
310/1780-10

ICTP-INFN Advanced Tranining Course on
FPGA and VHDL for Hardware Simulation and Synthesis

27 November - 22 December 2006

���

���� � ���� � ������� �

Nizar ABDALLH
ACTEL Corp.

2061 Stierlin Court
Mountain View, CA 94043-4655

U.S.A.

__
These lecture notes are intended only for distribution to participants

Lectures:
VHDL & FPGA Architectures

2© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Outline

� Introduction to FPGA & FPGA Design Flow

� Synthesis I – Introduction

� Synthesis II - Introduction to VHDL

� Synthesis III - Advanced VHDL

� Design verification & timing concepts

� Programmable logic & FPGA architectures

� Actel ProASIC3 FPGA architecture

Synthesis II – Introduction
to VHDL

4© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Why HDL? Why VHDL?

� HDL is a software solution due to limits in

hardware solutions and to:

� Increasing design complexity
� Increasing cost in time and investment
� Increasing knowledge requirement
� Inadequacy of other existing languages

� VHDL is a response to problems for system

manufacturers in verifying their system fully

� Vendor dependency
� Different vendors with different incompatible HDLs
� Problems in design documentation exchange

A standard HDLHDL from the System

Manufacturer’s Point of View: V H D LV H D L

5© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

VHDL History

� 1981: an Extensive Public Review (DOD): VHSIC

Program for modeling digital systems

� 1983: a Request for Proposal

(Intermetrics, IBM, and Texas Instruments)

� 1986: VHDL in the Public Domain

� 1987: Standard VHDL'87 (IEEE-1076-1987)

� 1993: New Standard VHDL'93 (IEEE-1076-1993)

� 1994: VITAL (VHDL Initiative Toward ASIC

Libraries)

� Defines Standard Format for Gate Libraries, 1994
� Allows Specification of Common Timing Models

� Revised Standard “VHDL-2001” in review now

6© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

VHDL Advantages & Drawbacks

� Philosophy: readable, docs-based on a clear and

predictable simulation behavior

� Advantages

� Standard format for design exchange
� Technology independent
� Multiple vendor support
� Support for large as well as small designs
� Support for wide range of abstraction in modeling
� Simulation oriented (including for writing testbenc h)
� User defined value abstractions
� Timing constructs

� Drawbacks

� Complex tools
� Slow tools

7© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

VHDL Main Features

TimingTimingDataflowDataflow

StructureStructure

BehaviorBehavior

8© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

VHDL Architectures

� Does not allow a layout description

BehavioralBehavioral

StructuralStructural

AlgorithmicAlgorithmic

FSMFSM

RTLRTL

GateGate

LayoutLayout

Abstraction LevelsAbstraction LevelsVHDL ArchitecturesVHDL Architectures

How it works

How it is connected

9© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

A Dataflow Language

DATAFLOWCONTROLFLOW ≠≠≠≠
EXEX: : CC language assignmentlanguage assignment EXEX: : VHDLVHDL signal assignmentsignal assignment

X = A & B; X <= A and B;X <= A and B;

X is computed out of A and X is computed out of A and
B B ONLYONLY each time this each time this
assignment isassignment isexecutedexecuted

A A PERMANENTPERMANENT link is created link is created
between A, B, and Xbetween A, B, and X

X is computed out of A and B X is computed out of A and B
WHENEVERWHENEVER A or B changesA or B changes

10© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

A Dataflow Language (cont’d)

DATAFLOWCONTROLFLOW

EXEX: : CC language assignmentlanguage assignment EXEX: : VHDLVHDL signal assignmentsignal assignment

X = A & B;

X = C & D;

X <= A and B;

X <= C and D;

� YES� YES � NO� NO

≠≠≠≠

11© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

-- component declaration
component DFF

port (D, CLR, CLK : in std_logic;
Q : out std_logic);

end component ;
-- component instantiation
U1: DFF
port map (D => DATA, CLR => RESET, CLK => CLK, Q => OUT);

-- component declaration
component DFF

port (D, CLR, CLK : in std_logic;
Q : out std_logic);

end component ;
-- component instantiation
U1: DFF
port map (D => DATA, CLR => RESET, CLK => CLK, Q => OUT);

process (CLK, RESET)
begin

if (RESET = '0') then
Q <= '0';

elsif (CLK'event and CLK='1') then
Q <= DATA;

end if ;
end process ;

process (CLK, RESET)
begin

if (RESET = '0') then
Q <= '0';

elsif (CLK'event and CLK='1') then
Q <= DATA;

end if ;
end process ;

Behavioral vs. Structural

� D-FF with asynch low reset & pos-edge clock

Behavioral

Structural

12© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

VHDL Building Blocks: Entity

� Entity

� Architecture

� Configuration

� Package

� Library

13© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Entity Overview

� The External Aspect of a Design Unit

entity entity_name is
[generic_declaration]
[port_clause]
[entity_declarative_item]

end [entity_name];

entityentity entity_name entity_name isis
[generic_declaration][generic_declaration]
[port_clause][port_clause]
[entity_declarative_item][entity_declarative_item]

endend [entity_name];[entity_name];

Required

Required
(NAME
optional)

Optional

14© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Entity Example: 2-to-1 Mux

AIN

BIN

SIN

YOUT

MUX2

entity MUX2 is
port (AIN, BIN, SIN : in std_logic;

YOUT : out std_logic);
end MUX2;

entity MUX2 is
port (AIN, BIN, SIN : in std_logic;

YOUT : out std_logic);
end MUX2;

Port
mode

Port
type

15© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

entity FULL_ADDER is
port (A, B, Cin : in BIT ;

S, Cout : out BIT);
end FULL_ADDER;

entity FULL_ADDER FULL_ADDER is
port (A, B, (A, B, CinCin : : in BIT ;;

S, S, CoutCout : : out BIT););
end FULL_ADDER;FULL_ADDER;

Entity Example: Full Adder

Port
mode Port

type

AA BBCinCin

SS CoutCout

FULLFULL
ADDERADDER

16© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Ports

� Provide communication with other components

� Must have signal name, type and mode

� Port Modes:

� in (data goes into entity only)
� out (data goes out of entity only and not used inte rnally)
� inout (data is bi-directional)
� buffer (data goes out of entity and used internally)

17© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

VHDL Building Blocks: Architecture

� Entity

� Architecture

� Configuration

� Package

� Library

18© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Architecture Overview

� The Internal Aspect of a Design Unit

� Can be behavioral (RTL) or structural

� Always associated with single entity

� Single entity can have multiple architectures

architecture architecture_name of entity_name is
{architecture_declarative_part}

begin
{architecture_descriptive_part}

end [architecture_name];

architecture architecture_name architecture_name of entity_name entity_name is
{architecture_declarative_part}{architecture_declarative_part}

begin
{architecture_descriptive_part}{architecture_descriptive_part}

end [architecture_name];[architecture_name];

19© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Architecture Example: 2-to-1 Mux

� Two architecture flavors: Behavioral &

Structural

architecture TWO of MUX2 is
component MX2 -- a macro from a library

port (A, B, S: in std_logic;
Y : out std_logic);

end component ;
begin
-- instantiate MX2

U1: MX2
port map (A=>AIN, B=>BIN, S=>SIN, Y=>YOUT);
end TWO;

architecture TWO of MUX2 is
component MX2 -- a macro from a library

port (A, B, S: in std_logic;
Y : out std_logic);

end component ;
begin
-- instantiate MX2

U1: MX2
port map (A=>AIN, B=>BIN, S=>SIN, Y=>YOUT);
end TWO;

architecture ONE of MUX2 is
begin

YOUT <= (AIN and not SIN) or (BIN and SIN);
end ONE;

architecture ONE of MUX2 is
begin

YOUT <= (AIN and not SIN) or (BIN and SIN);
end ONE;

Declarative
part

BehavioralBehavioral

StructuralStructural

Descriptive
part

20© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Architecture Example: Full Adder

� Two architecture flavors: Behavioral &

Structural

entity FULL_ADDER is
port (A, B, Cin : in BIT ;

S, Cout : out BIT);
end FULL_ADDER;
architecture DATAFLOW of FULL_ADDER is

signal X : BIT ;
begin

X <= A xor B;
S <= X xor Cin after 10ns;
Cout <= (A and B) or (X and Cin) after 5ns;

end DATAFLOW;

entity FULL_ADDER FULL_ADDER is
port (A, B, Cin(A, B, Cin : : in BIT ;;

S, CoutS, Cout : : out BIT););
end FULL_ADDER;FULL_ADDER;
architecture DATAFLOW DATAFLOW of FULL_ADDER FULL_ADDER is

signal X : X : BIT ;;
begin

XX <= A A xor B;B;
SS <= X X xor Cin Cin after 10ns;10ns;
CoutCout <= (A (A and B) B) or (X (X and Cin) Cin) after 5ns;5ns;

end DATAFLOW;DATAFLOW;

BehavioralBehavioral

21© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Architecture Example: Full Adder (cont’d)

� Two architecture flavors: Behavioral &

Structural

architecture STRUCTURE of FULL_ADDER is
component HALF_ADDER

port (I1, I2 : in BIT ;
Carry, S : out BIT);

end component ;

component OR_GATE
port (I1, I2 : in BIT ;

O : out BIT);
end component ;
signal X1, X2, X3 : BIT ;

architecture STRUCTURE STRUCTURE of FULL_ADDER FULL_ADDER is
component HALF_ADDERHALF_ADDER

port ((I1, I2I1, I2 : : in BIT ;;
Carry, SCarry, S : : out BIT););

end component ;;

component OR_GATEOR_GATE
port ((I1, I2I1, I2 : : in BIT ;;

OO : : out BIT););
end component ;;
signal X1, X2, X3 : X1, X2, X3 : BIT ;;

Structural:
Declarative part
Structural:
Declarative part

22© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Architecture Example: Full Adder (cont’d)

� Two architecture flavors: Behavioral &

Structural

begin
HA1: HALF_ADDER port map (

I1 => A, I2 => B, Carry => X1, S => X2);
HA2: HALF_ADDER port map (

I1 => X2, I2 => Cin, Carry => X3, S => S);
OR1: OR_GATE port map (

I1 => X1, I2 => X3, O => Cout);
end STRUCTURE ;

begin
HA1: HALF_ADDERHA1: HALF_ADDER port map ((

I1 I1 => A, I2 A, I2 => B, Carry B, Carry => X1, S X1, S => X2);X2);
HA2: HALF_ADDERHA2: HALF_ADDER port map ((

I1 I1 => X2, I2 X2, I2 => CinCin , Carry , Carry => X3, S X3, S => S);S);
OR1: OR_GATEOR1: OR_GATE port map ((

I1 I1 => X1, I2 X1, I2 => X3, O X3, O => CoutCout););
end STRUCTURE ;STRUCTURE ;

Structural:
Descriptive part
Structural:
Descriptive part

23© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Structural & Hierarchy

� Structural Style to represent Hierarchy

HA1HA1
HA2HA2

OR1OR1
AA

BB SSCinCin

CoutCout

entityentity--architecturearchitecture

entityentity--architecturearchitecture

entityentity--architecturearchitecture

24© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Architecture in a Design Tree

� Structure & Behavior in a Design Tree

StructuralStructural

BehavioralBehavioral

25© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Entity/Architecture

� entity/architecture: a One-to-Many relationship

AA BBCINCIN

SS COUTCOUT

FULLFULL
ADDERADDER

X <= A xor B;
S <= X xor CIN;
COUT <= (A and B) or

(X and CIN);

X <= A xor B;
S <= X xor CIN;
COUT <= (A and B) or

(X and CIN);

26© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

VHDL Building Blocks: Packages &
Libraries

� Entity

� Architecture

� Configuration

� Package

� Library

27© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Packages & Libraries

� Libraries contain packages

� Packages contain commonly used types,

operators, constants, functions, etc.

� Both must be “opened” before their contents

can be used in an entity or architecture

library ieee;
use ieee.std_logic_1164. all ;

28© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Commonly Used Libraries & Packages

STD Library

standard

IEEE Library

std_logic_1164

std_logic_arith

std_logic_unsigned

Always visible! - no
LIBRARY or USE
statement required

Requires LIBRARY and
USE statements

29© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Design Libraries

library library_name ;
use library_name.package_name. all ;

STDSTDSTD

IEEEIEEEIEEE

PROJECT_LIBPROJECT_LIBPROJECT_LIB

WORKWORKWORK

VHDLVHDL
filesfiles

AA
NN
AA
LL
YY
ZZ
EE
RR

SSIMULATORIMULATOR

SSYNTHESIZERYNTHESIZER

30© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Complete Design Example: Multiplier

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity MULT is
port (A: in std_logic_vector(3 downto 0);

B: in std_logic_vector(3 downto 0);
Y: out std_logic_vector(7 downto 0));

end MULT;

architecture TEST of MULT is
begin

Y <= A * B;
end TEST;

library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_unsigned. all ;

entity MULT is
port (A: in std_logic_vector(3 downto 0);

B: in std_logic_vector(3 downto 0);
Y: out std_logic_vector(7 downto 0));

end MULT;

architecture TEST of MULT is
begin

Y <= A * B;
end TEST;

Is this a structural or behavioral description ?

Declare the library
and packages

Now we can use
std_logic_vector
types and unsigned
arithmetic

31© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Data Objects

� Constants

� Variables
� syntax: var:= expression
� can be declared in body (inside process) or subprog ram

(outside process)
� a body-declared variable is never reinitialized
� a sub-program declared variable is initialized for each call to

the subprogram
� value assignment as immediate effect

� Signals
� syntax: signal <= value
� delayed value assignment
� optional propagation delay attribute
� no global variables to avoid synchronization proble ms
� value resolution for multiple assignments

32© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Signals

� Used for internal connections

� Must be declared before use

� Must have a type

� Assignment is done with <=

SIG1
OUT1

C

A
B

. . .
architecture TEST of EXAMPLE is

signal SIG1: std_logic ;
begin

SIG1 <= A and B;
OUT1 <= SIG1 xor C;

end TEST;

. . .
architecture TEST of EXAMPLE is

signal SIG1: std_logic ;
begin

SIG1 <= A and B;
OUT1 <= SIG1 xor C;

end TEST;

Type

Declaration

Notice: A, B, C, and OUT1
are not Signals; They are
Ports declared in the Entity.

33© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Signal Vector

� Bit order may be ascending (0 to 7) or

descending (7 downto 0)

entity COUNTER is
port (CLK: in std_logic;

RST: in std_logic;
Q : out std_logic_vector(7 downto 0)) ;

end COUNTER;

entity COUNTER is
port (CLK: in std_logic;

RST: in std_logic;
Q : out std_logic_vector(7 downto 0)) ;

end COUNTER;

Q is an 8-bit vectorQ is an 8-bit vector

…
architecture BEHAVE of COUNTER is

signal S1: std_logic_vector(7 downto 0);
signal S2: std_logic_vector(2 downto 0);
signal S3: std_logic;

…
architecture BEHAVE of COUNTER is

signal S1: std_logic_vector(7 downto 0);
signal S2: std_logic_vector(2 downto 0);
signal S3: std_logic;

S2 is a 3-bit vectorS2 is a 3-bit vector

34© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Vector Slicing

� Vector slicing can be used on either side of a

signal or variable assignment statement

� Extracts subset of Vector for Reading or Writing

port (P: in std_logic_vector(0 to 3);
R: out std_logic_vector(8 downto 0);

…
architecture BEHAVE of EXAMPLE is
…

R(5 downto 3) <= P(0 to 2);

port (P: in std_logic_vector(0 to 3);
R: out std_logic_vector(8 downto 0);

…
architecture BEHAVE of EXAMPLE is
…

R(5 downto 3) <= P(0 to 2);

Declaration Direction and
Slice Direction must be the
same. (P is up; R is down)

Size of slices must match

R(5) P(0)

R(4) P(1)

R(3) P(2)

35© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Data Types

� All VHDL data objects must have a type

� Port types are declared in the entity
� Signal, variable, and constant types are declared i n the

architecture.

� Types we will cover:

� STANDARD package types
� User-defined enumeration types
� IEEE std_logic_1164 package types

36© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

IEEE 1076-1987 Standard Package

� Predefined VHDL Data Types

� Is always visible
� No declaration is needed

� Types available
� BOOLEAN : (false , true)
� BIT : ('0', '1')
� BIT_VECTOR : array of BIT values
� INTEGER : range -2 147 483 647 to +2 147 483 647
� CHARACTER
� NATURAL : Subtype of INTEGER (Non Negative)
� POSITIVE : Subtype of INTEGER (positive)
� STRING : array of CHARACTERS
� REAL : range -1.0E+38 to +1.0E+38
� TIME : Physical type used for simulation

37© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

IEEE 1076-1987: integer Type

� Allowed values are mathematical integers

� Minimum range: 231 to -231 (32 bits minimum)

if no range is specified

� Useful as index holders for loops or generics

� Supported operations are add, subtract,

multiply, and divide

architecture BEHAVE of COUNTER is
begin

process (clk)
variable cntr: integer range 0 to 63 := 0;

begin

architecture BEHAVE of COUNTER is
begin

process (clk)
variable cntr: integer range 0 to 63 := 0;

begin

38© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

IEEE 1076-1987: bit / bit_vector Type

� Allowed values are ‘0’ and ‘1’

� Default initialization to ‘0’

� bit_vector is an array of bits

architecture BEHAVE of MUX is
constant LOW: bit_vector (1 downto 0) := “00” ;
begin

architecture BEHAVE of MUX is
constant LOW: bit_vector (1 downto 0) := “00” ;
begin

entity MUX is
port (A, B, S: in bit;

Y: out bit) ;
end MUX;

entity MUX is
port (A, B, S: in bit;

Y: out bit) ;
end MUX;

39© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

IEEE 1076-1987: boolean Type

� Allowed values are

true and false

� Not a bit literal –

has no relationship

to a bit

� Operations only

allowed in IF-ELSE

statements, in

processes and

always produce a

Boolean result

library ieee;
use ieee.std_logic_1164 .all;

entity CONTROLLER is
port (SEL : in boolean ;

X, Y : in std_logic;
Z : out std_logic);

end CONTROLLER;

architecture BEHAVE of CONTROLLER is
begin

process (X, Y, SEL)
begin

if (SEL) then
Z <= X;

else
Z <= Y;

end if ;
end process;

end BEHAVE;

library ieee;
use ieee.std_logic_1164 . all ;

entity CONTROLLER is
port (SEL : in boolean ;

X, Y : in std_logic;
Z : out std_logic);

end CONTROLLER;

architecture BEHAVE of CONTROLLER is
begin

process (X, Y, SEL)
begin

if (SEL) then
Z <= X;

else
Z <= Y;

end if ;
end process;

end BEHAVE;

40© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

User-Defined Enumeration Types

� Allow designers to specify exact values for

operation

� Useful for state machine designs

architecture MACHINE of TRAFFIC_LIGHT is
type STATE is (RED, YELLOW, GREEN) ;
signal CURRENT_STATE, NEXT_STATE: STATE ;

begin

architecture MACHINE of TRAFFIC_LIGHT is
type STATE is (RED, YELLOW, GREEN) ;
signal CURRENT_STATE, NEXT_STATE: STATE;

begin

The data type of two signals (current_state and
next_state) is the user-defined type called state

41© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

IEEE 1164-1993 Standard Logic Package

� std_logic_1164 must be declared

� Supported by most VHDL simulators and

synthesis tools

� Includes a multi-value logic system

� Nine signal strengths defined
� Can resolve multiple signal drivers

� Generally used instead of bit/bit_vector

library ieee;
use ieee.std_logic_1164. all ;
library ieee;
use ieee.std_logic_1164. all ;

42© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

std_logic_1164 Types

� std_ulogic, std_ulogic_vector

� Unresolved type
� Only one signal driver allowed

� std_logic, std_logic_vector

� Resolved type - multiple drivers allowed
� Used when tri-state logic required

� std_logic is best choice for behavioral

43© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

“Legal” Values for std_logic Type

� Unresolved data type

type STD_ULOGIC is (type STD_ULOGIC is (
'U''U' ---- UninitializedUninitialized
'X''X' ---- Forcing UnknownForcing Unknown
'0''0' ---- Forcing Low (driven)Forcing Low (driven)
'1''1' ---- Forcing High (driven)Forcing High (driven)
'Z''Z' ---- High ImpedanceHigh Impedance
'W''W' ---- Weak UnknownWeak Unknown
'L''L' ---- Weak Low (read)Weak Low (read)
'H''H' ---- Weak High (read)Weak High (read)
''--'' ---- Don't CareDon't Care
) ;) ;

Synthesizable
for
FPGA

44© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� Six classes

Operators

LLOGIC OGIC OOPERATORPERATOR

RRELATIONAL ELATIONAL OOPERATORPERATOR

AADDING DDING OOPERATORPERATOR

SSIGNIGN

MMULTIPLYING ULTIPLYING OOPERATORPERATOR

MM ISCELLANEOUS ISCELLANEOUS OOPERATORPERATOR

and , or , and , or , nandnand, nor , , nor , xorxor

= , /= , < , <= , > , >== , /= , < , <= , > , >=

+ , + , -- , &, &

+ , + , --

* , / , mod , * , / , mod , remrem

** , abs , not** , abs , not

PPRECEDENCERECEDENCE OORDERRDER

45© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� Require opening the following packages:

� May be used on real, integer, bit or std_logic

types.

Arithmetic Operators

library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith.all ;
use ieee.std_logic_signed.all ;

--OR
use ieee.std_logic_unsigned.all ;

library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_arith. all ;
use ieee.std_logic_signed. all ;

--OR
use ieee.std_logic_unsigned. all ;

Depending on
whether signed or
unsigned arithmetic
is used.

46© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Operators: Example

library ieee;
use ieee.std_logic_1164. all ;
entity LOGIC is
port (A, B, C: in std_logic;

Y, Z : out std_logic);
end LOGIC;

architecture BEHAVE of LOGIC is
begin

Z <= A and B;
Y <= (A and B) or not C;

end BEHAVE;

library ieee;
use ieee.std_logic_1164. all ;
entity LOGIC is
port (A, B, C: in std_logic;

Y, Z : out std_logic);
end LOGIC;

architecture BEHAVE of LOGIC is
begin

Z <= A and B;
Y <= (A and B) or not C;

end BEHAVE;

() prevent ambiguity. Otherwise this could be:
(A and B) or not C

OR
A and (B or not C)

A
B

C Y

AB

C
Y

47© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� 4-bit multiplier

Arithmetic Operators: Example

library ieee;

use ieee.std_logic_1164. all ;

use ieee.std_logic_unsigned. all ;

entity MULT is

port (A: in std_logic_vector(3 downto 0);

B: in std_logic_vector(3 downto 0);

Y: out std_logic_vector(7 downto 0));

end MULT;

architecture BEHAVE of MULT is

begin

Y <= A * B;

end BEHAVE;

library ieee;

use ieee.std_logic_1164. all ;

use ieee.std_logic_unsigned. all ;

entity MULT is

port (A: in std_logic_vector(3 downto 0);

B: in std_logic_vector(3 downto 0);

Y: out std_logic_vector(7 downto 0));

end MULT;

architecture BEHAVE of MULT is

begin

Y <= A * B;

end BEHAVE;

A

B
*

48© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� 8-bit adder with 9-bit result

Concatenation: Example

A

B
+

library ieee;

use ieee.std_logic_1164. all ;

use ieee.std_logic_signed. all ;

entity ADDER is
port (

A, B : in std_logic_vector(7 downto 0);
S : out std_logic_vector(8 downto 0)
);

end adder;

architecture BEHAVIORAL of ADDER is
begin
S <= (A(7) & A) + (B(7) & B);

end BEHAVIORAL;

library ieee;

use ieee.std_logic_1164. all ;

use ieee.std_logic_signed. all ;

entity ADDER is
port (

A, B : in std_logic_vector(7 downto 0);
S : out std_logic_vector(8 downto 0)
);

end adder;

architecture BEHAVIORAL of ADDER is
begin
S <= (A(7) & A) + (B(7) & B);

end BEHAVIORAL;

49© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� A Data Attached to VHDL Objects

� S'LEFT : Index of the leftmost element of the data type
� S'RIGHT : Index of the rightmost element of the dat a type
� S'HIGH : Index of the highest element of the data t ype
� S'LOW : Index of the lowest element of the data typ e
� S'RANGE : Index range of the data type
� S'REVERSE_RANGE : Reverse index range
� S'LENGTH : Number of elements of an array
� S'EVENT : A change value at the current simulation time
� S'STABLE : No change value at the current simulatio n time

if (CK = 0 and not CK'STABLE)
�

Operands: Attribute Names

50© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� Concurrent Statements

� Concurrent Signal Assignment
� Conditional Signal Assignment
� Selected Signal Assignment
� Block Statement
� Concurrent Assertion Statement
� Process Statement

VHDL Statements

51© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� Execute at the same time

� Signals impacted by an event are resolved in

the same simulation time

Concurrent Statements

Aout <= A;
Y0 <= A and B;
Y1 <= ‘1’ when A = ‘1’ else ‘0’;
u1: INV port map (ina => A, outb => B);
p1: process (CLK, A)
begin

if (clk’event and clk = ‘1’) then
if (A = ‘1’) then

Y <= data_in ;
end if ;

end if ;
end process ;

Aout <= A;
Y0 <= A and B;
Y1 <= ‘1’ when A = ‘1’ else ‘0’;
u1: INV port map (ina => A, outb => B);
p1: process (CLK, A)
begin

if (clk’event and clk = ‘1’) then
if (A = ‘1’) then

Y <= data_in ;
end if ;

end if ;
end process ;

If an event occurs on A, then all
these statements will execute
at the same time (concurrently)

Signal Assignment
Boolean equations
Conditional assignments
Component instantiation

Process

52© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� Always used within an architecture

� Change on the right-hand side causes

immediate reassignment to the left-hand side

� Used in behavioral and structural descriptions

� Signals are associated with TIME

� With "after", the assignment is scheduled to a

future simulation time

� Without "after", the assignment is scheduled at

a DELTA TIME after the current simulation time

� Assignment operator is <=

Concurrent Signal Assignment

target <= expression [target <= expression [afterafter time_expression] ;time_expression] ;

53© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

� Concept of a Resolution Function; attached to a

signal or a type, and is called every time the

value of signal needs to be determined -- that is

every time a driver changes value

Signals with Multiple Drivers

Y <= A; -- in process1
and, Y <= B; -- in process2

What is the value of the signal in such a case?

54© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Conditional Signal Assignment

� Concurrent Version of IF statement

� Condition/expression except for last expression

� One and only one of the expressions is used at

a given time

� Syntax:

� Example:

Y <= “00” when COUNT >= 8 else

“11” ;

Y <= “00” when COUNT >= 8 else

“11” ;

Y <= IN1 when S = ‘0’ else

IN2 when S = ‘1’ else

‘0’ ;

Y <= IN1 when S = ‘0’ else

IN2 when S = ‘1’ else

‘0’ ;

“else” clause is required

target <= first_value when (condition1) else
second_value when (condition1) else
third_value;

target <= first_value when (condition1) else
second_value when (condition1) else
third_value;

55© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Selected Signal Assignment

� Concurrent Version of CASE Statement

� Syntax:

� Example:

with DATAIN select -- selected signal assignment

Y <= IN0 when “00”,

IN1 when “01”,

IN2 when “10”,

IN3 when others ;

with DATAIN select -- selected signal assignment

Y <= IN0 when “00”,

IN1 when “01”,

IN2 when “10”,

IN3 when others ;

“with” selection must be a signal, not an expression

Note that
commas are
used here.

with EXPRESSION
TARGET <= {expression when choices};

with EXPRESSION
TARGET <= {expression when choices};

56© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

When-Else Example: Tri-State Buffers

library ieee;

use ieee.std_logic_1164. all ;

entity MY_TRI is

port (A: in std_logic_vector(3 downto 0);

EN: in std_logic;

Y: out std_logic_vector(3 downto 0));

end MY_TRI;

architecture BEHAVE of MY_TRI is

begin

Y <= A when EN = ‘1’ else

(others => ‘Z’) ;

end BEHAVE;

library ieee;

use ieee.std_logic_1164. all ;

entity MY_TRI is

port (A: in std_logic_vector(3 downto 0);

EN: in std_logic;

Y: out std_logic_vector(3 downto 0));

end MY_TRI;

architecture BEHAVE of MY_TRI is

begin

Y <= A when EN = ‘1’ else

(others => ‘Z’) ;

end BEHAVE;

EN

A(0) Y(0)

EN

A(1) Y(1)

EN

A(2) Y(2)

EN

A(3) Y(3)

means Y <= “ZZZZ”;

57© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

With-Select Example: Truth Table

library ieee;

use ieee.std_logic_1164.all;

entity TRUTH_TABLE is

port (A, B, C: in std_logic;

Y: out std_logic) ;

end TRUTH_TABLE;

architecture BEHAVE of TRUTH_TABLE is

signal S1: std_logic_vector(2 downto 0);

begin

S1 <= A & B & C; -- concatenate A, B, C

with S1 select

Y <= ‘1’ when “000” | “010” | “100” ,

‘0’ when “001” | “011” | “101”,

‘-’ when others ;

end BEHAVE;

library ieee;

use ieee.std_logic_1164.all;

entity TRUTH_TABLE is

port (A, B, C: in std_logic;

Y: out std_logic) ;

end TRUTH_TABLE;

architecture BEHAVE of TRUTH_TABLE is

signal S1: std_logic_vector(2 downto 0);

begin

S1 <= A & B & C; -- concatenate A, B, C

with S1 select

Y <= ‘1’ when “000” | “010” | “100” ,

‘0’ when “001” | “011” | “101”,

‘-’ when others ;

end BEHAVE;
‘-’ means don’t care

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 -

| means OR only when
used in “with” or “case”

58© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Block Statement

� Used in synchronous descriptions

latch : block (CLK = '1')

begin

Q <= GUARDED D ;

end block latch ;

latch : block (CLK = '1')

begin

Q <= GUARDED D ;

end block latch ;

DD

CLKCLK

QQ
LATCHLATCH

59© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Assertion Statement

� If the condition is false, it reports a diagnostic

message

� Useful for detecting condition violation during

simulation

� Not used in synthesis

� Syntax:

assert condition
[report error_message]
[severity severity_level] ;

assert condition
[report error_message]
[severity severity_level] ;

60© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Process Statement

� A Set of Sequential Statements

� All processes in a design executes

CONCURRENTLY

� At a given time, ONLY ONE sequential

statement executed within each process

� Communicates with the rest of a design through

signals

� Syntax: [label :] process [(sensitivity_list)]
{ process_declarative_part }

begin
{ sequential_statements }

end process [label] ;

[label :] process [(sensitivity_list)]
{ process_declarative_part }

begin
{ sequential_statements }

end process [label] ;

61© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Process Statement (cont’d)

� A Pseudo Infinite Loop

� A Synchronization Mechanism is Needed

� Sensitivity list or wait statement will be used

process
begin

sequential_statement_1 ;
sequential_statement_2 ;

sequential_statement_n ;

end process;

processprocess
beginbegin

sequential_statement_1 ;sequential_statement_1 ;
sequential_statement_2 ;sequential_statement_2 ;

sequential_statement_n ;sequential_statement_n ;

end processend process ;;

62© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Process With Sensitivity List

PQR:process (A, B, C)
begin

X <= A and B;
if (B = ‘1’) then

Y <= A xor C;
else

Y <= A xnor C;
end if ;

end process PQR;

PQR:process (A, B, C)
begin

X <= A and B;
if (B = ‘1’) then

Y <= A xor C;
else

Y <= A xnor C;
end if ;

end process PQR;

Statements
executed
sequentially

End statement matches process label

Sensitivity list
Process label
(recommended)

63© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Process With Wait Statements

AORB: process
begin

wait until rising_edge(clk);
if (B = ‘1’) then

Y <= A xor C;
else

Y <= A xnor C;
end if ;

end process AORB;

AORB: process
begin

wait until rising_edge(clk);
if (B = ‘1’) then

Y <= A xor C;
else

Y <= A xnor C;
end if ;

end process AORB;

NOTE! No sensitivity list

Assignments execute
when their WAIT
condition is satisfied

WAIT condition
is on signals only

64© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Sequential Statements in Processes

� Executed line-by-line inside of a process or sub-

program

� Typically include:

� WAIT statements
� Signal and variable assignments
� Conditionals like IF-THEN-ELSE, CASE, LOOP

� Support other advanced statements

65© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Variable Assignment Statement

� Always executed in Zero Simulation Time

� Used as temporary storages

� Can not be seen by other concurrent

statements

� Syntax:

target_variable := expression ;target_variable := expression ;

66© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Signal Assignment Statement

� Defines a Driver of the Signal

� Within a process, Only One driver for each

signal

� When assigned in multiple processes, it has

Multiple Drivers. A Resolution Function should

be defined

� Syntax:

target_signal <= [transport] expression [after time] ;target_signal <= [transport] expression [after time] ;

67© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Inertial & Transport Delay Models

� Default mode is Inertial

� Inertial is useful in modeling devices that ignore

spikes on the inputs

68© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Inertial Delay Model

� This is the default mode

� It is useful in modeling devices that ignore

spikes on the inputs

signal S : BIT := '0' ;
process

S <= '1' after 5 ns ;
S <= '0' after 10 ns ;

end ;

signal S : S : BIT := '0' ;:= '0' ;
process

S <= '1' after 5 ns ;5 ns ;
S <= '0' S <= '0' after 10 ns ;10 ns ;

end ;;

signal S : BIT := '0' ;
process

S <= '0' after 10 ns ;
S <= '1' after 5 ns ;

end ;

signal S : S : BIT := '0' ;:= '0' ;
process

S <= '0' S <= '0' after 10 ns ;10 ns ;
S <= '1' S <= '1' after 5 ns ;5 ns ;

end ;;

Overrides the first
assignment

Overrides the first
assignment

69© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Transport Delay Model

� Signals are propagated without filtering

signal S : BIT := '0' ;
process

S <= '1' after 5 ns ;
S <= '0' after 10 ns ;

end ;

signal S : S : BIT := '0' ;:= '0' ;
process

S <= '1' after 5 ns ;5 ns ;
S <= '0' S <= '0' after 10 ns ;10 ns ;

end ;;

signal S : BIT := '0' ;
process

S <= '0' after 10 ns ;
S <= '1' after 5 ns ;

end ;

signal S : S : BIT := '0' ;:= '0' ;
process

S <= '0' S <= '0' after 10 ns ;10 ns ;
S <= '1' S <= '1' after 5 ns ;5 ns ;

end ;;

5 10 time 5 10 time

70© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

If-Then-Else Statement

if CONDITION then
--sequential statements

end if;

if CONDITION then
--sequential statements

end if ;

if CONDITION then
--sequential statements

else
--sequential statements

end if;

if CONDITION then
--sequential statements

else
--sequential statements

end if ;

if CONDITION then
--sequential statements

elsif CONDITION then
--sequential statements

elsif CONDITION then
--sequential statements

else
-- sequential statements

end if;

if CONDITION then
--sequential statements

elsif CONDITION then
--sequential statements

elsif CONDITION then
--sequential statements

else
-- sequential statements

end if ;

More than one elsif allowed
“elsif” is one word

Only one else allowed

“end if” is two words

71© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

If-Then-Else Example

library ieee;
use ieee.std_logic_1164.all;
entity IF_MUX is

port (C, D, E, F : in std_logic;
S : in std_logic_vector(1 downto 0);
POUT : out std_logic);

end IF_MUX;
architecture BEHAVE of IF_MUX is
begin
ONE: process (S, C, D, E, F)
begin

if (S = “00”) then
POUT <= C ;

elsif (S = “01”) then
POUT <= D ;

elsif (S = “10”) then
POUT <= E ;

else POUT <= F ;
end if ;

end process ONE;
end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;
entity IF_MUX is

port (C, D, E, F : in std_logic;
S : in std_logic_vector(1 downto 0);
POUT : out std_logic);

end IF_MUX;
architecture BEHAVE of IF_MUX is
begin
ONE: process (S, C, D, E, F)
begin

if (S = “00”) then
POUT <= C ;

elsif (S = “01”) then
POUT <= D ;

elsif (S = “10”) then
POUT <= E ;

else POUT <= F ;
end if ;

end process ONE;
end BEHAVE;

IF implies Priority

f

e

d

cs = 10

s = 00

s = 01

pout

72© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Case Statement

case (SELECTOR) is
when value =>

--sequential statements
when value1 | value2 | value3 =>

--sequential statements
when value1 to value2 =>

--sequential statements
when others =>

--sequential statements
end case;

case (SELECTOR) is
when value =>

--sequential statements
when value1 | value2 | value3 =>

--sequential statements
when value1 to value2 =>

--sequential statements
when others =>

--sequential statements
end case ;

‘when SELECTOR = value, then ...’

‘when SELECTOR = value1 OR value2 OR value 3, then …’’

‘when SELECTOR = any other value, then …’

‘when SELECTOR falls within the range from value1 to value2, then ...’’

73© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Case Example: 4-to-1 Mux

library ieee;
use ieee.std_logic_1164.all;
entity CASE_MUX is

port (C, D, E, F: in std_logic;
S : in std_logic_vector(1 downto 0);
MUX_OUT : out std_logic);

end CASE_MUX;

architecture BEHAVE of CASE_MUX is
begin
mux1: process (S, C, D, E, F)
begin

case S is
when “00” => MUX_OUT <= C;
when “01” => MUX_OUT <= D;
when “10” => MUX_OUT <= E;
when others => MUX_OUT <= F;

end case;
end process mux1;
end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;
entity CASE_MUX is

port (C, D, E, F: in std_logic;
S : in std_logic_vector(1 downto 0);
MUX_OUT : out std_logic);

end CASE_MUX;

architecture BEHAVE of CASE_MUX is
begin
mux1: process (S, C, D, E, F)
begin

case S is
when “00” => MUX_OUT <= C;
when “01” => MUX_OUT <= D;
when “10” => MUX_OUT <= E;
when others => MUX_OUT <= F;

end case ;
end process mux1;
end BEHAVE;

4:1 Multiplexer

C
D
E
F

S(1:0)

MUX_OUT

74© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Case Example: Bi-Directional Buffers

library ieee;
use ieee.std_logic_1164.all;
entity BIBUF is

port (A, E: in std_logic;
Y : inout std_logic;
B : out std_logic);

end BIBUF ;
architecture BEHAVE of BIBUF is
begin

ONE:process (A,E)
begin

case E is
when ‘1’ => Y <= A;
when ‘0’ => Y <= ‘Z’;
when others => Y <= ‘X’;

end case ;
end process ONE;

B <= Y;
end BEHAVE;

library ieee;
use ieee.std_logic_1164.all;
entity BIBUF is

port (A, E: in std_logic;
Y : inout std_logic;
B : out std_logic);

end BIBUF ;
architecture BEHAVE of BIBUF is
begin

ONE:process (A,E)
begin

case E is
when ‘1’ => Y <= A;
when ‘0’ => Y <= ‘Z’;
when others => Y <= ‘X’;

end case ;
end process ONE;

B <= Y;
end BEHAVE;

A

B

E

Y

75© 2005 Nizar AbdallahVHDL & FPGA Architectures November, 2005

Questions ?

