

SMR.1832-9

SPRING SCHOOL ON SUPERSTRING THEORY AND RELATED TOPICS

22 - 30 March 2007

Brane Inflation PART 3

H. TYE

Department of Physics Cornell University 117 Clark Hall Ithaca, NY 14853-501 U.S.A.

Brane Inflation: III. Cosmic Strings

Henry Tye

Cornell University

ICTP, Trieste, 3/23/07

Superstring theory contains Dpbranes

A p-brane has p spatial dimensions: a string is like a 1-brane; a membrane is a 2-brane

We are living inside a D3-brane (or a Dp-brane wrapping a p-3 cycle)

Outside our branes is the bulk, which is compactified.

Brane world in Type IIB

How is inflation realized in brane world?

Brane inflation

Dvali and H.T. hep-ph/9812483

Inflaton is an open string mode

Inflaton potential comes from the closed string exchange

D3-anti-D3 brane inflation

C.P. Burgess, M. Majumdar, D. Nolte, F. Quevedo,G. Rajesh, R. Zhang, hep-th/0105204G. Dvali, Q. Shafi and S. Solganik, hep-th/0105203

Brane-anti-brane Annihilation

Production of cosmic strings towards the end of brane inflation from the D3-anti-D3 annihilation

Flux compactification

where all moduli of the 6-dim. manifold are stabilized

Giddings, Kachru, Polchinski Kachru, Kallosh, Linde, Trivedi and many others

KKLT vacuum

The KKLMMT scenario

Kachru, Kallosh, Linde, Maldacena, MacAllister, Trivedi, hep-th/0308055

Why brane inflation is so robust?

$$S = -\int d^4x \ a^3(t) \left[T \sqrt{1 - \dot{\phi}^2 / T} + V(\phi) - T \right]$$

Dirac-Born-Infeld action yields Lorentz factor:

$$\gamma = \frac{1}{\sqrt{1 - \dot{\phi}^2 / T}} \quad \to \quad \dot{\phi}^2 < T(\phi)$$

E. Silverstein and D. Tong, hep-th/0310221

Well-known cosmological properties

- Monopoles: density $\sim a^{-3}$ Disastrous
- Domain walls: density ~ I/a
 Dangerous
- cosmic strings : density ~ a^{-2} interaction cuts it down to a^{-4} during radiation Safe

$$10^{-11} < G\mu < 10^{-6}$$

N. Jones, H. Stoica, H.T., hep-th/0203163 S. Sarangi, H.T., hep-th/0204074

Cosmic strings

Cosmic String Network Evolution

Allen, Martins & Shellard

A simple way to see why cosmic string network scales

$$ho \simeq rac{E}{L^3} \simeq rac{\mu L}{L^3} \simeq rac{\mu}{L^2}$$
 $\dot{
ho} = -2rac{\dot{a}}{a}
ho - \lambdarac{
ho}{L}$ $\lambda = 0$ $\dot{\gamma} = -rac{1}{2t}\left(\gamma - \lambda
ight)$

This equation has a stable fixed point at $\gamma(t) = \lambda$.

$$\rho = \frac{\mu}{\lambda^2 t^2} \sim \begin{cases} \mu/(\lambda^2 a^4) & \text{radiation dominated era} \\ \mu/(\lambda^2 a^3) & \text{matter dominated era} \end{cases}$$

History of cosmic strings

- Early 1980s : proposed to generate density perturbation as seed for structure formation; as an alternative to inflation; Kibble, Zeldovich, Vilenkin, Turok, Shellard, ... $G\mu>10^{-6}$
- In 1985, Witten attempted to identify the cosmic strings as fundamental strings in superstring (heterotic) theory. He pointed out a number of problems with this picture: tension too big, no production and the stability issue.
- In early 1990s, COBE data disfavors cosmic strings.
- By late 1990s, CMB data supports inflation and ruled out cosmic string as an explanation to the density perturbation.
- In 1995, Polchinski and others pointed out the presence of D-branes in string theory. This led to the brane world/brane inflation scenarios, which led to a revival of cosmic strings,
- These cosmic strings have a much lower tension, were produced cosmologically, and can be quite stable.

Production of cosmic strings not guaranteed

- there are scenarios where probably no cosmic strings are produced
- or strings produced are not stable while (meta-)stable strings are not produced

However,

parametric resonance production of pairs of closed strings
 (Gubser) is possible

$$\rho_{loop} > \mu/l^2$$

Scenarios:

Reheating is fine

DI-string inside D3-brane

$$S = -\int_{M_4} rac{1}{2} |G_2|^2 + rac{1}{2} |dC_2|^2 + \xi C_2 \wedge G_2 + 2\pi na\delta^2(x_\perp) \wedge C_2$$

$$a=\sqrt{2} au_1\kappa_4$$

L. Leblond and HT hep-th/0402072

Uncertainties in the amount of sub-horizon loops

$$\Omega_{cs} = \Omega_{\infty} + \Omega_{loop} = 50G\mu + \chi\sqrt{\alpha}\sqrt{G\mu}$$
$$\chi \sim 100$$

The typical size of the loops is parameterized as lpha t

$$\alpha \sim 0.25, 0.1, 10^{-4}, 50G\mu, (50G\mu)^{5/2}$$

$$\alpha \sim 10^{-20}$$

V. Vanchurin, K. Olum and A. Vilenkin, gr-qc/0501040, 0511159
C. Ringeval, M. Sakellariadou and F. Bouchet, astro-ph/0511646
C. Martin and E.P. Shellard, astro-ph/0511792
J. Polchinski and J. Rocha, hep-ph/0606205

Uncertainties

$$\Omega_{cs} = \Omega_{\infty} + \Omega_{loop} = 50G\mu + \chi\sqrt{\alpha}\sqrt{G\mu}$$

$$G\mu \sim 10^{-11} \quad to \quad 10^{-7}$$

 $\begin{array}{l} loops \ production \\ f(x) \ peaks \ at \ x = \alpha \end{array}$

V. Vanchurin, K. Olum and A. Vilenkin

Which peak is real?

Vanchurin, Olum and Vilenkin:

$$\alpha \simeq 0.1$$

2006

C. Ringeval, M. Sakellariadou and F. Bouchet

C. Martin and E.P. Shellard

J. Polchinski and J. Rocha

$$\alpha \simeq 10^{-4}$$

Both are real.

J. Polchinski and J. Rocha, gr-qc/0702055 F. Dubath and J. Rocha, gr-qc/0703109

There are lots of small loops.

small loops joining to bigger loops

Cambridge U.

(p,q) Superstrings

- In contrast to vortices in Abelian Higgs model, cosmic strings from brane inflation should have a spectrum in tension.
- This is the (p,q) strings, where p and q are coprime. (1,0) strings are fundamental strings while (0,1) strings are D1-strings.
- The spectrum depends on the particular brane inflationary scenario.

$$G\mu_{p,q} = \sqrt{p^2 g_s^2 + q^2} G\mu$$

They have non-trivial interactions.

Strings and axions

- A point particle can be charged under a gauge field, a one-form field.
- A string is charged under a two-form field.
- In 4-dim., a two-form field (NS-NS or RR) is dual to an axion.
- In a typical realistic stringy vacuum, there are a number of axions.
- So we expect a variety of cosmic string types.

Scaling of the cosmic string network

Velocity-dependent one-scale model

$$v = HL\left(\frac{1+3\omega}{2c}\right)$$

$$\frac{dn}{dt} + 2Hn = -\frac{cnv}{L} - Pn^2vL$$

$$\Omega_{cs} \sim 8\pi G\mu(10)$$

$$v \sim 0.65$$

Kibble, Martins, Shellard etc.

Evolution of the (p,q) Cosmic Superstring Network

$$\frac{dn_{\alpha}}{dt} + 2Hn_{\alpha} \tag{1}$$

$$= -\frac{cn_{\alpha}v}{L} - Pn_{\alpha}^{2}vL + FvL\left(\frac{1}{2}\sum_{\beta,\gamma}P_{\alpha\beta\gamma}n_{\beta}n_{\gamma} - \sum_{\beta,\gamma}P_{\beta\gamma\alpha}n_{\gamma}n_{\alpha}\right)$$
(1)

$$\alpha = (p, q)$$

$$\dot{v} = (1 - v^2) \left(-2Hv + \frac{c_2}{L} \right)$$
 $\dot{L} = HL + c_1 v$

$$c_1 = 0.21$$
 $c_2 = 0.18$ $v = 0.655$ $HL = 0.137$

Scaling of the Cosmic Superstring Network

independent of initial conditions

Insensitive to the details of the interactions

$$\Omega_{cs} = \frac{10\Gamma G\mu}{g_s^2}$$

M. Jackson, N. Jones and J. Polchinski, hep-th/0405229 H.T., I. Wasserman, M. Wyman, astro-ph/0503506

Relative density of (p,q) strings

Cosmic string tension in a warped deformed conifold

One may view the fundamental strings in a dual picture as D3-branes wrapping a 2-cycle inside the S3 at the bottom of the throat.

$$pT_1 \to T_1 \frac{g_s M}{\pi} \sin(\frac{p\pi}{g_s M})$$

Klebanov, Strassler, Gubser, Herzog,...

Cosmic string tension spectrum in a warped deformed conifold (Klebanov-Strassler)

One may view the strings as D3-branes wrapping a 2-cycle inside the S^3 at the bottom of the throat.

$$T_{p,q} \simeq \frac{h_A^2}{2\pi\alpha'} \sqrt{\frac{q^2}{g_s^2} + (\frac{bM}{\pi})^2 \sin^2(\frac{\pi p}{M})},$$

$$b = 0.93266$$

M is the RR flux wrapping S^3 .

S. Gubser, C. Herzog, I. Klebanov, hep-th/0405282, H. Firouzjahi, L. Leblond, H.T., hep-th/0603161.

A baryon with mass $\sim M^{3/2} h_A/\sqrt{\alpha'}$

X. Siemens, X. Martin and K. Olum, astro-ph/0005411, T. Matsuda, hep-th/0509061,

L. Leblond and M. Wyman astro-ph/0701427

Search for Cosmic Strings

- Lensing
- Cosmic Microwave Background Radiation
- Gravitational Wave Burst
- $\Delta T/T$ (Doppler effect)
- Pulsar Timing
- Stochastic Gravitation Radiation Background

Possible CMB B-mode detection

Cosmic string tension in the KKLMMT scenario

$$5 \times 10^{-7} > G\mu \ge 4 \times 10^{-10}$$

H. Firouzjahi, H.T.

Observational bound from WMAP:

$$5 \times 10^{-7} > G\mu$$

L. Pogosian, I. Wasserman, M. Wyman Jeong, Smoot

cosmic string lensing

cosmic string introduces a deficit angle

CSL-1 Sazhin etc. astro-ph/0302547

 $z=0.46 \pm 0.008$

identical spectra with confidence level above 99.9%

1.9 arc sec ↓ -7 Gμ~ 4 x 10

Unfortunately not (higher resolution Hubble pictures):

January 2006

If it is cosmic string lensing

Radio telescope?

Recall Cowen and Hu.

National Radio Astronomy Observatory

Shami Chatterjee, Jim Cordes, H.T., Ira Wasserman

Bound on cosmic string tension

 $\log G\mu \sim -9.4 + 30\beta$

S. Shandera and H.T., 0601099

cusps and kinks are quite common in string evolution

Damour and Vilenkin

A cusp

Blanco-Padillo and Olum

gravitational wave radiation from cusps

Damour and Vilenkin

More recent analysis

X. Siemens, J. Creighton,I. Maor, S. Majumder,K. Cannon and J. Reed,gr-qc/0603115

X. Siemens, J. Creighton, I. Maor, S. Majumder, K. Cannon and J. Reed, gr-qc/0603115

Number of gravitational wave bursts per year Advanced LIGO will see

- 10 (Damour and Vilenkin, 2001)
- 100 or more for cosmic superstrings (2004)
- down by a factor of 100 (2006)
- (p,q) string spectrum raises this by a factor of about 5
- lots of loops raises it more
- tension is getting smaller?
- effect of beads?

C. J. Hogan, astro-ph/0605567

Search for Cosmic Strings with low tension

- Lensing
- Cosmic Microwave Background Radiation
- Gravitational Wave Burst
- $\Delta T/T$ (Doppler effect)
- Pulsar Timing
- Stochastic Gravitation Radiation Background
- Micro-lensing
- Cusp Doppler effect

Micro-lensing

$$\Theta_E = 8\pi G\mu$$

= $1.04 \times 10^{-3} \left(\frac{G\mu}{2 \times 10^{-10}} \right)$

$$\frac{\Theta_{\odot}}{\Theta_E} = 4.6 \times 10^{-5} \left(\frac{2 \times 10^{-10}}{G\mu} \right) \left(\frac{100 \text{kpc}}{R} \right)$$

$$l_g = \Gamma_R G \mu t_{today} = 40 \mathrm{pc} \left(\frac{\Gamma_R G \mu}{10^{-8}} \right) \left(\frac{t_{today}}{13.5 \mathrm{Gyr}} \right)$$

$$t_{osc} \sim \frac{l_g}{c} \sim 135 \mathrm{yrs} \left(\frac{\Gamma_R G \mu}{10^{-8}} \right)$$

$$\delta t = 6.3 \times 10^3 \text{sec} \left(\frac{R}{100 \text{kpc}}\right) \left(\frac{G\mu}{2 \times 10^{-10}}\right)$$

GAIA: $N_L \sim 0.03$

Hogan and Narayan, 1984

David Chernoff, to appear

Lensing+Doppler by a cusp

A moving string produces a differential redshift $\sim 8\pi G\mu \ v/(c^2-v^2)^{1/2}$ (lensing+Doppler)

Superstring theory may be tested

- Instead of searching for tiny particles or signatures in accelerators, such superstrings may stretch across the universe.
- The string tensions have the right values so these cosmic superstrings are compatible with all present day observational bounds and yet can be detected in the near future.
- Their (p,q) properties give them quite distinct signatures.
- More work is needed on this and other brane inflationary and cosmic string scenarios.