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I. INTRODUCTION

A key concept in the study of waveguides is that of a mode. When traveling through a

waveguide, a monochromatic light field can present one or several characteristic transverse

profiles which remain invariant under propagation. These profiles are known as the modes of

the waveguide, and they constitute a complete basis for representing any field propagating

in it. A mode corresponds to what is known as an eigenfunction of the differential operator

that describes the propagation of waves through the waveguide. Therefore, in order to

understand it, it is a good idea to review the concept of eigenvalues and eigenfunctions for

simple differential operators. In this lecture, we will discuss the simplest case, corresponding

to only one variable. The behavior of multivariable operators is qualitatively similar. Since

wave equations in linear optics are of second order, we will concentrate on the case of second

order differential operators.

II. HOMOGENEOUS SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

AND THEIR SOLUTIONS

Consider a second order differential operator of the form:

D̂ =
d2

dx2
+ p(x)

d

dx
+ q(x), (1)

where p(x) and q(x) are two functions of x. Notice that we could have written a more general

operator where there is a function multiplying also the second derivative term. However,

as we will see shortly, this is not necessary for the purposes of this section. (In subsequent

sections, we will use operators that do have a function multiplying the second derivative,

however.) The goal of this section is to revise the methods for solving homogeneous second

order linear differential equations. These equations have the form:

D̂f(x) = 0. (2)

This equation is said to be homogeneous because the right-hand side is zero, i.e. there are

no source/driving terms.

2



A. Two independent solutions

Since this is a second order differential equation, there are two independent solutions.

Consider, for example, the case where p and q are both constants, equal respectively to p0

and q0. Then, it is easy to see that the solutions are exponentials of the form f(x) = exp(ax).

The substitution of this form into the differential equation leads to

(a2 + p0a + q0) exp(ax) = 0. (3)

There are two independent solutions, corresponding to the two different values of a for which

a2 + p0a + q0 = 0, that is

f1(x) = exp

[(
p0

2
+

√
p2

0

4
− q0

)
x

]
, f2(x) = exp

[(
p0

2
−
√

p2
0

4
− q0

)
x

]
. (4)

Except for the case when q0 = p2
0/4 (which will be discussed later), the full solution is then

a linear combination of these solutions, i.e.

f(x) = A1f1(x) + A2f2(x)

= A1 exp

[(
p0

2
+

√
p2

0

4
− q0

)
x

]
+ A2 exp

[(
p0

2
−
√

p2
0

4
− q0

)
x

]
. (5)

When solving a real problem where initial or boundary conditions must be met, these con-

ditions set the values of the constants A1 and A2. When p(x) and q(x) are not constant,

the solutions can be more complicated, but there are always two independent solutions that

are not simply multiples of each other.

B. Wronskian

While the two solutions are always globally linearly independent, they can be locally

multiples of each other in the sense that the ratio of their derivative and their value are

equal:
f ′

1(x)

f1(x)
=

f ′
2(x)

f2(x)
. (6)

That is, for a given x, if the two functions are scaled to have the same magnitude, there

is a chance that they might also have the same slope. This would represent a problem,
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for example, if a point x0 where this were true happened to be the point at which initial

conditions for the differential equation are prescribed:

f(x0) = A1f1(x0) + A2f2(x0), (7)

f ′(x0) = A1f
′
1(x0) + A2f

′
2(x0). (8)

The solution for the constants is

A1 =
f(x0)f

′
2(x0) − f ′(x0)f2(x0)

f1(x0)f ′
2(x0) − f ′

1(x0)f2(x0)
, (9)

A2 =
f ′(x0)f1(x0) − f(x0)f

′
1(x0)

f1(x0)f ′
2(x0) − f ′

1(x0)f2(x0)
. (10)

But the denominator of these expressions vanishes if the above condition, Eq. (6), is true at

x0. The Wronskian is defined precisely as the combination in the denominator in Eqs. (9,10):

w(x) = f1(x)f ′
2(x) − f ′

1(x)f2(x). (11)

The two solutions are locally linearly independent when the Wronskian is different from

zero.

Notice that, up to a global constant, the Wronskian can be found even if the two solutions

f1 and f2 are not known. Consider the derivative of the Wronskian:

w′(x) = [f1(x)f ′
2(x) − f ′

1(x)f2(x)]′ = f1(x)f ′′
2 (x) − f ′′

1 (x)f2(x). (12)

Now substitute, from the original differential equation, f ′′
n(x) = −p(x)f ′

n(x) − q(x)fn(x):

w′(x) = f1(x)[−p(x)f ′
2(x) − q(x)f2(x)] − [−p(x)f ′

1(x) − q(x)f1(x)]f2(x)

= −p(x)[f1(x)f ′
2(x) − f ′

1(x)f2(x)]

= −p(x)w(x), (13)

or
w′(x)

w(x)
= −p(x). (14)

The indefinite integral of both sides gives

ln[w(x)] = −P (x) + c0, (15)

or

w(x) = w0 exp[−P (x)], (16)
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where c0 and w0 are constants, and

P (x) =

∫ x

x0

p(x′)dx′. (17)

It is surprising that the functional form of the Wronskian is independent of q(x).

C. Finding the second solution from the first

Now, how do we find the two independent solutions? This is not so trivial. It turns out,

however, that if somehow we know one of the solutions (either by inspection or by applying

some technique), we can calculate the second. To see this, assume that we know f1(x).

Then, write the second solution as a product of two unknown functions:

f2(x) = M(x)u(x). (18)

The substitution of this product into the differential equation gives

0 = D̂f2(x) = D̂[M(x)u(x)]

= [M(x)u(x)]′′ + p(x)[M(x)u(x)]′ + q(x)[M(x)u(x)]

= M(x)u′′(x) + [2M ′(x) + p(x)M(x)]u′(x) + [M ′′(x) + p(x)M ′(x) + q(x)M(x)]u(x)

= M(x)u′′(x) + [2M ′(x) + p(x)M(x)]u′(x) + [D̂M(x)]u(x). (19)

Notice that the last term vanishes if we choose M(x) = f1(x) because D̂f1(x) = 0, so

Eq. (19) becomes a first order equation in u′(x):

f1(x)u′′(x) + [2f ′
1(x) + p(x)f1(x)]u′(x) = 0, (20)

which after some rearranging becomes

u′′(x)

u′(x)
= −2

f ′
1(x)

f1(x)
− p(x). (21)

The indefinite integral of both sides gives

ln[u′(x)] = −2 ln[f1(x)] − P (x) + c0. (22)

The exponential of both sides gives then

u′(x) =
w0

f 2
1 (x)

exp[−P (x)] =
w(x)

f 2
1 (x)

, (23)
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where we used Eq. (16) in the last step. Finally, this expression can also be integrated to

give

u(x) =

∫ x

x0

w(x′)
f 2

1 (x′)
dx′ + c1, (24)

so the second solution is given by

f2(x) = f1(x)u(x) = f1(x)

∫ x

x0

w(x′)
f 2

1 (x′)
dx′. (25)

Notice that, without loss of generality, the second integration constant c1 was set to zero,

because if it were different from zero it would only add some amount of the first solution,

and this can be accounted for in the final linear combination.

To test this solution, consider the example mentioned earlier where p(x) = p0 and q(x) =

q0, and insert the form of the first solution given in Eq. (4) into Eq. (25) to see if you can

recover the second solution. This should be possible provided q0 �= p2
0/4. If q0 = p2

0/4, the

prescription in Eq. (25) gives the independent second solution that cannot be found simply

by inspection. Can you find it?

D. Finding the first solution: the Frobenius method

Now, the hard part is finding the first solution. Except in simple cases like the example

given earlier, one cannot find the first solution analytically. Therefore, it is necessary to find

it as a series expansion. The method for doing this is known as the method of Frobenius.

When expanding a function as a series, one of course has first to pick a point x0 around

which the expansion is performed. Once this point is chosen, the series takes the form

f1(x) = (x − x0)
γ

∞∑
n=0

an(x − x0)
n. (26)

Notice that this is not a strict Taylor series, due to the power of γ in front. This is to allow

for the possibility that the function might diverge at x = x0 as some negative power, or

grow as a fractional positive power (e.g. as a square root). Because f1 is going to have a

global constant A1 in front, we can set, without loss of generality, a0 = 1.

Let’s talk now about how to choose x0. There are many cases of practical interest

(especially in the equations that describe the transverse modes of waveguides) where the

functions p and q diverge at some value of x. It turns out that the Frobenius method still

works in this case, as long as p has at most a simple pole and q a second order pole. In fact,
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the regions of convergence of the series is maximized if we choose x0 to coincide with these

singularities, if they exist. To see this, let us multiply the differential equation by (x− x0)
2

and write it in the following form:

(x − x0)
2f ′′

1 (x) + [(x − x0)p(x)] (x − x0)f
′
1(x) + [(x − x0)

2q(x)] f1(x) = 0. (27)

The substitution of Eq. (26) into this equation gives

(x − x0)
γ

∞∑
n=0

(γ + n)(γ + n − 1)an(x − x0)
n

+[(x − x0)p(x)] (x − x0)
γ

∞∑
n=0

(γ + n)an(x − x0)
n

+[(x − x0)
2q(x)] (x − x0)

γ

∞∑
n=0

an(x − x0)
n = 0. (28)

Notice first that the factor of (x−x0)
γ can be factored and eliminated. Secondly, the factors

in this equations are the functions [(x − x0)p(x)] and [(x − x0)
2q(x)], which are analytic at

x = x0 if p has at most a single pole and q has a second order pole. These combinations can

then be expanded in Taylor series as

[(x − x0)p(x)] =
∞∑

m=0

Pm(x − x0)
m, (29)

[(x − x0)
2q(x)] =

∞∑
m=0

Qm(x − x0)
m. (30)

From this, one can rearrange the series into one big series expression that equals zero for

all values of x. This means that the coefficient of each power of (x − x0)
n must vanish

independently. From here, one finds an infinite set of equations, the first of which (known as

indicial) determines the exponent γ, and the subsequent ones serve to find the coefficients

an. Instead of solving the general case, let us consider an example that is important in

waveguide theory.

The Bessel equation has the form:

x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x) = 0. (31)

That is, the second order operator has the following form:

D̂ =
d2

dx2
+

1

x

d

dx
+

(
1 − ν2

x2

)
. (32)
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It is easy to see that the natural choice for x0 in this case is zero, where p = 1/x and

q = 1 − ν2/x2 are singular. Further, in this case there is no need to expand [(x − x0)p(x)]

and [(x−x0)
2q(x)] in Taylor series, as they are already explicitly in the form of (very short!)

series, namely 1 and −ν2 + x2, respectively. The substitution of the series form in Eq. (26)

with x0 = 0 into Eq. (31) then gives

xγ

∞∑
n=0

(γ + n)(γ + n − 1)anx
n + xγ

∞∑
n=0

(γ + n)anx
n + (x2 − ν2)xγ

∞∑
n=0

anx
n = 0, (33)

which, after dividing by xγ and reordering, can be written as

∞∑
n=0

[(γ + n)2 − ν2]anx
n +

∞∑
n=0

anx
n+2 = 0. (34)

In order to combine these two sums, we must first change the indices, such that the powers

of x are the same. This is done by letting m = n in the first sum and m = n + 2 in the

second. Of course, now the second sum will start at m = 2 so the terms corresponding to

n = 0, 1 in the first sum must be written separately. The result is:

(γ2 − ν2) + [(γ + 1)2 − ν2]a1x +
∞∑

m=2

{[(γ + m)2 − ν2]am + am−2}xm = 0. (35)

Here, we used the fact that a0 = 1. Because this equation holds for all x, then the constant

coefficient of each power of x must vanish independently. Consider first the constant term.

Setting this term to zero gives what is known as the indicial equation, which in this case

becomes

γ2 − ν2 = 0 → γ = ±ν. (36)

These two choices of the sign correspond to the two solutions. However, as we will see later,

the negative choice does not lead to the second solution when ν is an integer or a half integer

(which is the case in waveguide problems). Let us then concentrate on the first solution only,

corresponding to γ = ν (assuming ν ≥ 0).

The coefficient of the linear term must also be set to zero, that is,

[(γ + 1)2 − ν2]a1 = (2ν + 1)a1 = 0, (37)

where we used γ = ν in the second step. Notice that the only way for satisfying this equation

is to make a1 = 0. Finally, the rest of the equations, corresponding to the coefficients of all

higher powers of x vanishing independently, can be solved generically as

[(γ + m)2 − ν2]am + am−2 = (2mν + m2)am + am−2 = 0. (38)
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This leads to the recursion relation

an = − an−2

n(n + 2ν)
. (39)

Let’s make a remark about this result. Notice that if we chose the minus sign in Eq. (36),

the plus sign in the denominator would be a minus sign. For this reason, this recursion

relation would fail if ν were an integer or half integer, because there would be a value of n

that would make the expression diverge. In this case, the second solution must be sought

with the procedure explained earlier. This second solution corresponds to a Bessel function

of the second kind, which diverges at x = 0. In simple, typical waveguide problems, this

solution is often discarded because of this divergence, so we concentrate on the first solution.

For the positive choice of the sign, there is no problem. This first solution is precisely what

is known as the Bessel function of the first kind, Jν(x). In Fig. 1 we show how the series

solution we found approaches the function inbuilt in the computational software program

Mathematica. For illustration purposes, we show the series truncated at several maximum

values of m, to see how the region of validity increases.

III. SELF-ADJOINT OPERATORS

Many of you are probably familiar with the concept of a self-adjoint (or Hermitian)

matrix. A matrix M of this type satisfies the following property

v∗ · (Mu) = (Mv)∗ · u, (40)

where u and v are two arbitrary vectors. In order to extend the concept of self-adjointness

to second order differential operators, it is important to first extend the concept of “dot” or

inner product to continuous functions instead of discrete vectors. The inner product of two

complex functions u(x) and v(x) is defined as

〈v, u〉 =

∫ x1

x0

v∗(x)u(x)dx, (41)

where x0 and x1 define the limits of the region of interest, and the complex conjugate in

the first function is inserted so that, for any complex function, the inner product with itself

gives a non-negative real number.
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A. Canonical form of a self-adjoint operator

Consider a general second order differential operator

D̂ = p0(x)
d2

dx2
+ p1(x)

d

dx
+ p2(x). (42)

Notice that, because we are not explicitly considering a differential equation, we include

a function multiplying the second derivative for the sake of generality. In analogy with

Eq. (40), this differential operator is self-adjoint if

〈v, D̂u〉 = 〈D̂v, u〉 + [ ]
∣∣∣x1

x0

, (43)

where the last term represents terms evaluated at the endpoints. Substituting the explicit

form of the operator into the left-hand side of this equation, we get

〈v, D̂u〉 =

∫ x1

x0

v∗(p0u
′′ + p1u

′ + p2u)dx. (44)

We can now remove all the derivatives from u by using integration by parts:

〈v, D̂u〉 =

∫ x1

x0

v∗(p0u
′′ + p1u

′ + p2u)dx

= (v∗p0u
′ + v∗p1u)

∣∣∣x1

x0

+

∫ x1

x0

[−(v∗p0)
′u′ − (v∗p1)

′u + v∗p2u)dx

= [v∗p0u
′ + v∗p1u − (v∗p0)

′u]
∣∣∣x1

x0

+

∫ x1

x0

[(v∗p0)
′′u − (v∗p1)

′u + v∗p2u]dx

= [p0(v
∗u′ − v′∗u) + (p1 − p′0)v

∗u]
∣∣∣x1

x0

+

∫ x1

x0

[p∗0v
′′ + (2p′0 − p1)

∗v′ + (p′′0 − p′1 + p2)
∗v]∗udx

= [p0(v
∗u′ − v′∗u) + (p1 − p′0)v

∗u]
∣∣∣x1

x0

+ 〈 ˆ̄Dv, u〉, (45)

where

ˆ̄D = p∗0(x)
d2

dx2
+ [2p′0(x) − p1(x)]∗

d

dx
+ [p′′0(x) − p′1(x) + p2(x)]. (46)

The operator D̂ is then self-adjoint if it equals ˆ̄D, i.e. if

p0 = p∗0, (47)

p1 = 2p′∗0 − p∗1, (48)

p2 = p′′∗0 − p′∗1 + p∗2. (49)
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The condition in Eq. (47) states that p0 is real. The condition in Eq. (48) can then be

written out as

�(p1) = p′0, (50)

where � denotes the real part. Finally, the real and imaginary parts of condition in Eq. (48)

become then

�(p′1) = p′′0, (51)

2�(p2) = −�(p′i), (52)

where � denotes the imaginary part. In other words, the operator is self adjoint if the

coefficients are of the following general form:

p0(x) = α(x), (53)

p1(x) = α′(x) + 2iγ(x), (54)

p2(x) = β(x) + iγ′(x). (55)

For real operators, γ = 0, so the operator acting on a function takes the simple canonical

form

D̂u(x) = [α(x)u′(x)]′ + β(x)u(x). (56)

B. Making a regular operator self-adjoint

What if we are dealing with an operator which does not have the canonical form in

Eq. (56), specifically if it is instead of the form in Eq. (1)? We show now that this operator

can be easily transformed into the canonical form by writing the function the operator acts

on, f , as a product of two functions, M and u, and applying the product rule:

D̂f(x) = D̂[M(x)u(x)] = Mu′′ + (2M ′ + pM)u′ + (M ′′ + pM ′ + qM)u. (57)

Therefore, D̂f = D̂u if

α = M, (58)

α′ = 2M ′ + pM, (59)

β = M ′′ + pM ′ + qM (60)
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The combination of Eqs. (58) and (59) gives M ′ + pM = 0, so α = M is the Wronskian w.

It is easy to see from Eq. (60) that β = w′′ + pw′ + qw = (−pw)′ + p(−pw)+ qw = (q− p′)w.

Therefore,

D̂f = (wu′)′ + (q − p′)wu. (61)

As an exercise, transform the differential operator of the Bessel equation in Eq. (31) into

self-adjoint form.

IV. MODES

It was discussed earlier that, if the Wronskian vanishes at some value of the variable,

it is impossible to find a (unique) solution that satisfies initial conditions at that value.

Let us now discuss the case of boundary conditions, where the value of the function, its

derivative, or some combination, is specified at two different values of the variable that

constitute the ends of the region of interest. Consider, for example, the case of Dirichlet

boundary conditions, where the values of f at the points xa and xb are prescribed. As in

the case of initial conditions, there are situations in which a (unique) solution that matches

the prescribed boundary conditions does not exist. However, it turns out that, since these

conditions are not both at the same location, there is no simple function like the Wronskian

that can alert us of this problem. There is, nevertheless, a condition which, if satisfied,

guarantees the existence of a solution. In this section we will derive this condition.

Consider the case when we want to find a solution to the differential equation (2) for

x ∈ [x0, x1], and given the boundary conditions f(xa), f(xb). As we know, there are two

independent solutions to this equation, namely f1(x) and f2(x). An easy way to find a

solution to the boundary value problem is to define two new, mutually linearly independent

functions, fa(x) and fb(x), given by the following combinations of f1 and f2:

fa(x) = f2(xa)f1(x) − f1(xa)f2(x), (62)

fb(x) = f2(xb)f1(x) − f1(xb)f2(x), (63)

(64)

It is easy to see that fa(xa) = fb(xb) = 0. Therefore, provided that fa(xb) �= 0 and fb(xa) �= 0,
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the solution to the boundary value problem is simply

f(x) =
f(xa)

fb(xa)
fb(x) +

f(xb)

fa(xb)
fa(x). (65)

However, if fa(xb) or fb(xa) vanish, the boundary value problem is not well defined. Notice

that, if this is the case, at least one of these functions vanish at both boundaries without

being identically zero in between. Such a solution that happens to vanish at the endpoints

is called a “mode”. When solving differential equations with nonzero boundary conditions,

modes represent a problem. As we will see in the next section, there are other types of

physical problems in which modes are actually a good thing. Before this, however, let us

find a condition that can predict whether modes are possible or not.

A. Conditions for modes

Let us, without loss of generality, write the differential equation in self-adjoint form

D̂u(x) = 0, as explained earlier. This means that, instead of dealing with the function f(x),

we will use u(x). For a mode, u(xa) = u(xb) = 0. To find the condition, consider the inner

product of u(x) and D̂u(x):

0 = 〈u, D̂u〉 =

∫ xb

xa

u∗[(αu′)′ + βu]dx. (66)

By integrating by parts the first term and remembering that u vanishes at the endpoints,

we find the condition

0 =

∫ xb

xa

[β(x)|u(x)|2 − α(x)|u′(x)|2]dx. (67)

It is easy to see that, if α and β have opposite signs over all x ∈ [xa, xb], the only way in

which Eq. (67) can be satisfied is if u(x) is identically zero everywhere in this interval. This

means that modes cannot exist if the following condition is satisfied:

α(x)β(x) < 0, x ∈ [xa, xb]. (68)

It must be noted that the fact that this condition is not satisfied does not imply that there

will be modes, only that there is a possibility of having modes. To see this consider the two

following examples: First, consider the operator

D̂ =
d2

dx2
− k2. (69)
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It is easy to see that αβ = −k2 < 0 so there are no modes. This is true, because the

solutions are proportional to exp(±kx), and no combination of these exponentials can be

made to vanish at two points without vanishing everywhere else. On the other hand, if we

have the operator

D̂ =
d2

dx2
+ k2, (70)

then αβ = k2 > 0, so there might be modes, which makes sense because the two independent

solutions are now sin(kx) and cos(kx), so there are modes if xa and xb are separated by an

integer multiple of 2π/k.

V. STÜRM-LIOUVILLE PROBLEMS

A Stúrm-Liouville problem is the continuous analogue of a matrix eigenvalue equation.

Consider the following differential equation

D̂f(x) = λf(x), (71)

where λ is a constant. As we know, there will be two independent solutions for this equation

for each value of λ. Let us now impose some vanishing boundary conditions, say of Dirichlet

type, which require f(xa) = f(xb) = 0. That is, in this case we are looking for modes. In

general there will be no combination of the two independent solutions that can achieve these

conditions, except for a discrete set of values of λ:

D̂fn(x) = λnfn(x). (72)

The functions fn are called the eigenfunctions of the operator, and λn are the corresponding

eigenvalues.

Without loss of generality, we can write this in terms of self-adjoint operators. By letting

fn = wun where w is the Wronskian, the eigenvalue equation becomes

D̂un(x) = λnw(x)un(x). (73)

Notice that the Wronskian w(x) plays the role of a weight function. As we discussed earlier,

if p, the coefficient of the first derivative, is real and well behaved, then the Wronskian

can be chosen to be always positive. The advantage of expressing this problem in terms

of self-adjoint operators is that the eigenvalues and eigenfunctions can then be shown to
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have several properties that are important in the study of waveguides and also in quantum

mechanics. Consider the inner product of un′ and both sides of Eq. (73):

〈un′ , D̂un〉 = 〈un′ , λnwun〉 = λn〈un′ , un〉w, (74)

where we define the weighted inner product as

〈v, u〉w =

∫ xb

xa

v∗(x)u(x)w(x)dx. (75)

However, we can use the defining property of a self-adjoint operator on the left-hand side of

Eq. (74) which gives

〈un′ , D̂un〉 = 〈D̂un′ , un〉 = λ∗
n′〈un′ , un〉w. (76)

Combining Eqs. (74) and (76), we can write

(λn − λ∗
n′)〈un′ , un〉w = 0. (77)

This equation has several consequences. First, notice that, because w(x) > 0, the inner

product in Eq. (77) is positive when n = n′. Therefore, in this case, we get λn = λ∗
n,

that is, all eigenvalues are real. If we choose n �= n′ and λn �= λn′ , then we find that the

eigenfunctions are orthonormal:

〈un′ , un〉w = 0. (78)

In terms of the original functions fn, this can be written as∫ xb

xa

f ∗
n′(x)fn(x)

1

w(x)
dx = 0. (79)

Finally, if n �= n′ but it happens that λn = λn′ , then we have what is called degeneracy, and

we cannot be sure that 〈un′ , un〉w vanishes. However, by using an orthogonalization process,

these functions can be redefined to be orthogonal.

As an excercise, find the orthogonality expression for the solutions of the Bessel equation.

Finally, the last important property follows from rewriting the eigenvalue equation in the

explicit form

D̂un − λnun = [w(x)u′
n(x)]′ + [β(x) − λnw(x)]un(x) = 0. (80)

By using the results of Section IVA, it is easy to see that there are no eigenfunctions (modes)

if

w(x)[β(x) − λnw(x)] < 0, x ∈ [xa, xb]. (81)
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Because w(x) > 0, this means that there are no eigenfunctions when

λnw(x) > β(x), x ∈ [xa, xb]. (82)

This inequality places an upper bound on the eigenvalues λn. In other words, there is

a possible maximum eigenvalue λ0, which is greater or equal to all others. In quantum

mechanics, the eigenfunction associated to this eigenvalue is called the ground state. In

waveguides, this eigenfunction corresponds to the fundamental mode.

[1] G.B. Arfken and H.J. Weber, Mathematical Methods for Physics, 5th ed. (Harcourt Academic

Press, San Diego, 2001).
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These are the coefficients:

In[1]:= a@n_, n_D := If@Round@nê 2D ã n ê 2, If@n ã 0, 1, -a@n - 2, nD êHn Hn + 2 nLLD, 0D

Here we sum the series up to n=nmax:

In[2]:= J@x_, n_, nmax_D = Sum@a@n, nD x^n, 8n, 0, nmax<D;

Here we plot the partial series for nmax=40 compared to the inbuilt function in mathematica (in purple):

In[3]:= Plot@8BesselJ@0, xD, J@x, 0, 40D<, 8x, 0, 40<, PlotPoints Ø 100,
PlotRange Ø 8-1, 1<, PlotStyle Ø 8Hue@.8D, GrayLevel@0D<D
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Out[3]= Ü Graphics Ü

Here we plot the partial series for nmax=80 compared to the inbuilt function in mathematica (in purple):

In[4]:= Plot@8BesselJ@0, xD, J@x, 0, 80D<, 8x, 0, 40<, PlotPoints Ø 100,
PlotRange Ø 8-1, 1<, PlotStyle Ø 8Hue@.8D, GrayLevel@0D<D
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Out[4]= Ü Graphics Ü
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