=
i,

The Abdus Salam
) International Centre for Theoretical Physics

THA

“_‘
)
2 Mo

310/1780-10

ICTP-INFN Advanced Tranining Course on
FPGA and VHDL for Hardware Simulation and Synthesis
27 November - 22 December 2006

VHDL & FPGA - Session 2

Nizar ABDALLH
ACTEL Corp.
2061 Stierlin Court
Mountain View, CA 94043-4655
U.S.A.

These lecture notes are intended only for distribution to participants

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 | | |; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Outline

Synthesis | - Introduction

Synthesis Il - Introduction to VHDL
Synthesis Ill - Advanced VHDL

Design verification & timing concepts
Programmable logic & FPGA architectures
Actel ProASIC3 FPGA architecture

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Why HDL? Why VHDL?

H HDL is a software solution due to limits in
hardware solutions and to:
® Increasing design complexity
® Increasing cost in time and investment
® Increasing knowledge requirement
® |Inadequacy of other existing languages

m VHDL is a response to problems for system
manufacturers in verifying their system fully

® Vendor dependency
® Different vendors with different incompatible HDLs
® Problems in design documentation exchange

D A standard HDL from the System]

Manufacturer’s Point of View: VHDL

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

VHDL History

1981: an Extensive Public Review (DOD): VHSIC
Program for modeling digital systems

1983: a Request for Proposal
(Intermetrics, IBM, and Texas Instruments)

1986: VHDL in the Public Domain
1987: Standard VHDL'87 (IEEE-1076-1987)
1993: New Standard VHDL'93 (IEEE-1076-1993)

1994: VITAL (VHDL Initiative Toward ASIC
Libraries)

® Defines Standard Format for Gate Libraries, 1994
® Allows Specification of Common Timing Models

B Revised Standard “VHDL-2001” in review now |

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

VHDL Advantages & Drawbacks VActel

B Philosophy: readable, docs-based on a clear and
predictable simulation behavior

m Advantages

Standard format for design exchange

Technology independent

Multiple vendor support

Support for large as well as small designs

Support for wide range of abstraction in modeling
Simulation oriented (including for writing testbenc h)
User defined value abstractions

Timing constructs

H Drawbacks

® Complex tools
® Slow tools |

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 H

VHDL Main Features

Behavior

Dataflow

Structure

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

VHDL Architectures

B Does not allow a layout description

Abstraction Level3/HDL Architectures

Algorithmic
ESM Behavioral How it works
RTL
Gate Structural) How it is connected
Layout

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 n

A Dataflow Language

CONTROLFLOW

EX: C language assignment

X =A & B;

DATAFLOW

EX: VHDL signal assignment

X <= A and B:;

X Is computed out of A and A PERMANENT link Is created
B ONLY each time this| between A, B, and X

assignment iexecuted

X 1s computed out of A and B
WHENEVERA or B changes

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 n

A Dataflow Language (cont'd) VActel

CONTROLFLOW DATAFLOW

EX: Clanguage assignment|| EX: VHDL signal assignment

VHDL & FPGA Architectures © 2005 Nizar Abdallah

Behavioral vs. Structural

B D-FF with asynch low reset & pos-edge clock

process (CLK, RESET) Behavioral
begin
if (RESET ='0" then
Q<='0%
elsif (CLK'event and CLK='1") then
Q <= DATA;
end if :
end process

-- component declaration Structural
component DFF

port (D, CLR, CLK: iIn std_logic;

Q: out std logic);

end component ;
-- component instantiation
Ul: DFF
port map (D =>DATA, CLR => RESET, CLK => CLK, Q => OUT);

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

VHDL Building Blocks: Entity VAclel

m Entity

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Entity Overview

B The External Aspect of a Design Unit

Required —»| entity entity_ name is
[generic_declaration]

[port_clause]
[entity declarative item] lf,l{g

Optional —>

Required — | end [entity_name]; 1A
(NAME sV

optional) CWM}C

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Entity Example: 2-to-1 Mux

MUX2
AIN —]
YOUT
BIN —
SIN
entity MUX2 is
port (AIN, BIN, SIN ; In std_logic;
YOUT . out std_logic);
end MUX2; / ‘\
Port Port
mode type

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Entity Example: Full Adder

Cin A B
entity FULL ADDERIs
port (A, B, Cin : In BIT FULL
S, Cout . out BIT); ADDER
end FULL_ADDER; / \
Port p l
mode ort v
Type S Cout

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

B Provide communication with other components

B Must have signal name, type and mode
H Port Modes:

® in (data goes into entity only)

® out (data goes out of entity only and not used inte rnally)
® inout (data is bi-directional)

® buffer (data goes out of entity and used internally)

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

VHDL Building Blocks: Architecture PA4ctel

H Architecture

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Architecture Overview

The Internal Aspect of a Design Unit
Can be behavioral (RTL) or structural

Always associated with single entity

Single entity can have multiple architectures

architecture architecture_name
{architecture_declarative part}
begin
{architecture_descriptive part}
end [architecture_name];

of entity_name

IS

VHDL & FPGA Architectures © 2005 Nizar Abdallah

November, 2005

Architecture Example: 2-to-1 Mux PActel

H Two architecture flavors: Behavioral &

Structural
architecture ONE of MUX2is Behavioral
begin
YOUT <= (AIN andnot SIN) or (BIN and SIN);
end ONE:;
architecture TWOof MUX2is Structural
component MX2 -- a macro from a library |
port (A,B,S: in std_logic; Declarative
Y out std_logic); part
end component ;
begin
-- instantiate MX2
Ul: MX2 Descriptive
port map (A=>AIN, B=>BIN, S=>SIN, Y=>YOUT); part
end TWO,; |

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Architecture Example: Full Adder

VActel

H Two architecture flavors: Behavioral &

Structural
Behavioral

entity FULL ADDERIis

port (A, B, Cin in BIT ;

S, Cout out BIT);

end FULL _ADDER;
architecture DATAFLOWof FULL_ADDERIs

signal X: BIT;
begin

X <= A xor B;

S <= X xor Cin after 10ns;

Cout <= (A and B) or (X and Cin) after 5ns;
end DATAFLOW,;

VHDL & FPGA Architectures © 2005 Nizar Abdallah

November, 2005

Architecture Example: Full Adder (cJddiel

H Two architecture flavors: Behavioral &

Structural

Structural:
Declarative part

architecture STRUCTUREOf FULL_ADDERIs
component HALF_ADDER
port (11,12 . in BIT ;
Carry,S : out BIT);
end component ;

component OR_GATE

port (11,12 . in BIT ;
@) . out BIT);
end component ;
signal X1, X2, X3: BIT ;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Architecture Example: Full Adder (cJddiel

H Two architecture flavors: Behavioral &

Structural

Structural:
Descriptive part

begin
HAl: HALF_ADDER port map (
11 => A, 12 => B,Carry => X1,S => X2);
HA2: HALF_ADDER port map (
11 => X2,12 => Cin,Carry => X3,S = 9S),
OR1: OR_GATE port map (
11 => X1,12 => X3,0 => Cout);
end STRUCTURE;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Structural & Hierarchy

B Structural Style to represent Hierarchy
entity-architecture

A HA1 / OR1 Cout
— A

— HA?2

5 Cin = S

entity-architecture

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Architecture in a Design Tree VActel

B Structure & Behavior in a Design Tree

_| Structural

| Behavioral
/R.

VHDL & FPGA Architectures © 2005 Nizar Abdallah

Entity/Architecture

B entity/architecture: a One-to-Many relationship

AN

—I})D) |_—D_ D—

CINA B /
|

fROLL | |
ADDER ~__
 con \
S COUT

X <= A Xxor B;

S <= X xor CIN;

COUT <= (AandB)or
(X and CIN);

VHDL & FPGA Architectures

© 2005 Nizar Abdallah

November, 2005

VHDL Building Blocks: Packages &

Libraries VActel

m Package

H Library |

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Packages & Libraries

Libraries contain packages

B Packages contain commonly used types,
operators, constants, functions, etc.

B Both must be “opened” before their contents
can be used in an entity or architecture

library leee;
use leee.std logic 1164. all ;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Commonly Used Libraries & Packag@ciel

4 . D
STD Library Always visible! - no
<« LIBRARY or USE
[standard] statement required
N J
@EE Library \
std_logic_1164
) . <« Requires LIBRARY and
std_logic_arith USE statements
[std_logic_unsigned]

N Y l

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Design Libraries

A STD

N

A IEEE — SIMULATOR
VHDL L PROJECT_LIB
ies " | v | "™ ork

é SYNTHESIZER

R

library library _name ;

use library name.package name. all ;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Complete Design Example: Multiplid?4ctel

library leee; |
use ieee.std logic _1164. all ; Declare the library
use ieee.std_logic_unsigned. all ; and packages

entity MULT is

port (A: in std_logic_vector(3 downto 0); Now we cah use
B: in std_logic_vector(3 downto 0); -
_ : . std_logic_vector
Y: out std_logic_vector(7 downto 0)); +vpes and unsianed
end MULT,; 4 ?

arithmetic

architecture TEST of MULT is
begin

Y <=A*B; <
end TEST;

Is this a structural or behavioral description ?
|

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Data Objects

B Constants

B Variables
® syntax: var.= expression

® can be declared in body (inside process) or subprog ram
(outside process)

® a body-declared variable is never reinitialized

® a sub-program declared variable is initialized for each call to
the subprogram

value assignment as immediate effect

mS

gnals
syntax: signal <= value
delayed value assignment
optional propagation delay attribute
no global variables to avoid synchronization proble ms
value resolution for multiple assignments

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Signals

B Used for internal connections
B Must be declared before use
A — SIG1
B Must have a type 5~ D= oun
B Assignment is done with <=
Type
|
architecture TEST 0 1 AMPLEIs
signal SIG1:s <+— Declaration
begin |
SIGl<=A and B; | Notice: A, B, C, and OUT1
OUT1<=SIG1 xor C: are not Signals; They are
end TEST; Ports declared in the Entity.

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Signal Vector

m Bit order may be ascending (0 to 7) or
descending (7 downto 0)

Q is an 8-bit vector

entity COUNTERs
port (CLK: in std _logic;

RST: in std _logic;

Q : out std logic_vector(7 downto 0)) :
end COUNTER;

S2 is a 3-bit vector

architecture BEHAVE of COUNTERis
signal S1: std_logic_vector(7 downto 0);
signal S2: std_logic_vector(2 downto 0);
signal S3: std_logic;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Vector Slicing

B Vector slicing can be used on either side of a
signal or variable assignment statement

B Extracts subset of Vector for Reading or Writing

port (P: In std_logic_vector(0 to 3);
R: out std logic_vector(8 downto 0);

Declaration Direction and
Slice Direction must be the
same. (P is up; R is down)

architecture BEHAVE of EXAMPLEIs

R(5 downto 3)<=P(0 to 2);

\ / R(5) P(0)
R(4) P(1)

Size of slices must match R(3) P(2)

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Data Types

m All VHDL data objects must have a type

® Port types are declared in the entity

® Signal, variable, and constant types are declaredi n the
architecture.

m Types we will cover:

® STANDARD package types
® User-defined enumeration types
® |EEE std logic_1164 package types

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

IEEE 1076-1987 Standard Package PAclel

B Predefined VHDL Data Types

® |s always visible
® No declaration is needed

B Types available

® BOOLEAN : (false , true)

i (0 1)

BIT VECTOR : array of BIT values

INTEGER : range -2 147 483 647 to +2 147 483 647
CHARACTER

NATURAL : Subtype of INTEGER (Non Negative)
POSITIVE : Subtype of INTEGER (positive)
STRING : array of CHARACTERS

REAL :range -1.0E+38 to +1.0E+38

TIME : Physical type used for simulation

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

IEEE 1076-1987: integer Type VActel

Allowed values are mathematical integers

B Minimum range: 231 to -231 (32 bits minimum)
if no range is specified

B Useful as index holders for loops or generics

B Supported operations are add, subtract,
multiply, and divide

architecture BEHAVE of COUNTERis
begin
process (clk)
variable cntr: integer range 0O to 63:=0;
begin

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

IEEE 1076-1987: bit / bit_vector Typd/4ctel

H Allowed values are ‘0’ and ‘1’

B Default initialization to ‘0’

entity MUX is

port (A, B, S: N Dbit;
Y: out bit);
end MUX;

m bit_vector is an array of bits

architecture BEHAVE of MUXis
constant LOW: bit_vector (1 downto O0):=“00" :
begin

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

IEEE 1076-1987: boolean Type

m Allowed values are
frue and false

B Not a bit literal -
has no relationship
to a bit

B Operations only
allowed in IF-ELSE
statements, in
processes and
always produce a
Boolean result

VActel

library ieee;
use ieee.std logic 1164 call
entity CONTROLLERS
port (SEL : in boolean ;
X, Y: in std_logic;
Z out std_logic);

end CONTROLLER;
architecture BEHAVE of CONTROLLERs
begin
process
begin
if (SEL)
Z<=X;
else
Z<=Y,
end if
end process;
end BEHAVE;

(X, Y, SEL)

then

VHDL & FPGA Architectures

© 2005 Nizar Abdallah

November, 2005

User-Defined Enumeration Types MC'I'eI

m Allow designers to specify exact values for
operation

B Useful for state machine designs

architecture MACHINE of TRAFFIC LIGHT is
type STATE is (RED, YELLOW, GREEN) ;
signal CURRENT_STATE, NEXT_STATE: STATE

begin 4

The data type of two signals (current_state and
next_state) is the user-defined type called state

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

IEEE 1164-1993 Standard Logic Pacifetiel
B std_logic_1164 must be declared

library leee;
use leee.std logic 1164. all ;

B Supported by most VHDL simulators and
synthesis tools

B Includes a multi-value logic system

® Nine signal strengths defined
® Can resolve multiple signal drivers

B Generally used instead of bhit/bit_vector

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

std_logic_1164 Types

m std_ulogic, std_ulogic_vector
® Unresolved type
® Only one signal driver allowed

m std_logic, std_logic_vector
® Resolved type - multiple drivers allowed
® Used when tri-state logic required

m std_logic is best choice for behavioral

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

‘Legal” Values for std_logic Type VActel

B Unresolved data type

type STD_ULOGIC is

X C|

N — O

=

- I

N’

(
Uninitialized
Forcing Unknown
Forcing Low (driven)
Forcing High (driven)
High Impedance

Weak Unknown Synthesizable

f
Weak Low (read) FPOGPA
Weak High (read)
Don't Care

VHDL & FPGA Architectures

© 2005 Nizar Abdallah November, 2005

Operators

B Six classes

LOGIC OPERATOR and , or hand, nor ,xor
RELATIONAL OPERATOR =, /=,<,<=,>, >=
ADDING OPERATOR +,-,&
SIGN + -
MULTIPLYING OPERATOR * [, mod ,rem
MISCELLANEOUSOPERATO ** abs, not

PRECEDENCE ORDER

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Arithmetic Operators

B Require opening the following packages:

library leee;
use leee.std logic 1164. all ;
use lIeee.std logic_arith. all ; .
use ieee.std logic_signed. all ; < Dependmg‘on
--OR :I whether signed or
use ieee.std_logic_unsigned. all : «—] unsigned arithmetic
is used.

B May be used on real, integer, bit or std_logic
types.

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Operators: Example

library leee;

use leee.std logic 1164. all ;

entity LOGIC is

port (A, B, C: iIn std_logic;
Y,Z out std logic);

end LOGIC;

architecture BEHAVEof LOGIC is
begin

Z<=A and B;

Y<=(A and B) ornot C; ng
end BEHAVE;

cC___ 5 Y

() prevent ambiguity. Otherwise this could be:
(Aand B) or not C
OR
A and (B or not C) -

0

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Arithmetic Operators: Example VAciel
B 4-bit multiplier

library leee;
use leee.std logic 1164. all ;
use leee.std logic_unsigned. all ;
entity MULT is
A port (A: In std logic_vector(3 downto 0);
> % B: in std_logic_vector(3 downto 0);
B__ Y: out std logic vector(7 downto 0));
end MULT;

architecture BEHAVEof MULT is
begin

Y <= A*B;
end BEHAVE;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Concatenation: Example
m 8-bit adder with 9-bit result

library ieee;
use ieee.std logic 1164. all ;
use ieee.std logic_signed. all ;
entity ADDERIs
A — port (
g A B : in std_logic_vector(7 downto 0);
— + S out std_logic_vector(8 downto 0)
B__);
end adder;

architecture BEHAVIORAL of ADDERIs
begin
S<=(A(7) &A) + (B(7) & B);

end BEHAVIORAL;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Operands: Attribute Names

m A Data Attached to VHDL Objects

S'LEFT : Index of the leftmost element of the data type

S'RIGHT : Index of the rightmost element of the dat a type

S'HIGH : Index of the highest element of the datat ype

S'LOW : Index of the lowest element of the datatyp e

S'RANGE : Index range of the data type

S'REVERSE_ RANGE : Reverse index range

S'LENGTH : Number of elements of an array

S'EVENT : A change value at the current simulation time

S'STABLE : No change value at the current simulatio n time
If (CK =0 and not CK'STABLE)

.. I S

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

VHDL Statements

B Concurrent Statements

® Concurrent Signal Assignment
® Conditional Signal Assignment
® Selected Signal Assighment

® Block Statement

® Concurrent Assertion Statement
® Process Statement

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Concurrent Statements

H Execute at the same time

B Signals impacted by an event are resolved in
the same simulation time

Aout <= A; « Signal Assignment
Y0 <= A and B; < Boolean equations
Y1l<='1 when A='1 else ‘07 < Conditional assignments
ul: INV portmap (ina=>A, outb => B); <«<—— Component instantiation
pl: process (CLK, A) :
begin
If (clkevent and clk =*1’) then
it (A='1) then Process
Y <=data _in;
endif «
end if :

end process

If an event occurs on A, then all
these statements will execute
at the same time (concurrently)
|

VHDL & FPGA Architectures

© 2005 Nizar Abdallah

November, 2005

Concurrent Signal Assignment VActel

Always used within an architecture

B Change on the right-hand side causes
immediate reassignment to the left-hand side

B Used in behavioral and structural descriptions
m Signals are associated with TIME

m With "after”, the assignment is scheduled to a
future simulation time

B Without "after”, the assignment is scheduled at
a DELTA TIME after the current simulation time

B Assignment operator is <=

target <= expressiondftertime_expression | ;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Signals with Multiple Drivers VActel

N

Y <= A; -- in processl
and, Y <=B; --in process2

What is the value of the signal in such a case?

B Concept of a Resolution Function; attached to a
signal or a type, and is called every time the
value of signal needs to be determined -- that is
every time a driver changes value |

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Conditional Signal Assignment VActel

Concurrent Version of IF statement

B Condition/expression except for last expression

B One and only one of the expressions is used at
a given time

_ target <= first_value when (conditionl) else
[syntax' second value when (conditionl) else
third_value;

B Example:

Y<=IN1 when S=0 else
IN2 when S=1" else
lO! .

“else" clause is required

Y <="“00" when COUNT >=8 else
Hll” .

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Selected Signal Assignment

H Concurrent Version of CASE Statement

B Syntax:

with EXPRESSION
TARGET <= {expression when choices};

B Example:

17 "with" selection must be a signal, not an expression

with DATAIN select -- selected signal assignment
Y <=INO when “00”,
N1 when “01" < Note that
wnens B commas are
IN2- when *10%, used here.

IN3 when others

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

When-Else Example: Tri-State Bufferff4ctel

library ieee;
use ieee.std logic 1164. all ;
entity MY_TRI is A(O)—I>—Y(O)
port (A: in std_logic_vector(3 downto 0);
EN: in std_logic; =N
Y: out std logic_vector(3 downto 0)); A(l)—[>—Y(1)
end MY_TRI; EN |
architecture BEHAVEof MY_TRI is A<2)_|>_Y(2)
begin EN—,
Y<=A when EN='T else
A3—| >—Y(3
(others =>'2'); © ©
end BEHAVE; 4 EN

means Y <= “ZZZZ";
|

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

With-Select Example: Truth Table

o [O |k |Oo |+ |

B~ [~ |~ o |Jo o |Jo |I>
R~ o o |k |k o o |T
R O |k o |~k |Jo |k Jo O

- means don't care —

library ieee;
use ieee.std logic 1164.all;
entity = TRUTH_TABLEIs
port (A, B, C: in std_logic;
Y: out std logic) ;

end TRUTH_TABLE;
architecture BEHAVEof TRUTH_ TABLEIs

signal S1:std logic_vector(2 downto
begin

S1<=A&B&C;-- concatenate A, B, C

with S1 select

Y <=1 when “000” | “010” | *“100” ,

‘0’ when "“001” | “011” |“101",

— - when others ; I

end BEHAVE;
| means OR only

0);

when

used in “"with" or “case"

VHDL & FPGA Architectures

© 2005 Nizar Abdallah

November, 2005

Block Statement

B Used in synchronous descriptions

latch : block (CLK='1")
begin

Q <=GUARDED D ;
end block latch;

D — —
LATCH Q

CLK T

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Assertion Statement

If the condition is false, it reports a diagnostic
message

B Useful for detecting condition violation during
simulation

B Not used in synthesis

B Syntax:

assert condition
[report error_message |
[severity severity level];

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Process Statement

A Set of Sequential Statements

m All processes in a design executes
CONCURRENTLY

H At a given time, ONLY ONE sequential
statement executed within each process

B Communicates with the rest of a design through

signals
| 3yntax: [label :] process [(sensitivity list)]
{ process_declarative_part }
begin
{ sequential_statements }
end process [label];

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 E

Process Statement (cont'd)

H A Pseudo Infinite Loop

® A Synchronization Mechanism is Needed

process
begin
sequential_st
sequential_s
sequential_st
end process ;

B Sensitivity list or wait statement will be used

VHDL & FPGA Architectures © 2005 Nizar Abdallah

November, 2005

Process With Sensitivity List

Process label

(recommended) Sensitivity list
| |
PQR:process (A, B, C)
begin
X <= A and B; \
if (B=1 h
| g(e A)xor C_t en Statements
else ’ > executed
Y <= A xnor C: sequentially
endif ; J
end process POR,;

T

End statement matches process label
|

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Process With Wait Statements MC'I'el

NOITE! No sensitivity list

AORB: process !
begin
waituntl - rising_edge(clk) “—WATT condition
te=1) then is on signals only
Y <= A xor C; .
else . Assugnme.n‘rs execute
Y <= A Xnhor C’ Whe(;‘\. T‘hen‘" WAIT d
endif) condition is satisfie
end process AORB;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Sequential Statements in ProcessesPAciel

B Executed line-by-line inside of a process or sub-
program

B Typically include:

® WAIT statements
® Signal and variable assignments
® Conditionals like IF-THEN-ELSE, CASE, LOOP

H Support other advanced statements

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Variable Assignment Statement VActel

Always executed in Zero Simulation Time

B Used as temporary storages

B Can not be seen by other concurrent
statements

B Syntax:

target_variable := expression ;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Signal Assignment Statement YActel

Defines a Driver of the Signal

B Within a process, Only One driver for each
signal

B When assigned in multiple processes, it has
Multiple Drivers. A Resolution Function shoulid
be defined

B Syntax:

target_signal <= transport] expression [after time];

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 E

Inertial & Transport Delay Models PAciel

B Default mode is Inertial

B Inertial is useful in modeling devices that ignore
spikes on the inputs

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Inertial Delay Model

B This is the default mode

m It is useful in modeling devices that ignore
spikes on the inputs

signal S: BIT ='0"; signal S: BIT ='0";
process process
S<="1 after 5ns; S<='0 after 10ns;

$<=0 after 10 ns <="'1' after 5ns; >
end ; end |

Overrides the first Overrides the first
assignment assignment

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 E

Transport Delay Model

H Signals are propagated without filtering

signal S: BIT ='0"; signal S: BIT ='0";
process process

S<="T1' after 5ns; S<="0 after 10ns;

S<="0 after 10ns; S<="71' after 5ns;
end ; end ;

_____ -———
]
5 10 time 5 10 time

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005 E

If-Then-Else Statement

if CONDITION then
--sequential statements

endif ;
if CONDITION then
--sequential statements
else
--sequential statements
endif ;
if CONDITION then
--sequential statements
More than one elsif allowed elsit CONDITION then
“elsif" is one word > --sequential statements
elsif CONDITION then
--sequential statements
Only one else allowed » | else
-- sequential statements
"end if" is fwo words » |endif ;
|
VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

If-Then-Else Example
library ieee;
use ieee.std logic_1164.all;
entity IF_MUX is
port (C,D, E, F: in std_logic;
S: in std _logic_vector(l downto 0);
POUT : out std logic);
end IF_MUX;
architecture BEHAVE of IF_MUX is
begin
ONE: process (S,C,D,E, F)
begin
if (S =00 then
POUT <=C;
elsift (S ="01") then
POUT <=D;
elsift (S =107 then
POUT <=E;
else POUT <=F;
end if :
end process ONE;
end BEHAVE;

IF implies Priority

pout

s=10 C

s=01

s =00

VHDL & FPGA Architectures

© 2005 Nizar Abdallah

November, 2005

Case Statement

case (SELECTOR) is

when value =>
--sequential statements

when valuel | value2 | value3=>
--sequential statements

when valuel to value2=>
--sequential statements

when others =>
--sequential statements

end case

‘when SELECTOR = value, then ...
‘when SELECTOR = valuel OR value2 OR value 3, then ..."

'‘when SELECTOR falls within the range from valuel to value2, then ..."
'‘when SELECTOR = any other value, then ..

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Case Example: 4-to-1 Mux

library ieee;
use ieee.std_logic_1164.all;
entity CASE_MUXis
port (C,D,E,F: in std_logic;
S: in std _logic_vector(l
MUX_OUT : out std_logic);
end CASE_ MUX;

architecture BEHAVE of CASE_MUXis

begin

mux1l: process (S,C,D,E,F)

begin

case S is
when “00” => MUX_ OUT <=C,;
when “01” => MUX_OUT <= D;
when “10” => MUX_OUT <=E;
when others => MUX_OUT <=F,
end case ;
end process muxl;
end BEHAVE;

downto 0);

=

Mmoo

4:1 Multiplexer

MUX_OUT

S(1:0)

VHDL & FPGA Architectures © 2005 Nizar Abdallah

November, 2005

Case Example: Bi-Directional BufferJ4ctel

library ieee;
use ieee.std logic_1164.all;
entity BIBUF is
port (A,E: in std logic;
Y : inout std_logic;
B: out std logic);

end BIBUF; E
architecture BEHAVE of BIBUF is \I
begin A Y
ONE:process (AE) ‘
begin B |

case E is |

when ‘1" =>Y <= A;
when ‘0 =>Y <=7";

when others =>Y <=‘X";
end case ;
end process ONE;
B<=Y;
end BEHAVE;

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

Questions ?

VHDL & FPGA Architectures © 2005 Nizar Abdallah November, 2005

