# Preparatory School to the <br> Winter College on Fibre Optics, Fibre Lasers and Sensors 

5-9 February 2007

## EXERCISE \# I (Maxwell's Eqns. and EM Waves)

Imrana Ashraf Zahid<br>Quaid-i-Azam University<br>Islamabad<br>Pakistan

# Preparatory School to the Winter College on Fibre Optics, Fibre Lasers and Sensors <br> $5^{\text {th }}-\mathbf{9}^{\text {th }}$ February 2007 <br> ICTP, Trieste Italy 

## EXERCISE \# 1 (Maxwell's Eqns. and EM Waves)

Time: 15 minutes
Name: $\qquad$
Q. 1. A circular loop described by the equation $\mathbf{x}^{2}+y^{2}=\mathbf{1 6}$ is located in the x-y plane centered at the origin. The $\overrightarrow{\boldsymbol{B}}$ field is described by

$$
\bar{B}=\hat{k} 2 \sqrt{x^{2}+y^{2}} \cos \omega t\left(\mathrm{~Wb} / \mathrm{m}^{2}\right)
$$

Find total emf induced in the loop.
Q. 2. Given a Magnetic field in free space
$\vec{B}=\hat{i} a \sin (\omega t-k x)+\hat{j} a k y \cos (\omega t-k x)$
where $\mathrm{a}, \mathrm{k}$ and $\omega$ are constants. Use Maxwell's equations to derive the time dependent electric field $\overrightarrow{\boldsymbol{E}}$.

