE	Used:	9005	Total:	13824	(65.14%)
I/O (W/ clocks)	Used:	104	Total:	270	(38.52%)
GLOBAL (Chip+Quadrant)	Used:	6	Total:	18	(33.33%)
PLL	Used:	0	Total:	6	(0.00%)
RAM/FIFO	Used:	0	Total:	24	(0.00%)

Core Information:

Туре	Instances	Core tiles
COMB	5863	5863
SEQ	2657	3142

Global Information:

Type	Used	Tot	cal
Chip global	6	6	(100.00%)
Quadrant global	0	12	(0.00%)

MultiView Navigator 1/O Attribute Editor

May 2005

MultiView Navigator PinEditor

MultiView Navigator ChipPlanner

- RegionManagement
 - Inclusive
 - Exclusive
 - Empty
 - Rectilinear
 - Multi-types
 - ► Core, I/O, RAM
- Quadrant Clock
 - Assignment to Clock Nets
- Local Clocks
 - Display Only
- Routing View
 - Display Only

MultiView Navigator ChipPlanner

MultiView Navigator Netlist Viewer

- Pre-optimized View
- Post-optimized View
 - Back-annotation Netlist

Pre-layout Checker

- Pre-layout Requirements
 - I/O Banks MUST have Vcci and Vref Assigned if Mixed Voltages Are Used in Design
 - Placer Does Not Automatically Assign Vcci and Vref Voltages to I/O Banks
 - There No More than Six Unassigned Clock Macros
 - Quadrant Clocks Must Be Assigned Manually
 - ► Clock Placer Does Not Automatically Assign Clock Macros to Quadrant Clock Locations
- Pre-layout Checks
 - Infeasible Constraints Identified before Layout

Layout

■ Layout Options

- Timing Driven (On/Off)
- Incremental Placement
 - On/Off/Fix
- Incremental Route
 - On/Off
- Known Limitations
 - Router Cannot Run in Incremental Mode if there Has Been Change in Global Assignments
 - Users Must Manually Uncheck Incremental Routing Option and Re-run Layout
 - ► NOTE: In APA, this Happens Silently – User May Be Unaware that Routing Is Not Incremental

Layout

- **■**Clock Placer
 - Automatically Places Chip-wide Global Clocks ONLY
- Aggregation Solver
 - Local Clock (Aggregation) Solver <u>Guarantees</u> that Router Does Not Demote any Local Clock
- Timing-Driven Placer
 - Use NGT-TDPR Integrated Flow
- Timing-Driven Router
 - Use NGT-TDPR Integrated Flow
- Incremental Place
- ■Incremental Route

Timing Flow

- SDC Constraints
- Pre-layout Timing
 - Estimated Wire Load Model
- Post-layout Timing
 - AWE Calculator
 - Post-LPE Data Provided by DCT
- Power Estimation and Back-annotation
 - Use Post-compile Netlist
 - Export New Netlist File (VHDL/Verilog)
 - **♦** Export SDF File

May 2005

Clock Conditioning Circuitry

CCC Locations Floor Plan

→ I/O Module to CCC

Core Tile

IO Tile

Auxiliary Tile

CCC Tile

RAM Tile

P Positive I/O Module

N Negative I/O Module

Empty Module

Clock Source Selection

- CLKBUF* (I/O->CCC-bypass)
 - 3 Possible I/O Locations for Each Global Location (GLA/B/C)
- CLKINT
 - 1 Core Input for Each Global Location (GLA/B/C)
- CLKDLY
 - I/O -> CLKDLY (Hardwired)
 - ◆ 3 Possible I/O Locations for Each Global Location (GLA/B/C)
 - I/O -> CLKDLY (External) or CORE -> CLKDLY
 - ◆ 1 Core Input for Each Global Location (GLA/B/C)
- PII
 - I/O -> PLL (Hardwired)
 - 3 Possible I/O Locations for GLA
 - I/O -> PLLINT -> PLL (External) or CORE -> PLL
 - 1 Core Input for GLA

Clock Source Selection Designer Software Flow

■ Compile

- Create Hard Macros for CCC Macro including Hardwired-I/O Reference Clock (if Present) and Hardwired-I/O External Feedback Clock
- Remove Unused Globals from PLL Macro
 - PLL Hard Macro Uses Only Minimum Number of Tiles Required
- Mark Global Outputs from CLKBIBUF, CLKDLY and PLL Macros "Essential"
 - Assures These Global Outputs Can Never Be Demoted

MVN

- Can Drag and Drop CCC Hard Macros in ChipPlanner and PinEditor
 - When I/O Is Part of CCC Macro, Dropped Target Should Be I/O Module or Package Pin

Clock Source Selection Designer Software Flow

■ Place & Route

- Fully-Automatic Clock Placement of up to 6 Chip-wide Globals
 - All CCC Macros Supported for Automatic Placement
- May Need to Assign Some Clocks to Quadrant Clocks Using MVN or PDC

■ Timing

- CLKINT, CLKBUF*, CLKDLY => Buffer-like Behavior
 - Back-annotation Supported
- PLL => Register-like Behavior
 - CLKA->GLA, CLKA->GLB/YB and CLKA->GLC/YC Arcs Computed Using Full PLL Configuration
 - Back-annotation Not Supported
- No Constraint Propagation through PLL Macros

May 2005

ACTgen Clock Delay Configurator

- Delay Selection
 - Total Delay from Input to Output
 - Typical Numbers
 - Consistent with Timer and Timing Simulation Typical Numbers (NOT Perfectly Linear!)
- Clock Source Selection Options
 - Hardwired I/O
 - Routed I/O
 - Core Logic

CLKDLY Clock Sources Selection Options

- Hardwired I/O
 - Source Clock Pad

■ External I/O

Source – Regular I/O Pad

- Core Logic
 - Source Internal Net

ACTgen Visual PLL Features

- Clock Frequency Generator
 - On-the-fly Computation of All CCC Dividers to Obtain Closest Match to User's Frequency Requirements
 - Actual Frequency Reported
- Clock Skew Management
 - On-the-fly Computation of Total Delay from Reference Clock to Any Generated Clock
 - Typical Numbers Consistent with Timer and Timing Simulation
- Clock Source Selection Options
 - Hardwired I/O
 - External I/O
 - Core Logic

Visual PLL *Invoking from ACTgen*

May 2005

ACTgen Visual PLL

Globals Management Actel

Global Clock Promotion Synthesis

- RTL Is Preferred Method of Defining which Signals Are Assigned to Clock Network
 - Clock Macro Instantiation (CLKBUF*, CLKINT, CLKDLY*, PLL)
 - Guaranteed Honored by Synthesis Tools and Designer Software
 - Automatic Clock Inference (Synplicity)
 - May Not Give Expected Results
 - Inferring Based Only on Fanout (Heuristic)
 - Net Type (Clock/Reset) Not Considered
 - Special Architecture Rules (i.e., Enable Flip-flop SET/CLR) Not Easily Defined
- Optimization Issue Logic Duplication and Buffering of High-Fanout Nets
 - Designer Does NOT Remove Buffers from High-fanout Nets
 - May Create Problems Assigning to Clock Networks in Designer Flow
 - ▶ Nets Assigned to Local Clock Networks Are Not Optimized by Synthesis Tools
 - Users Should Exclude Nets Intended for Spines from Buffering in Synplify
 - Use syn_maxfan or syn_noclockbuf Attributes

May 2005

syn_maxfan Synthesis Attribute

- Controls Maximum Fanout of Instance, Net or Port
 - Limit Specified by this Attribute May Be Treated as Hard or Soft Depending on where it Has Been Specified
 - Soft Limit May Not Be Honored if it Degrades Performance
 - You Can Apply syn_maxfan Attribute to Module, Register, Instance, Port, or Net
 - syn_maxfan on Net Has Highest Priority
 - syn_maxfan on Block Has Higher Priority than Global Fanout Limit

syn_maxfan Attribute Usage

■ SCOPE Constraint Editor Usage

■ SDC File Syntax

define_attribute { object } syn_maxfan { integer }

Example: Limits Fanout for Signal clk to 200

• • •define_attribute {clk} syn_maxfan {200}• • •

syn_maxfan Attribute Usage (cont.)

■ Verilog Syntax

object /* synthesis syn_maxfan = "value" */;

• Example:

```
module test (registered_data_out, clock, data_in);
output [31:0] registered_data_out; input clock;
input [31:0] data_in /* synthesis syn_maxfan=1000 */;
reg [31:0] registered_data_out /* synthesis syn_maxfan=1000 */;
// Other code
```

■ VHDL Syntax

attribute syn_maxfan of object : object_type is "value";

• Example:

May 2005

syn_noclockbuf Synthesis Attribute

- Selects/Deselects Automatic Clock Buffering
 - Value of '1' (or Boolean TRUE) Turns OFF Automatic Clock Buffering
 - You Can Apply syn_noclockbuf Attribute to Module, Register, Instance, Port, or Net

syn_noclockbuf Attribute Usage

■ SCOPE Constraint Editor Usage

■ SDC File Syntax

define_attribute { object } syn_noclockbuf { integer }

Example: Turns OFF Automatic Clock Buffering for Net clk

• • •define_attribute {clk} syn_noclockbuf {1}• • •

syn_noclockbuf Attribute Usage (cont.)

■ Verilog Syntax

object /* synthesis syn_noclockbuf = "value" */;

• Example:

```
module test (registered_data_out, clock, data_in);
output [31:0] registered_data_out; input clock;
input [31:0] data_in /* synthesis syn_noclockbuf=1 */;
reg [31:0] registered_data_out /* synthesis syn_noclockbuf=1 */;
// Other code
```

■ VHDL Syntax

attribute syn_maxfan of object : object_type is "value";

• Example:

Automatic Global Clock Promotion Compile Option

Note: Can Be Done with TCL Command

Global Clock Promotion MultiView Navigator

Automatic Global Clock Demotion Compile Option

Note: Can Be Done with TCL Command

Post-Compile Clock Reports Device Utilization Report

Device utilization re	eport:					
=======================================	=====					
CORE		Used:	9005	Total:	13824	(65.14%)
I /O (W/ clocks)		Used:	104	Total:	270	(38.52%)
GLOBAL (Chip+Quad	lrant)	Used:	6	Total:	18	(33.33%)
PLL		Used:	0	Total:	6	(0.00%)
RAM/FIFO		Used:	0	Total:	24	(0.00%)
Global Information:						
Туре	Used	Total				
Chip global	6	 6 (1	00.00%	<u>-</u>		
Quadrant global	0		.00%)			

Post-Compile Clock Reports Clock Net Information Report


```
The following nets have been assigned to a global resource:
   Fanout Type
   1780 CLK NET
                        Net : 1 clk c
                        Driver: 1 clk pad/U0/U1 CLKINT/U GL
                        Source: AUTO PROMOTED
   878
                        Net : hclk c
           CLK NET
                        Driver: h_clk_pad/U0/U1_CLKINT/U_GL
                        Source: PDC PROMOTED
   294
                            : h rst l c
           INT NET
                        Driver: h rst l pad/U0/U1 CLKINT/U GL
                        Source: NETLIST
The following nets have been assigned to a quadrant clock resource using
PDC:
   Fanout Type
                        Name
   24 INT_NET
                        Net: l frame l in
                        Driver: 1 frame 1 pad/U0/U1 CLKINT/U GL
                        Region: quadrant UL
The following nets have been assigned to a local clock resource using PDC:
   Fanout Type
   35 INT NET Net: h frame l in
                        Driver: h frame 1 pad/U0/U1/U1
                        Region: chip T1
```

May 2005

Post-Compile Clock Reports High-Fanout-Net Information Report


```
High fanout nets in the post compile netlist:
    Fanout Type
                          Name
    22
                                 : h irdy l in
            INT NET
                          Net
                          Driver: h irdy l pad/U0/U1/U1
    16
                                 : dw bfifo addra[3]
            INT NET
                          Net
                          Driver: dbrg/bfifoctl/bfifo addra[3]
                                 : bs h ad oe 0[0]
    16
                          Net
            INT NET
                          Driver: bs h ad oe 0[3]
                          Net : bs 1 ad oe 0[0]
    16
            INT NET
                          Driver: bs 1 ad oe 0[0]
    16
            INT NET
                          Net
                                 : N 1630
                          Driver: G 1622
Nets that are candidates for clock assignment and the resulting fanout:
    Fanout Type
                          Name
            CLOCK NET
                                 : h irdy l in
    500
                          Net
                          Driver: h_irdy_l_pad/U0/U1/U1
    16
                                 : dw bfifo addra[3]
            INT NET
                          Net
                          Driver: dbrg/bfifoctl/bfifo addra[3]
    16
                                 : bs_h_ad_oe_0[0]
            INT_NET
                          Driver: bs_h_ad_oe_0[3]
```

I/O Management Actel

Defining I/O Standards

■ Synthesis

- Using Generic Macros
 - May Instantiate Generic INBUF, OUTBUF, TRIBUF and BIBUF Macros
 - Synthesis May Automatically Infer Generic I/O Macros
 - LVTTL Is Default I/O Technology for these Macros
 - ► Users Can Change Default Standard in Designer Software
- May Instantiate Specialized I/O Macros
 - I/O Technology Defined in Macro Name (See Data Sheet)
 - ► Examples INBUF_LVCMO25, OUTBUF_GTL25 ...
- MUST Instantiate Differential I/O Macros (LVDS/LVPECL)

- Design Wizard
 - Set Single Default I/O Standard for All Generic I/O Macros

Designing with ProASIC3 © 2005 Actel Confidential and Proprietary May 2005

- I/O Attribute Editor
 - Change Default I/O Standard for Each Generic I/O Macro

Designing with ProASIC3 © 2005 Actel Confidential and Proprietary May 2005

Defining Programmable I/O Attributes Actel

- Synthesis
 - User Can Instantiate Specialized I/O Macros
 - ◆ I/O Attribute Defined in Macro Name
 - ► INBUF ...

- I/O Attribute Editor
 - Users Can Change Default I/O Attributes for Each I/O Macro

136 Designing with ProASIC3 © 2005 Actel Confidential and Proprietary May 2005

Enabling I/O Registers

■ DRC Requirements

- MUST Meet Architectural Restriction
 - ◆ Fanout Between I/O and Register MUST Be 1
 - NOTE: Compile Does Not Give Error if This Restriction Is Not Met
 - ► Instead, Register Function Is Implemented Using FPGA Core Tiles

Using Global Compile Option

- I/O Register Combining "Off" by Default
- Tcl Mode
 - Use "-combine_register {1,0}" to Enable/Disable Combining
- Interactive Mode
 - Use Compile Dialog Box Option

Creating DDR I/O Function

- Synthesis
 - Instantiate DDR REG or DDR OUT Macro
- DRC Requirements
 - MUST Meet Architectural Restrictions
 - Fanout Between I/O and DDR Macro MUST Be 1
 - For Bidirectional Macro, Input DDR and Output DDR Must Share Common CLR Signal
 - Compile DOES Give Error if These Restrictions Are Not Met
 - No Built-in DDR Functions in FPGA Array
 - Users Should Build DDR Functions from FPGA Gates if ...
 - ► ... They Cannot Meet Architectural Restrictions
 - ► ... They Don't Want Built-in Logic for DDR Function

Defining I/O Standard Bank Assignment Rationale

- No Automatic Place & Route Flow for Mixed-I/O-Voltage Design
- Users MUST Provide Bank Assignment before Running Layout
 - All Banks Require Vcci Voltage(s)
 - Each Compatible I/O Class (i.e., Same Vcci Requirement), Needs Enough I/O Pads Supplied by Bank Vcci
 - Voltage-Referenced I/Os REQUIRE Vref Assignment(s)
 - At Least ONE Vref for Each I/O Technology Bank
 - Vref Supplies Created by Setting User I/O as Vref Pin
 - ◆ Each Compatible Voltage-Referenced I/O Class (i.e., Same Vcci/Vref Requirement), Needs Enough I/O Pads Supplied by Bank Vcci and Vref Voltage Supply

I/O Bank Settings *Assigning Vcci Voltage*

- PinEdit or ChipEdit
 - Use Bank Attribute Dialog Box
- Physical Design Constraint (PDC)
 - Import PDC Constraint in Pre- or Post-compile State
 - ♦ set iobank -vcci vcci

I/O Bank Settings Assigning Vref Voltage

- PinEdit or ChipEdit
 - Use Bank Attribute Dialog Box
- Physical Design Constraint (PDC)
 - Import a PDC Constraint in Preor Post-compile State
 - ◆ set iobank -vref vref

I/O Bank Settings Assigning Default Vref Voltage Pins

■ PinEdit or ChipEdit

- Use Bank Attribute Dialog Box
 - Default Setting
 - This Option Guarantees Full Vref Coverage of Bank
 - ◆ All Bonded I/O Pads in Bank Assigned Compatible Voltage-Referenced User I/O Macro
 - May Add Unnecessary Vref Pins
 - Loss of Usable User I/Os
 - See "Custom Vref Setting"
- Physical Design Constraint (PDC)
 - Import PDC Constraint in Pre- or Post-compile State
 - set_vref_defaults bank

I/O Bank Settings Custom Vref Setting

- Choose User I/O Pads as Vref Pins
- Must Create Enough Vref Pins to Allow Legal Placement of Voltage-referenced I/O Macros
 - PinEdit or ChipEdit
 - Setting Vref Pin
 - ► Select Package Pin or I/O Pad
 - ► Right-click
 - ► Select "Use Pin For VREF" Menu Option
 - Showing Vref Coverage of Given Vref Pin
 - Select Vref Package Pin or Vref I/O Pad
 - ► Right-click
 - Select "Show VREF Range" Menu Option
 - Showing Complete Vref Coverage in Given Bank
 - Select Bank which Is Already Assigned Vref Voltage
 - ► Right-click
 - Select "Show all Pins in a VREF Range" Menu Option
 - Using Physical Design Constraint (PDC)
 - Import PDC Constraint in Pre- or Post-compile State
 - set_vref [pkgpin]+

May 2005

Validating I/O Bank Assignments I/O Bank Report

- May Be Run ...
 - ... from Menu "Tools->Report..."
 - ... from Compile Report
 - Automatically Generated during Compile Command
 - ... from MVN
 - DRC Command Runs Pre-layout Checker
 - ► If Infeasible I/O Bank Assignment Is Detected, then /O Bank Report Is Generated
 - Violations Highlighted in Report
 - Commit Command Automatically Runs DRC Command

I/O Bank Report Function

I/O Function:			
Type	w/o register	w/ register	w/ DDR register
Input I/O	30	0	0
Output I/O	32	0	0
Bidirectional I/O	0	0	0
Differential Input I/O	2	0	0
Differential output I/O	0	0	0

I/O Bank Report Technology

I/O Technology:

	Volta	ages		I/Os	3
I/O Standard(s)	Vcci	Vccr	Input	Output	Bidirectional
LVTTL	3.30v	N/A	 0	 32	0
LVCMOS25	2.50v	N/A	3	0	0
LVCMOS25_50	2.50v	N/A	3	0	0
LVCMOS18	1.80v	N/A	3	0	0
LVCMOS15	1.50v	N/A	3	0	0
PCI	3.30v	N/A	2	0	0
PCIX	3.30v	N/A	2	0	0
LVDS	2.50v	N/A	2	0	0
LVPECL	3.30v	N/A	2	0	0
<pre>HSTLI (Input/Bidirectional)</pre>	1.50v	0.75v	1	0	0
<pre>HSTLII (Input/Bidirectional)</pre>	1.50v	0.75v	1	0	0
SSTL3I (Input/Bidirectional)	3.30v	1.50v	2	0	0
SSTL3II (Input/Bidirectional)	3.30v	1.50v	2	0	0
SSTL2I (Input/Bidirectional)	2.50v	1.25v	2	0	0
SSTL2II (Input/Bidirectional)	2.50v	1.25v	2	0	0
GTL25 (Input/Bidirectional)	2.50v	0.80v	1	0	0
GTL33 (Input/Bidirectional)	3.30v	0.80v	1	0	0
GTLP25 (Input/Bidirectional)	2.50v	1.00v	1	0	0
<pre>GTLP33 (Input/Bidirectional)</pre>	3.30v	1.00v	1	0	0

I/O Bank Report Bank Resource Usage

I/O Bank Resource Usage:

	Volt	ages	Single I/Os			. I/Os	Vref I/Os			
	Vcci	Vccr	Used	Total	Used	Total	Used	Total Vref Pins		
Bank0	N/A	N/A	0	25	0	12	N/A	N/A N/A		
Bank1	N/A	N/A	0	15	0	7	N/A	N/A N/A		
Bank2	N/A	N/A	0	17	0	6	N/A	N/A N/A		
Bank3	N/A	N/A	0	16	0	7	N/A	N/A N/A		
Bank4	N/A	N/A	0	15	0	7	N/A	N/A		
Bank5	N/A	N/A	0	22	0	10	N/A	N/A N/A		
Bank6	N/A	N/A	0	19	0	9	N/A	N/A		
Bank7	N/A	N/A	0	18	0	7	N/A	N/A N/A		

Warning: I/OPRL1: 8 I/O Bank(s) have not been assigned any voltages.

The I/O modules located in these banks cannot be assigned any I/O macro.

I/O Bank Report *Voltage Usage*

I/O Voltage Usage:

Voltages	I/	/Os
Vcci Vccr	•	•
1.50v N/A	•	•
1.80v N/A	3*	Warning: I/OPRL3: This design has infeasible I/O voltage requirement(s)
2.50v N/A	14*	0 which are indicated with a '*' in the
3.30v N/A	44*	0 I/O Voltage Usage table.
1.50v 0.75v	2*	0 Please consider importing a Physical Design Constraint (PDC) file or use the
2.50v 0.80v	1*	0 MultiView Navigator (MVN) to resolve
3.30v 0.80v	1*	thee design's voltage requirements before running layout.
2.50v 1.00v	1*	0
3.30v 1.00v	1*	0
2.50v 1.25v	4*	0
3.30v 1.50v	4*	0

Setting I/O Banks

Successful I/O Bank Assignment

Programming and Hardware Tools

Simplified ISP

Single-pin Programming Supply VoltageVpump = 3.3V (Nominal)

◆ All Other Programming Voltages Generated On-

chip

ProASIC3/E

FROM

FPGA Core Array Programming via JTAG Port

- Separate V_{JTAG} Power Supply
 - ◆ 1.4V to 3.6V
- Program and Erase Times
 - Estimated at <2min for Largest Parts and <30s for Smaller Parts</p>
- Same Programming for both ProASIC3/E

World's Best ISP

- Industry-standard IEEE1532 (JTAG) Programming
 - Optional User Flash Programming via JTAG
- Built-in Secure ISP
 - ISP Supports Bitstreams Encrypted with 128-bit AES (FIPS-192) Block Cipher
 - NIST-approved to Replace DES and 3DES
 - **♦** 3.4 x 10³⁸ Possible 128-bit keys
 - ◆ Over 1000 Trillion Years to Crack 128-bit AES Key
 - AES Key Securely Stored during Programming in ProASIC3/E On-chip Flash and Cannot be Read Back
 - AES Core in ProASIC3/E Decrypts and Authenticates (MAC) Bitstream File prior to Programming
 - Allows Secure (and Authenticated) Remote Field Updates

ProASIC3/E Programming Options

- Secure ISP Using AES Programming
 - ✓ OPTION 1 Program ProASIC3/E Devices Inhouse with Plain Text
 - ✓ OPTION 2 Program ProASIC3/E Devices Inhouse with AES Key Only Final Programming Can Be at Un-trusted site (Contract Manufacturer) Using AES-encrypted Programming File
 - ✓ OPTION 3 Re-program ProASIC3/E Devices Remotely Using AES-encrypted Programming File for Easy and Secure Field Upgrades
- Built-in ProASIC3/E FlashROM Can Be Updated <u>Independently</u> Using AESencrypted Programming File or Plain Text

PA3 ISP Programming HW

■ FlashPro3 Hardware

- Small A3P/E-only Programmer with USB 2.0 High-speed Interface
 - 10-pin JTAG ISP
 - Altera-compatible Interface
- Programs Devices in Less than 2 Minutes
- Powered by USB Connection
 - Parallel Programming Requires Powered USB Hub
- Variable TCK (up to 24 MHz)
 - Recommend <= 20MHz for PA3/E
- Optional Transition Board provides Adapter Cables for 26- and 10-pin SAMTEC

PA3 ISP Programming SW

- FlashPro v3.3 Software
 - Works with All FlashPro-series Programmers
 - FlashPro3, FlashPro Lite and FlashPro
 - Supports A500K, APA and PA3/E with Appropriate Programmer
- ChainBuilder v1.1 Software
 - New Software for PA3/E Support in Addition to APA

PA3 Programming Cycle Counter

- Independent Count Maintained
 - Read from PA3 Device
 - Tracks Number of Times Device Has Been Programmed
 - Reported in FlashPro Programming Log File
- Use model
 - No Display of Programming Cycle Count in GUI
 - Stored Only in Log File
 - Suggest Replacing Device at Certain Level

ISP Flows with FlashPro

■ ISP Modes

- Sequential Programming
 - Program Multiple Devices in a Single JTAG Chain One at a Time
- Concurrent Programming
 - Simultaneously Program Multiple Devices in Single JTAG Chain
 - This Mode Not Possible with FlashPro v3.3 SW
- Parallel Programming
 - Simultaneously Program Multiple JTAG Chains with Multiple FlashPro3s

■ Software

- Designer (for the FPGA Array MAP File)
- ACTgen III (for FROM Configuration File)
- FlashPoint (STAPL Programming File Generator)
- FlashPro v3.3 Programming Software

Programming flows for A3P/A3PE

■ Without FlashROM

Flashpoint

Select security settings

Generate programming file(s)

Sculptor/ FlashPro

Program DeviceSingle or Multiple programming files

■ With FlashROM

Actgen

Generate FROM

Define data regions

Setup serialization options

Flashpoint

Select security settings

Select FlashROM data

Generate programming file(s)

Sculptor/ FlashPro

Program DeviceSingle or Multiple programming files

Programming File Sizes and Estimated Programming Times

		A3P	A3P	A3P	A3P	A3P	A3P	A3P	A3PE	A3PE	A3PE
		030	060	125	250	400	600	1000	600	1500	3000
File Size MB	Plain	0.03	0.06	0.12	0.23	0.34	0.51	0.89	0.51	1.42	2.78
	AES	0.04	0.08	0.15	0.28	0.42	0.63	1.10	0.63	1.75	3.43
Programmin (Plain Text		<30Sec	<30Sec	<30Sec	<45Sec	<45Sec	<1min	<1min	<1min	<1.5min	<2min

ProASIC3 Starter Kit Contents

- A3PE-EVAL-KIT Main Part Number A3PE-PROTO-KIT – Pre-production with Socketed Board
- FlashPro3 Hardware
- FlashPro Software
- Evaluation Board with A3PE600-PQ208 Device
 - A3PE-EVAL-BRD600-SA No socket
 - A3PE-EVAL-BRD600-SKT Socketed (Prototypes and Pre-production)
- Universal Power Brick
 - Same as in Existing APA and AX Starter Kits; 9V at 2A
- Libero Software

PA3 Starter Kit Board Description

■ Feature List

- A3PE600-PQ208
- 8-digit LCD Dot-matrix Display (Large 13.8mm Characters)
- 13 LEDs
 - 5 Power (1.5V, 1.8V, 2.5V, 3.3V, 5V (for LCD))
 - 8 Status
- 8 Switches
 - 5 Push
 - 2 Rotary
 - 1 Reset
- 2 Oscillators (One Unpopulated)
- Various Jumpers for I/O Bank Voltage Selection
 - ◆ 1.5V, 1.8V, 2.5V, 3.3V
- 2 CAT5E RJ45 Connectors for LVDS
 - 4 Transmit Pairs and 4 Receive Pairs (16 Signals)
 - 2 Transmit and 2 Receive Pairs per RJ45
 - ► Loopback-capable via CAT5E Patch Cable
 - Primary and Secondary

A3P/A3PE Adapter Modules

- Required by Silicon Sculptor II Programmer
 - Note No A3P/A3PE Programming Support with SS I!
- PA3/E Use Existing APA Modules
 - Redesign Not Required for SMPA-PQ208, SMPA-FG484, and Other SMPA Modules
 - Use Existing APA Modules
 - Caveat: One New Module Required for A3P030 New Package
 - Benefit

Designing with ProASIC3

No Additional Cost to Existing Customers

Summary

CCC Backup Actel

Clock Source Selection (cont.)

■ Hardwired Reference Clock Placement

(MVN/PDC)

- I/O in I/O-CCC Hard Macro Is Master Cell for Placement Purposes
 - ➤ Placement Target Should Be I/O Module
- Can Be More than One I/O Module Target for Same CCC Chip Location

