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Maxwell’s Equations

• Introduction

• Historical background

• Electrodynamics before Maxwell

• Maxwell’s correction to Ampere’s law

• General form of Maxwell’s equations

• Maxwell’s equations in vacuum

• Maxwell’s equations inside matter
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Introduction

• In electrodynamics Maxwell’s equations are a set 
of four equations, that describes the behavior of 
both the electric and magnetic fields as well as 
their interaction with matter

• Maxwell’s four equations express

– How electric charges produce electric field 
(Gauss’s law)

– The absence of magnetic monopoles

– How currents and changing electric fields produces 
magnetic fields (Ampere’s law)

– How changing magnetic fields produces electric 
fields (Faraday’s law of induction)
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Historical Background

• 1864 Maxwell in his paper “A Dynamical Theory of 
the Electromagnetic Field” collected all four 
equations

• 1884 Oliver Heaviside and Willard Gibbs gave the 
modern mathematical formulation using vector 
calculus.

• The change to vector notation produced a symmetric 
mathematical representation, that reinforced the 
perception of physical symmetries between the 
various fields.
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Nomenclature

• E = Electric field

• D = Electric displacement

• B = Magnetic flux density

• H = Auxiliary field

• = Charge density

• j = Current density

• 0 (permeability of free space) = 4 10-7

• 0 (permittivity of free space) = 8.854 10-12

• c (speed of light) = 2.99792458 108 m/s
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Electrodynamics Before Maxwell
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Electrodynamics Before Maxwell 

(Cont’d)

Apply divergence to (iii)

.0becausezeroissidehandrightThe

zero.iscurlaofdivergencebecausezero,issidehandleftThe

B

B
tt

B
E

Apply divergence to (iv)

JB o



5-02-2007 Preparatory School on Fiber 

Optics, Fiber Lasers and Sensors

8

• The left hand side is zero, because divergence of a curl is 
zero.

• The right hand side is zero for steady currents i.e., 

• In electrodynamics from conservation of charge

Electrodynamics Before Maxwell 

(Cont’d)
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is constant at any point in space which is 
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Maxwell’s Correction to Ampere’s Law

Consider Gauss’s Law
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This result along with Ampere’s law and the conservation of charge 

equation suggest that there are actually two sources of magnetic field.

The current density and displacement current.
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Maxwell’s Correction to Ampere’s 

Law (Cont’d)

Amperes law with Maxwell’s correction
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General Form of Maxwell’s Equations

Differential Form Integral Form
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Maxwell’s Equations in vacuum
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• The vacuum is a linear, 
homogeneous, isotropic and 
dispersion less medium

• Since there is no current or 
electric charge is present in 
the vacuum, hence 
Maxwell’s equations reads 
as

• These equations have a 
simple solution interms of 
traveling sinusoidal waves, 
with the electric and
magnetic fields direction 
orthogonal to each other 
and the direction of travel 
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Maxwell’s Equations Inside Matter

Maxwell’s equations are modified for polarized and 

magnetized materials.

For linear materials the polarization P and magnetization M

is given by 
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Maxwell’s Equations Inside Matter 

(Cont’d)

• For polarized materials we have bound charges in 
addition to free charges
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• For magnetized materials we have bound currents
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Maxwell’s Equations Inside Matter 

(Cont’d)

• In electrodynamics any change in the electric 

polarization involves a flow of bound charges 

resulting in polarization current JP

Polarization current density is due

to linear motion of charge when the 

Electric polarization changes t

P
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Maxwell’s Equations Inside Matter 

(Cont’d)

• Maxwell’s equations inside matter are written as
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Maxwell’s Equations Inside Matter 

(Cont’d)

• In non-dispersive, isotropic media and µ are time-
independent scalars, and Maxwell’s equations reduces 
to
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Maxwell’s Equations Inside Matter 

(Cont’d)

• In uniform (homogeneous) medium and µ are
independent of position, hence Maxwell’s equations 
reads as

Generally, and

µ can be rank-2 

tensor (3X3 

matrices)

describing

birefringent

anisotropic

materials.
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The Electromagnetic Wave Equation 

(EM Wave)

• The EM wave from Maxwell’s Equation

• Solution of EM wave in vacuum

• EM plane wave

• Polarization

• Energy and momentum of EM wave

• Inhomogeneous wave equation
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The Electromagnetic Wave from 

Maxwell’s Equations

Take curl of
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The Electromagnetic Wave from 

Maxwell’s Equations (cont’d)
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•Assuming that µo and o are constant in time
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The Electromagnetic Wave from 

Maxwell’s Equations (cont’d)
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The Electromagnetic Wave 

from Maxwell’s Equations (cont’d)

Similarly the wave equation for magnetic field
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Solution of Electromagnetic Waves 

in Vacuum
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The solutions to the wave equations, where there is no

source charge is present
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can be plane waves, obtained by method 

of separation of variables
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Solution of Electromagnetic Waves 

in Vacuum (Cont’d)
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Where Eo and Bo are the complex amplitudes of electric 

and magnetic fields and related to each other by 
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Electromagnetic Plane waves

• Plane electromagnetic waves can be expressed as
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Where        is the polarization vector.n̂
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Electromagnetic Plane waves

The real electric and magnetic fields in a 

monochromatic plane wave with  propagation vector
kˆ and polarization  nˆ are therefore
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Polarization

•The polarization is specified by the orientation of the 

electromagnetic field.

•The plane containing the electric field is called the 

plane of polarization.
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Polarization (Cont’d)

• Can be horizontal, vertical, circular, or elliptical
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Polarization (Cont’d)



5-02-2007 Preparatory School on Fiber 

Optics, Fiber Lasers and Sensors

31

Energy and Momentum of 

Electromagnetic Waves

The energy per unit volume stored in electromagnetic field is
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Energy and Momentum of 

Electromagnetic Waves (Cont’d)

• As the wave propagates, it carries this energy along with it. 

The energy flux density (energy per unit area per unit time) 

transported by the field is given by the poynting vector
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Homogenous Wave Equations Inside 

Matter

MatterVacuum
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Homogenous Wave Equations Inside 

Matter (cont..)
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Permittivity: = r o ( r is dielectric constant)

Permeability: µ=µrµo (µr is relative permeability 1

n=Refractive Index
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Inhomogeneous Electromagnetic 

Wave Equation

Inside linear dielectric medium with no free charge present, 

Maxwell’s equations reads as
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Inhomogeneous Electromagnetic 

Wave Equation (Cont’d)

Taking curl of (iii) 
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Solution of Inhomogeneous 

Electromagnetic Wave Equation
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Inhomogeneous wave equation can be solved 

with the help of Green’s Theorem
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THANK YOU


