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1st session

Introduction:
-The Non linear Optical Susceptibility Tensor;

-On the Physical Origins of the Nonlinear Optical 
Coefficients;

Second Order Optical Nonlinearities:
-Second Harmonic Generation, Phase matching, 
examples of phase matching techniques;

-Basic equations of Parametric Amplification, 
Parametric Oscillation, three-wave mixing, frequency 
up- and down-conversion.

-Third Order Optical Nonlinearities:
-The Nonlinear Constants, Intensity dependence of 
the refractive index; 

-Third harmonic generation; Third order parametric 
processes, four wave mixing;

-Self Focusing of Optical Beams, Diffraction-less 
propagation of Optical beams: Spatial Solitons;

Outline

2nd session

Third Order Optical Nonlinearities:
-Molecular Raman Scattering,

-Stimulated Raman Scattering;

- Stimulated Brillouin Scattering.

Introduction to Optical Solitons:
- Wave packets, Group velocity and Dispersion;

- Nonlinear wave packets and the nonlinear 
Schrödinger equation;

- Self phase modulation, Spectral broadening,

- Effects on group velocity dispersion, Pulse 
Compression;

- Modulation instability;

- Fundamental and higher orders Solitons.
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Introduction to non linear optics

DEFINITION: Non linear optics is the study of how high intensity light interacts 
with and propagates through matter.

Before the discovery of the Laser, optics seemed to be a linear science. Nonlinear 
effects were hidden because of the relatively low intensities that occurred naturally or 
could be attained in the laboratory.

Sun light: |E| is of the order of 600 V/m;         Binding fields of the H atom: 1011 V/m

What are the words “linear” and “nonlinear” referred to?

If we apply an optical field to a material system, the response of the material can be  
expressed in terms of an induced polarization, proportional to the strength of the applied 
field: (local response) 
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As a first approximation, the polarization is a linear function of the applied field.

Superposition principle is still valid: For a given applied field, if we consider the Fourier 
transform:

Introduction to non linear optics

Thus:
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For a superposition of fields with several angular frequencies, the induced polarization is 
a linear superposition of the polarization induced by each monochromatic component. 

There is not the creation of new frequencies, Polarization vector oscillates with 
the same frequency components of the optical fields that induced it.
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For a given input field: 

Introduction to non linear optics

Nevertheless, the medium response function is, in general, a complex function of the 
optical field. When the strength of the applied field  is comparable to the atomic field 
strength,  the linear approximation is no longer valid. By performing a power expansion 
of P it is possible to consider the nonlinear terms in the polarization function:
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Where:
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Nonlinear terms in the polarization vector are responsible for coupling of fields at 
different frequencies and for creation of new frequencies.

Nonlinear contribution
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Lasers made available  highly coherent radiation  that could be concentrated and 
focused to give extremely high local intensities that can reach 1018 W/cm2.

In 1961 Bloembergen’s group started a program in a field that became known as 
"Nonlinear Optics". The early results are incorporated in a monograph of this title, 
published by W. A. Benjamin, New York, in 1965

Experimental observation of second harmonic generation by Franken et al. in 
1961 considerably increased the interest of the community in the field of nonlinear 
optics.

A rich stream of new phenomena  soon followed. Nonlinear optics plays an important 
role in telecommunications and future computer technologies. The relatively long 
interaction lengths and small cross sections available in waveguides and fibers means 
that low energy optical pulses can achieve sufficiently high peak intensities to put in 
evidence non linear effects also in many transparent optical materials with weak 
nonlinearities. 

Introduction to non linear optics

Maxwell equations:
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Must be supplemented by relations that describe the 
behavior of materials under the influence of the fields.
(constitutive relations) that are generally very 
complicated. 

If the e.m field is time-harmonic and if the bodies 
are at rest or in very slow motion relative to each 
other:
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Insulators or dielectrics: σσσσ (conductivity) is negligibly small;
µµµµr=1;

thus we will focus on the electric properties of the materials.

An intense quasi monochromatic light pulse can, either directly or indirectly, excite 
material oscillation modes covering an enormous frequency bandwidth ranging from 
1015 s-1 (electronic oscillations) to 1 s-1 (thermal oscillations). 

The Non linear Optical Susceptibility Tensor 
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A proper theoretical treatment of these many diverse linear and nonlinear material 
oscillations must include a proper description of the polarization vector induced by the 
electric field. These quantities are linked through Maxwell’s equations via the constitutive 
relation that in the general case can be written as:
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The Polarization vector is a complex function of the electric field. For time-harmonic 
fields, homogeneous media and considering instantaneous material response to 
the electric field we can write:
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Α)Α)Α)Α) χχχχ(n)=nth order susceptibility. Optical properties depend on light intensity 
although large electric fields are needed. 

Β)Β)Β)Β) χχχχ(2)(2)(2)(2), χ, χ, χ, χ(4)(4)(4)(4),.. ., χ,.. ., χ,.. ., χ,.. ., χ(2(2(2(2n))))= 0 = 0 = 0 = 0 in materials with inversion symmetry(centrosymmetric) 
i.e. all isotropic materials ( gases, liquids, glasses) and some type of 
crystals (NaCl for example)

Vacuum contribution
Material contribution

The Non linear Optical Susceptibility Tensor 

Linear susceptibility tensor:
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The Non linear Optical Susceptibility Tensor 

[m/V]

)3(χ̂ Fourth rank tensor  (81 components) [m2/V2]
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Only non centrosymmetric crystals can posses a non-vanishing 
second order nonlinear susceptibility  tensor.

In a centrosymmetric crystal, for every point (x, y, z) in the unit cell there is an 
indistinguishable point (-x, -y, -z). Thus a reversal of the sign of Ej and Ek must cause a 
reversal in the sign of Pi

(2):
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Possible only if all the elements of the nonlinear susceptibility tensor are zero.

If the non linear susceptibility is independent of frequency, no physical significance can 
be attached to an exchange of  Ej and Ek. Thus 

)2()2( ˆˆ ikjijk χχ =

18 physically distinct components remain. The nonlinear optical coefficient tensor 
is defined as follows:

The Non linear Optical Susceptibility Tensor 
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The Non linear Optical Susceptibility Tensor 

Where:
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It can be shown that if the material is transparent (lossless) in the frequency range 
containing all the frequencies involved in the nonlinear process (Kleinman symmetry):
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The Non linear Optical Susceptibility Tensor 

A. Yariv, Quantum electronics

For example the KH2PO4 (KDP) has 
a D2d=           point group symmetry:

d14=(1.26x10-9)(4.189x10-4)=
=5.28x10-13 m/V = 0.5 pm/V
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Exercise

The Non linear Optical Susceptibility Tensor 

To obtain the value of d in units of
[m/V], multiply each entry by:
4ππππ/(3x104)=4.189x10-4

Exercise: Show that for a laser beam 
propagating along the KDP optic axis ( Ez=0), 
the nonlinear P(2) vector points along the 
optical axis, irrespective of the polarization of 
the incident laser beam.
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On the Physical Origins of the Nonlinear Optical Coefficients;

We focus our attention to the electronic response to a driving electric field.
Non linear behavior can be due to a non resonant response or to a resonant response:

Non resonant non linear response

Laser is tuned to the transparency region of a crystal;
Far from resonance with any atomic transitions. 

The model assumes that an electron is bound to the nucleus by an anharmonic
potential. The equation of motion for the electron is: 
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Where: X is the displacement with respect to the equilibrium position
γγγγ is the damping term
E0cos(ωωωωt) is the driving electric field
-mDX2 is the anharmonic restoring force ( corresponding to (m/3)DX3 potential)

The anharmonic response causes a distortion in the dynamic because the electron 
experiences a stronger force for +X than –X.

On the Physical Origins of the Nonlinear Optical Coefficients;



9

We assume the solution has the form:
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On the Physical Origins of the Nonlinear Optical Coefficients;

Exercise: Derive the expressions for the 
linear and the non linear susceptibilities 
solving the system of equations for P(ω,t)
and  P(2ω,t).

Resonant non linear response

On the Physical Origins of the Nonlinear Optical Coefficients;
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Second order nonlinear effects

We start with Maxwell equations in a form, which includes the polarization vector:
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We consider time harmonic fields and we expand the polarization vector up to the 
second order:

Equation (b) can be written as:
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(c) reminding that:
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At this point we specialize the problem to one dimension by taking ∂/∂x=∂/∂y=0
We denote the arbitrary direction of propagation as z.

We also limit the consideration to three frequencies

( )[ ]

( )[ ]

( )[ ]..)(
2

1
),(

..)(
2

1
),(

..)(
2

1
),(

333

222

111

3
)(

2
)(

1
)(

ccezEtzE

ccezEtzE

ccezEtzE

zkti
jj

zkti
kk

zkti
ii

+=

+=

+=

−

−

−

ωω

ωω

ωω

Where i,j,k refer to the Cartesian coordinates and can each take on values x and y.
Note that in the linear case the solution is given by the same expression where the 
envelopes are independent of z. 

Second order nonlinear effects
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Second order nonlinear effects

Why are we limiting the study to three frequencies and what are the implications?

If we considered only one monochromatic field, the non linear polarization:
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Contains terms oscillating at ω1+ω1=2ω1, ω1−ω1=0

Thus  the non linear polarization acts as a source for e.m. field at different frequencies.
Description of the electric field as a single frequency field is no longer adequate.

In a more general case we consider that the electric field contains three frequencies 
fulfilling the requirement ωωωω1111=ω=ω=ω=ω3333−−−−ωωωω2222. (energy conservation requirement)
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ΝΟΤΕ:ΝΟΤΕ:ΝΟΤΕ:ΝΟΤΕ: χχχχ’(2) is the tensor χχχχ(2) transformed from the crystal coordinate system to that used 
here to describe the field propagation

Second order nonlinear effects

2ω1, ωωωω1111+ω+ω+ω+ω2222=ω=ω=ω=ω3333, ω1+ω3, ω2−ω1, ωωωω3333−−−−ωωωω1111=ω=ω=ω=ω2222, 2ω2, ω2+ω3, ω1−ω2, ωωωω3333−−−−ωωωω2222=ω=ω=ω=ω1111, 0, 2ω3, ω1−ω3, 
ω2−ω3.

Performing the products it is evident that polarization vector contains terms oscillating at 
several frequencies i.e.

We assume only a finite number of frequencies is involved in the process, by 
neglecting creation of new frequencies. Thus we consider only the polarization 
terms oscillating at frequencies ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2 and ω3.ω3.ω3.ω3.

From a practical point of view, it is possible to find conditions such that the other processes 
involving different frequencies have negligible efficiencies with respect to the one involving 
frequencies ωωωω1 ωωωω2 and ωωωω3. (Phase matching)

The non linear polarization at ω3 acts as a source which eventually creates a photon of energy 
ħω3 by destroying two photons, one of energy ħω1 and the other of energy ħω2. In the process 
energy is conserved if:

ħωωωω3=ħωωωω1+ ħωωωω2

In this case the equation can be separated in three 
coupled equations, one for each frequency component.
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Second order nonlinear effects
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Back to our equation:

In our one dimensional model we have:
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Performing the second order derivative and assuming that the variation of the 
complex field envelopes with z are small enough so that (nonlinearity is a small 
perturbation of the linear solution):
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Being i,j,k the Cartesian coordinates 
and can each take on values x and y. 
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Second order nonlinear effects

The evaluation of the Laplacian within the  SVEA approximation gives:

Finally, with some algebra: [Exercise: derive the set of equations]
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NOTE: The non linear polarization for each frequency components can act as a gain, a 
loss or a phase modulation, depending on the modulus and the relative phase between 
the fields.
In order to have efficient energy transfer among the fields, a long interaction length is 
required, the phase mismatch should be as close as possible to zero. In other words:

k3=k2+k1

Second order nonlinear effects

In a more general case, the condition to be fulfilled is:

213 kkk
rrr

+=

It is called phase matching condition and it can be interpreted as a momentum 
conservation requirement. 
Example: Two pump fields at frequencies ω1 and ω2 can generate a sum frequency (ω3) 
field. The wavevector of the generated field will fulfill: 

2k
r

1k
r

3k
r

Optical Second harmonic Generation

First experimental report on second harmonic generation was performed by 
Franken, Hill, Peters and Weinreich in 1961. (Fig: A. Yariv, Quantum electronics)

SHG can be studied as the limiting case  of the three frequency interaction where 
two of the frequencies ω1 and ω2 are equal and ω3=2ω1.
We assume as first approximation that the amount of power lost by the input 
beam is negligible so that dE1i/dz=0 and the medium is transparent at ω3 ( σ=0)
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The solution for E3j(0)=0 ( no SH input) and for a crystal of length L is:
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We note that:

Optical Second harmonic Generation

To obtain an expression for the second harmonic power output, considering
A linearly polarized pump with non vanishing electric field component E1x we use 
the relation:
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If we consider the SH generated linearly polarized with non vanishing field component
E3ywe can write an expression for the conversion efficiency:
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The conversion efficiency is linearly growing with the pump intensity. This means that 
the generated second harmonic intensity with respect to the pump intensity follows a 
quadratic law. The conversion efficiency increases with the squared length of the 
nonlinear medium

Optical Second harmonic Generation
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Maximum conversion efficiency is achieved for ∆kL/2=0,
∆∆∆∆k=k2ωωωω-2kωωωω=0 is called phase matching condition and it is fulfilled as long as
The refractive indices at FF and SH frequencies are the same: n2ωωωω=nωωωω.
If such condition is fulfilled, the FF and SH fields propagate with the same phase 
velocities

We note that the conversion 
efficiency is crucially determined 
by the sinc function:

z2z1

Phase matching

In common materials the refractive index is an increasing function of the frequency thus 
we have nω<n2ω , and ∆∆∆∆k>0.

During the non linear process there is an exchange of energy between FF and SH field 
and the SH production is zero for any propagation length that satisfy the law:

∆kL/2=mπ, where m is an integer.

For a  mismatched interaction, the length of non linear
material that produce the maximum generated
second harmonic field 
can be calculated by:

( )ωω

λπ

π

nnk
l

kl

c

c

−
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=
∆

2

0

4

;
22

Typically in nonlinear materials 
∆∆∆∆n is of the order of 10-1to 10-2. 
Coherence lengths are only a 
few numbers of wavelenghts.

Phase matching

Undepleted pump approximation
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Phase matching techniques

A widely used technique takes advantage of the natural birefringence of 
anisotropic crystals.
Under certain circumstances it is possible to use the different refractive indices for 

the ordinary wave and the extraordinary wave. For example, a typical behaviour of 
dispersion of the refractive indices of a negative (ne<no) uniaxial crystal is:  

Frequency, ω ( s−1)
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x

no ne

ωp 2ωp

If ne(2ωp)<no(ωp), it exists an angle  θm at which ne
2ω(θm)=no

ω
.. It can be calculated by:  
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Phase matching techniques
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Exercise: Ruby laser λλλλ=694.3 nm on a KDP
Crystal as an ordinary wave. 

ne
ωωωω=1.466; =1.466; =1.466; =1.466; ne

2ω2ω2ω2ω=1.487; =1.487; =1.487; =1.487; 
no

ωωωω=1.506; =1.506; =1.506; =1.506; no
2ω2ω2ω2ω=1.534; =1.534; =1.534; =1.534; 

Calculate the matching angle

TYPE I phase matching
o+o ���� e   (neg. uniaxial)

TYPE II phase matching
e+o ���� e  (neg uniaxial)

( ) ( )[ ]θθ ωωω
keioje nnn +=

2

12Phase matching condition ∆k=0 becomes:

Exercise:Calculate the index 
matching angle for type II 
second harmonic generation, 
show that:
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Phase matching techniques

Similar argumentations apply if we consider second 
harmonic generation with ultra short pump pulses. 
Although phase velocities are matched, the group 
velocity is defined as: ( ) ( )[ ]ωωω ddnn

c
vg

+
=

Usually, vg(2ω) is not the same as vg(ω). This means that the pump wave packet will travel 
at a different  velocity with respect to the generated second harmonic wave packet. The 
interaction between them stops when they are spatially separated.

LMAX=To/|d12|; where d12=walk off parameter=[vg(ωωωω)]-1- [vg(2ωωωω)]-1

Z=0 Z1 =vg(ω)t1Z2 =vg(2ω)t1

Exercise: derive the expression for LMAX

S2ωωωω

NOTE: Whenever the angle between the optic 
axis and the propagation direction has a value 
other than 0 and 90 degrees, the Poynting
vector S and the propagation vector k are not 
parallel for extraordinary rays.
WALK OFF ANGLE limits the effective 
interaction length.

Quasi Phase matching 

Phase matching techniques

Periodic modulation of the non linear coefficients tensor elements responsible 
for the interaction.
It can be shown that the phase matching condition becomes:

∆∆∆∆k=2ππππm/ΛΛΛΛ Where m is an integer and Λ is the period of the nonlinearity.

EXAMPLE: If the sign of the non linear interaction is reversed at every coherence 
length d(z) is a periodic function of period 2lc=2ππππ/∆∆∆∆k. 

QPM is achieved for m=1.

deff=2dbulk/ππππ
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Phase matching techniques

Periodically poled LiNbO3
Periodical reversal of static electric field in order to induce a permanent periodically 
modulated electric polarization. 

);cos(ˆ)(ˆ )2(
0

)2( zkz p∆= χχ

Then, if we send a pump at ωωωωp, we have QPM generation of SH

Fiber gratings:
The grating is prepared by sending intense FF and SH in the Fiber. Because of a third 
order process, a static DC polarization is created. Because of refractive index 
dispersion, the static field is spatially modulated, indeed:

A periodic array of dipoles is created generating an effective second order 
susceptibility : 

Examples of applications of QPM
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Phase matching techniques

Considering dielectric waveguides, the modal dispersion can be used to achieve phase 
matching. The phase matching relation for second harmonic generation becomes: 

ωω ββ
~~

2 =

This condition can be easily 
fulfilled by considering modes for 
the pump and for the SH of 
different order or polarization.

Nevertheless the non linear 
process is governed by how the 
fields overlap: usually overlaps 
between fields belonging to 
different orders are not 
efficient.

( ) ( )
2

*22)2( )()(:ˆ
⎥⎦
⎤

⎢⎣
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dxxExE nm
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Phase matching techniques

Photonic Crystals
In a photonic crystal both the linear and the nonlinear susceptibility functions can 
be periodically modulated. Modulation of the linear susceptibility is responsible for 
peculiar properties of the linear dispersion curves of these structures. Fields are 
characterized by a Bloch wave vector and an periodic function over the unit cell. Thus 
the  quasi momentum conservation for second harmonic generation is:

02

rrrr
=−− Gkk ωω

Where G is a reciprocal lattice vector. Usually  unit cells 
are of the order of the wavelength or less unlike in the 
QPM regime where domains are inverted every coherence 
length.

Optimum non linear interaction can be obtained by 
considering:

1- distortion of the  dispersion curves close to 
the band gaps. [phase matching, group 
velocity matching, density of states]

2- overlap of the fields with the chi(2) function 
over the unit cell. [enhancement of the 
effective non linear response, QPM] 

Basic Equations of Parametric Amplification

We consider an intense high frequency pump field (ω3) and a lower frequency (ω2)
signal. Parametric process allows amplification of the signal. At the same time an idler 
field is generated at frequency ω1=ω3−ω2. pump

signal
idler

For simplicity we neglect absorption, and we only consider linearly polarized fields along 
the x direction. We choose the z axis as propagation direction. We also define:
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Since a photon’s energy is ħωl , |Al|2 is proportional to the photon flux at ωl
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Basic Equations of Parametric Amplification

In the undepleted pump approximation we take A3(z)=A3(0) and we integrate the first 
two equations:
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Exercise: derive the set of equations starting 
from the previous one.
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Solutions (Phase matching, ∆∆∆∆k=0):
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NOTE: Beside the effect of parametric amplification of the signal beam we have generation of the 
idler beam. Since ω2=ω3-ω1, the process of generating a low frequency beam from two higher
frequency fields is called DIFFERENCE FREQUENCY GENERATION

Basic Equations of Parametric Amplification

The increase in power of signal and idler waves Is 
at the expense of the pump wave.
It can be shown that  neglecting absorption losses:

( ) ( ) ( )*
11

*
22

*
33 AA

dz

d
AA

dz

d
AA

dz

d
==−

Manley-Rowe relation: It means that for each photon 
subtracted from the pump, a signal photon and an idler 
photon are created

Exercise: Consider a LiNbO3 crystal pumped by a pump with λλλλp=0.5 µµµµm and Ip=5x106 W/cm2

We use the d15 to  amplify a signal at λλλλs=1 µµµµm. Refractive index at λλλλs is 2.2.
Calculate the gain available in the parametric process.

The general solutions, including the phase 
mismatch and depletion of the pump show a 
continuous exchange of energy between the 
fields. Depending on the initial condition:
Parametric amplification
Difference frequency generation
Down conversion
Sum frequency generation

Z (µm)
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Parametric Oscillation

Place mirrors reflective at ωs and/or ωi on either side of non linear medium in order to 
have an optical resonator.
Oscillation occurs as a consequence of the gain of the parametric amplification 
process. There is no need for the weak signal beam since it is generated internally to 
the crystal as so called “parametric noise”.

For a given pump frequency, signal and idler frequencies are determined by:
1- energy conservation (frequency matching):                ωωωωp=ωωωωs+ωωωωi
2- Momentum conservation ( Phase matching): kp=ks+ki
Assuming the pump as an extraordinary wave we can tune the signal and idler 
frequencies rotating the crystal. following tuning condition:

( ) ooe nnn 221133 ωωθω +=

OPO are widely used as coherent, tunable sources. In principle ωωωωs can be tuned in a range 
from 0 to ωωωωp. In real systems tunability depends on the birefringence and dispersion of the 
crystal and geometrical adaptability of  the system.

Three wave mixing

The basic equations  govern the interaction of 
three fields due to second order nonlinearity:
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Different processes can happen depending on the initial condition: ω3

ω1

ω2Sum frequency generation
Frequency up-conversion

Parametric amplification
Difference frequency generation
Stimulated parametric down conversion

Spontaneous parametric down conversion
Spontaneous parametric fluorescence

Summary



22

Third order optical nonlinearities

Third order non linear effects are present in every kind of material. The nonlinear 
polarization vector for harmonic fields and instantaneous medium response can 
be written as:

zyxi    EEEP
zyxlkj

lkjijkli ,,;ˆ
,,,,

)3(
0

)3(
== ∑

=

χε

)3(χ̂ Fourth rank tensor  (81 components) [m2/V2]

For crystalline solids with low symmetry all 81 of these elements are independent and 
can be nonzero. The number of independent  elements is reduced with the symmetry. 
For isotropic materials there are only 3 independent elements.

A- each of the coordinate axes must be equivalent:
B- nonzero elements must possess the  property that any cartesian index that 

appears at least once, appears an even number of times.
χxxxx= χyyyy = χzzzz;
χxxyy= χxxzz = χyyxx = χyyzz = χzzxx = χzzyy;
χxyxy= χxzxz = χyzyz = χyxyx = χzxzx = χzyzy;
 χxyyx= χxzzx = χyxxy = χyzzy = χzxxz = χzyyz;

These elements are linked by the relation: χxxxx= χxxyy + χxyxy + χxyyx derived from the requirement 
that the elements must be the same when calculated in two different coordinate systems that are 
rotated with respect to each other.

Third order optical nonlinearities

Third order nonlinear polarization allow coupling of fields at different frequencies, Here 
we present an sketched overview of the most relevant effects that will be analyzed later:

ω1

ω3

ω2

ω4

Four wave mixing

ω

3ω

Third harmonic generation

ω

ω

ω

ω

Optical Kerr effect

ω

−ω

ω

ωs

Raman effect

−ω

ωs
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Intensity dependence of the refractive index

The refractive index of many materials depends on the intensity of the incident optical 
field. If we consider an optical field of the form:
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Time averaged intensity is defined:
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The nonlinear refractive index is defined:

Using the definition of PNL:
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Intensity dependence of the refractive index

It contains terms oscillating at several frequencies. If we collect the terms oscillating at ω:

)()(P 0 ωεεω ENLNL =

where:
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Exercise: calculate the εεεεNL by substituting the expression of the optical field into the 
nonlinear polarization.
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Intensity dependence of the refractive index

Boyd, Non linear Optics

Exercise: Calculate the value of ∆∆∆∆n for carbon disulfide when it is applied an optical field of 
intensity 1 MW/cm2. What is the ∆∆∆∆n for optical glass in the same condition?

Intensity dependence of the refractive index

Intensity dependence of the refractive index has drastic effects both on the spatial 
properties of optical beams and on temporal (spectral) properties of ultrashort pulses.

Self phase modulation (SPM)
Phase shift experienced by short pulse propagating through a nonlinear refractive index
- spectral broadening; 
- Optical solitons in anomalous dispersion regimes of fibres.

Cross phase modulation  (XPM)
Phase shift of a field induced by a co-propagating intense field at different wavelength.

Self focusing and self defocusing of optical beams
Depending on the sign on the nonlinearity, the central (more intense) portion of a
Beam experiences  higher (lower) index of refraction with respect to the outer edges.An
effective lens is created.
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Self focusing of optical beams

If n2 is positive, the refractive index of the material is larger at the center of the laser 
beam than at its periphery, with the result that the medium is in effect turned into a 
positive lens.

I

x

n=n0+n2I Optical
thickness

If the medium is short enough, this focus will occour outside of the medium, other way it 
will occur inside the medium leading to  a extremely intense filament that will eventually 
damage the material.

Self focusing of optical beams

Self-focusing can occur only if the power of the laser beam is sufficiently large. Other 
way diffraction effects will prevail and the beam will spread.

When the tendency of the beam to spread is precisely compensated by the self focusing 
effect, a phenomenon known as self trapping may occur. Self trapping is usually 
unstable in 2D or 3D systems. Small perturbations in the beam diameter will lead 
either to rapid spreading of the beam or to catastrophic collapse.

I

x

n=n0+δn

n=n0

n=n0

Total internal reflection occurs if
θ<θ0. where:
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A laser beam of diameter d will contain rays within a cone with an angle of the order of 
the characteristic diffraction angle:

dnd
0

061.0 λ
θ =
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Self focusing of optical beams

Inn
d

20

0

2

61.0 λ
=

The power contained in a filament of diameter d is:
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NOTE: The predicted power is independent of the beam diameter. Self focusing 
will occur if the power of the laser beam is greater than Pcr. Only if P=Pcr, self 
trapping is possible. For P>Pcr the beam usually break up into several filaments, 
each of which contains power Pcr.

Exercise: For CS2 (carbon disulfide), n2=2.6x10-14 cm2/W, n0=1.7. Calculate Pcr at λλλλ0=1 µµµµm
And for glasses?  ( see tables)

The diameter of the self trapped beam can be calculated by imposing θ0= θd

Spatial Solitons

Nonlinear Beam propagation equation:
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Reminding the definition of εNL the wave equation becomes:
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We choose a field propagating along the z axis and polarized along the x direction:
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Performing the time averaged intensity, using SVEA we obtain the equation for the 
envelope functions: ( Nonlinear Schrödinger Equation)
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Where 
is the transverse Laplacian:,
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Exercise: Derive the expression for the non linear beam propagation equation

Spatial Solitons

Spatial Solitons are special solution of the nonlinear Schrödinger equation.
1. Robust balance between diffraction and a nonlinear beam narrowing process
2. Stationary solution to a nonlinear wave equation
3. Stable against perturbations

Observed and Studied Experimentally to Date in:
1. Kerr and saturating Kerr media                4.    Liquid crystals
2. Photorefractive media                                 5.     Gain media
3. Quadratically nonlinear media

Spatial Solitons (2+1)D

Spatial Solitons

It can be shown that for NON SATURABLE KERR media, stable solutions exists 
only if the field is confined in one dimension. Otherway, we have the previously 
described phenomenon, diffraction less solutions exist only for a  unique value of laser 
power. Higher powers leads to filamentation of the beam. At lower powers, diffraction 
wins.

Nevertheless it is possible to obtain spatial solitons in (1+1)D using Kerr media and 
taking advantage of planar waveguide properties.

Spatial Solitons (1+1)D,0),(),(),(2),(
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For 1D confinement we have:

A requirement for being a soliton is that the modulus 
of the transverse profile does not change during 
propagation along z: 
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Spatial Solitons

It is possible to show that the  equation allows a family of solution fulfilling that 
requirement. These functions are called spatial solitons.
The fundamental soliton has the expression:
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The integrated intensity over the beam is:
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The transverse mode size b0 will not be affected by the nonlinearity as long as b0<<a0.

The Power required to launch a fundamental soliton is:
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NOTE: The solution is stable, Pa0=constant

Exercise 1(nonlinear susceptibility tensor): Show that for a laser beam propagating along 
the KDP optic axis ( Ez=0), the nonlinear P(2) vector points along the optical axis, irrespective 
of the polarization of the incident laser beam.

Exercise 2 (Phase matching in birefringent crystals): Consider an intense  ruby laser 
λλλλ=694.3 nm on a KDP Crystal as an ordinary wave. Calculate the matching angle for SHG 
using the following data: ne

ωωωω=1.466; =1.466; =1.466; =1.466; ne
2ω2ω2ω2ω=1.487; =1.487; =1.487; =1.487; no

ωωωω=1.506; =1.506; =1.506; =1.506; no
2ω2ω2ω2ω=1.534; =1.534; =1.534; =1.534; 

Exercise 4 (Intensity dependent refractive index): Calculate the value of ∆∆∆∆n for carbon 
disulfide when it is applied an optical field of intensity 1 MW/cm2. What is the ∆∆∆∆n for optical 
glass in the same condition?

Exercise 3 (Parametric amplification): Consider a LiNbO3 crystal pumped by a pump with 
λλλλp=0.5 µµµµm and Ip=5x106 W/cm2. We use the d15 to  amplify a signal at λλλλs=1 µµµµm. Refractive 
index at λλλλs is 2.2. Calculate the gain available in the parametric process.

Exercise 5 (Self focusing): For CS2 (carbon disulfide), n2=2.6x10-14 cm2/W, n0=1.7. Calculate 
Pcr for self trapping at λλλλ0=1 µµµµm.  And for glasses?  ( see tables)

Exercise 7 (Spatial solitons): Give an estimation of the power required to launch a 15 µµµµm x 5 
µµµµm spot size soliton at λλλλ0 =0.62 µµµµm in a glass waveguide.( n0=1.53; n2=3.4x10-16 cm2/W); 
Give a physical interpretation to the statement made: “The transverse mode size b0 will not 
be affected by the nonlinearity as long as b0<<a0”

Exercise 6 (Four wave mixing): Show why, in a normally dispersive and isotropic medium, 
the condition 2k2=k1+k3 (ωωωω3>ωωωω2>ωωωω1; 2ωωωω2=ωωωω1+ωωωω3) cannot be satisfied for propagation along a 
single direction.




