

Workshop on Understanding and Evaluating Radioanalytical Measurement Uncertainty

5 - 16 November 2007

Current IAEA Activities for Development of Recommended Procedures of Radionuclides in Terrestrial Environmental Samples.

> Chang Kyu KIM International Atomic Energy Agency IAEA Agency's Laboratories Seibersdorf Chemistry Unit, A-2444 Seibersdorf AUSTRIA

Current IAEA Activities for Development of Recommend Procedures of Radionuclides in Terrestrial Environmental Samples

Chang-Kyu Kim Chemistry Unit, PCI IAEA - Agency's Laboratories, Seibersdorf

Background

Somewhat dated IAEA Technical Reports

- ✓ No. 295 (IAEA, 1989).
- ✓ Generic procedures for monitoring in a nuclear of radiological emergency (IAEA-TECDOC-1092, 1999)
- ✓ Quantifying uncertainty in nuclear analytical measurement (IAEA-TECDOC 1401, 2004)

Demands for the provision of analytical procedures of radionuclides from MS

IAEA-TECDOC-140

Quantifying uncertainty in nuclear analytical measurements

IAEA

July 2004

Objectives

- Since 2005, the IAEA's programme has included activities on the development of a set of procedures
- Upgrade IAEA technical report
- Provide MS with validated analytical procedures

How to Approach ?

* : The procedures should not be regarded as "endorsed" by the IAEA for any particular purpose

Key points considered in development of procedures

Requirements on Analytical Procedures of Radionuclides

Cost ↓ • Cheap

Activities in 2005 and 2006

- Review analytical method of Po-210 by alpha-spectrometry
- Review analytical method of Pu by ICP-MS
- automatic on-line sequential injection system for separation and preconcentration of radionuclides
- Sequential separation of Pb-210, Po-210, U, Th and Ra-226 in phosphogypsum.

Review paper of ²¹⁰Po analysis in environmental samples

- Review 130 papers
- 16 kinds of samples
- Separation techniques
 - Solvent ext.
 - Ion exchange
 - Extraction Chromatography
- Source preparation
- Alpha spectrum analysis
- Detection limit

Sample	No. of paper
Air	1
Drinking water	4
Ground water	3
Freshwater	6
Rainwater	4
Seawater	13
Soil	6
Sediment	9
Coal	1
Tobacco	8
Phosphogymsum	6
Food	9
Lake fish	1
Human body	12
Plant	5
Biota	13
Analytical method	29
Total	130

Review paper of Pu and its isotope ratio measurement in environmental samples

- Review 164 papers
- Soil, sediment, water, biological, urine
- Adjustment of oxidation state
- Separation techniques
 - Anion exchange column
 - Liquid-liquid extraction
 - Solid phase extraction chromatography (e.g. TRU, TEVA)
 - HPLC
- Interferences by polyatomic ions, (²³⁸U¹H at m/z 239)
- Detection limit

CRITICAL REVIEW

www.rsc.org/jaas | Journal of Analytical Atomic Spectrometry

Determination of Pu isotope concentrations and isotope ratio by inductively coupled plasma mass spectrometry: a review of analytical methodology

Cheol-Su Kim,*^a Chang-Kyu Kim,^b Paul Martin^b and Umberto Sansone^b

Received 1st December 2006, Accepted 14th March 2007 First published as an Advance Article on the web 29th March 2007 DOI: 10.1039/b617568f

Automatic on-line sequential injection (SI) system

- to shorten separation time of radionuclides in chromatography
- keep the flow rate of solution constantly
- avoid clogging or bubbling in a chromatographic column

The SI system

- 6-ports solvent selection valve
- solvent distributor
- six 3-way isolation valves
- two channel peristaltic pump
- two chromatographic columns
- Extendable to max. 8 columns

A schematic diagram of the on-line SI system for separation of Pu

Determination results of ²³⁹⁺²⁴⁰Pu in IAEA reference material (Soil-6) by the online SI system

No. of replicates	Activity concentration (Bq kg ⁻¹ , dry)	z-score	Chemical recovery (%)	
1	$0.96\pm0.05\textbf{*}$	-1.94	92	
2	1.06 ± 0.05	0.49	91	
3	1.03 ± 0.05	-0.24	96	
4	1.01 ± 0.05	-0.73	82	
5	1.07 ± 0.05	0.73	85	
6	1.01 ± 0.13	-0.73	72	
7	1.04 ± 0.15	0.00	95	
8	1.10 ± 0.14	1.46	82	
9	1.06 ± 0.13 0.49		90	
Average	1.04±0.04**		87±8	
 * = combined uncertainty ** = standard deviation (1σ) 				

Sequential separation method for homogeneity test of natural radionuclides in phosphogypsum

Homogeneity test results of U and Th in phosphogypsum

Th-230

What we are doing in 2007 !

- Method validation of two candidates method of ²¹⁰Po in water samples and prepare a recommended procedure
- Rapid method of Pu in soil sample by alpha-spectrometry
- Prepare a paper on combined uncertainty evaluation in the calculation of ²¹⁰Pb and ²¹⁰Po activities on sampling date

Outline of Radiochemical Separation of ²¹⁰Po in water sample

Relative bias and Repeatability (in 10mBq/l of 210Po)

Chemical recovery

No. of reused of Sr resin	1 st	2 nd	3 rd	4 th	5 th
Chemical yield (%)	55 - 82	60 - 84	43 - 85	20 - 50	3 - 20

Analysis Time (1 set / 4 samples)

Sample Preparation (6 hours) -Weighing of samples and adding tracers : 1 hr -Stirring the sample solution after adding tracers : 1 hr -Preparation of MnO_2 ppt : 1 hr -Stand MnO_2 ppt : 2 hrs -Centrifuge MnO_2 ppt and dissolving it with 5 M or 2 M HCl (1% H₂O₂): 1 hr

Solvent Extraction (total : 7 hrs) -Preparing solvent solution : 1 hr -Solvent extraction : 1.5 hr -Evaporation of solution : 2.5 hrs -Source preparation : 2 hr

(Total analysis time : 13 hrs)

Extraction Chromatography (total : 15 hrs) -Preparation of column : 1 hr -Precondition of column : 1 hr -Sample loading and elution : 3 hrs -Regeneration of column : 2. 0 hrs -Evaporation of solution : 6 hrs -Source preparation : 2 hr (Total analysis time : 21 hrs)

Comparison results of two methods

Items	Solvent Extraction	Extraction Chromatography
Linearity	R = 0.99	R = 0.99
Repeatability limit (in 3mBq/L)	11 %	12%
Analytical time	13 hrs	21 hrs
Analytical cost	5€	70 € (4 samples,
(for only chemical reagent)	(4 samples)	5 times used)
Peak resolution	~ 20keV	~ 20keV
Chemical recovery	> 90	> 80

Optimization of source preparation

Variation of the deposition yield of $^{\rm 209}{\rm Po}$ with pH

Variation of the deposition yield of ²⁰⁹Po with the deposition time

Spectral resolution of ²⁰⁹Po at different pHs

Variation of the deposition yield of ²⁰⁹Po with the deposition solution volume

Variation of the deposition yield of ²⁰⁹Po with the temperature

Optimum conditions for auto deposition of Po

pH of deposition solution

Deposition time

Deposition volume

10 mL

1.0

1.5 h

Temperature

90 °C with stirring

Rapid method of Pu in soil by α spectrometry

Background

- ICP-MS ; expensive, considerable skill operation
- $\succ \alpha$ spectrometry; most commonly used
- ALMERA network ; require rapid results in emergency case
- Conventional method ; time-consuming

How to approach

- Literature review
- Experiments

 testing of fusion
 testing of coprecipitation
 testing of extraction chromatography:
 UTEVA
 TRU

 Selection of candidate method

Criteria for rapid method of Pu

• For emergency

small sample: 0.1 – 1 g, even including HP
 simple & effective procedure
 α spectrometry
 rapid: within 1 day
 Generally applicable for
 Soil, sediment...environment
 Extension for other actinides

Separation of Pu according to the literature

- Anion exchange chromatography
- Liquid-liquid extraction: HDEHP...
- Extraction chromatography

Extraction chromatography for Pu analysis in the literature

TEVA

- TRU for ICP MS
- UTEVA for ICP MS
- UTEVA TRU
- Other combinations
 e.g. TEVA UTEVA- TRU (Horwitz)

Single column procedure is preferred!

Standard procedures

• ASTM, ISO, IAEA anion exchanger

• ISO/DIS 18589-4: DRAFT - 2007

- ✓ Measurement of Pu isotopes by alpha spectrometry:
- ✓ 0.1 100 g soil
- ✓ acid digestion
- ✓ Ca oxalate coprecipitation
- ✓ separation:
 - Iiquid-liquid extraction by HDEHP or
 - ion exchange by **anion column** or
 - * extraction chromatography: TRU in 3M HNO3/Al/asc. acid
- ✓ electrodeposition or micro-coprecipitation

 ASTM C1310-95: Flow injection for actinide analysis by MS: TRU

Traditional Pu separation procedure

- Acid destruction/leaching
- Anion exchange from 8M HNO₃/NaNO₂ Th removal with 9M HCI Pu(III) strip with 9M HCI/NH4I
- Evaporation
- Alpha source preparation

Selective for Pu Robust

Big columns: Time-consuming Acid consuming No need for preconcentration (except for big samples)

Not extendable for other actinides

Concept of the `rapid` procedure

- Complete sample destruction fusion
- Preconcentration in acidic media
- Separation by extraction chromatography
 Use of small single extraction chromatographic column
- Alpha source preparation either by electrodeposition or microcoprecipitation

Selective for Pu Robust

Small columns: Rapid Acid saving Need for preconcentration

> Extension for other actinides: Am (Np, U, Th)

Extraction chromatographic materials – commercially available

- E.P. Horwitz, Eichrom Co.
- TEVA
- UTEVA
- TRU
- DGA
- DIPEX
- DIPHONIX

UTEVA

UTEVA is known as
U selective sorbent,
sorbent for IV and VI valence actinides

Horwitz, et al. (HP392)

TRU

- TRU is known as sorbent for III, IV, VI valence actinides

Pu (IV)

Np (IV)

Th (IV)

U (VI)

Am (III)

UTEVA and TRU

- Lack of knowledge:
 - different oxidation states
 - effect of matrix components

Experiments

- Fusion
- Coprecipitation
- Extraction chromatography: UTEVA
- Extraction chromatography: TRU
- Sequential separation of other actinides

Fusion of soil and sediment

0.5 g IAEA-soil-6, IAEA-SL-3, NBS-4355, NIST-694 Std: CaO, SiO₂, AI_2O_3

Fusion tests in the Fluxer, in Pt dishes:LiBO2some un-attacked SiO2KFnot good for refractory oxidespyrosulfatenot good for silicatesKF-sulfuric acid –pyrosulfatefoaming, sprayingKF – LiBO2insoluble saltsKF – acid volatilization – LiBO2foaming, spraying

Dissolution in 100 mL 1M HCI.

Coprecipitation of actinides with CaF₂

From 100 ml 1M HCl containing the LiBO₂ fusion cake + 50 mg Ca + 20-30 mL 40% HF

Filtration through small membrane.

ACIDIC

	Oxidation state adjustment	Pu yield %	U yield %
CP1		98	
CP2	-		38
CP4	Fe(II)		99
	N ₂ H ₄		
CP5	Fe(II)	105	
	N ₂ H ₄		

Coprecipitation of actinides with Ca oxalate

From 100 ml 1M HCl containing the LiBO₂ fusion cake + 50 mg Ca + 3 g oxalic acid + NH₃ to pH 1-3 Filtration through small membrane.

	Oxidation state adjustment	Pu yield %	U yield %
CP8			8
CP11		6	
CP6	Fe(II)	96	
	N ₂ H ₄		
CP7	Fe(II)		88
	N ₂ H ₄		

UTEVA Resin: elution of actinides

Workshop in Trieste, 2007

Load: 8M HNO₃/Fe(III) Pu strip: 9M HCI/0.1M NH4I Th strip: 4M HCI U strip: 0.1M HCI Am is lost

UTEVA (34mm)

TRU resin: elution of actinides

Load: 2M HNO₃/0.1M NaNO₂ elution (Np + Am): same Pu strip: 9M HCI/0.02M Ti³⁺ Th strip: 1.5M HCI, U strip: 0.1M bioxalate

TR6: Elution of actinides from TRU resin with different eluents

TRU (25mm)

□ Th

■ Np

🗆 Pu

Am

Conclusion

- Soil samples can be destructed with LiBO₂ fusion and dissolved in 1M acid.
- Actinides can be preconcentrated with CaF₂ or Ca oxalate in acidic media
- Separation of Pu and actinides can be performed on a single, small extraction chromatographic column: TRU (or UTEVA)

LiBO ₂ fusion CaF ₂ coprecipitation	Extraction chromatography: TRU	Alpha source
--	--------------------------------------	--------------

Outcomes during 2005 – 2007 !

4 Published Paper (4 papers)

- Determination of ²¹⁰Po in environmental materials: A review of analytical methodology, App. Radia. Iso., 65 (2007) 267-279
- Determination of Pu isotope concentrations and isotope ratio by ICP-MS: a review of analytical methodology, J. Anal. At. Spec., 22 (2007) 827-841
- Current IAEA activities and future plans for the ALMERA network, Environmental Radiochemical Analysis III, RSC publishing, (2007) 207-216
- Application of an on-line sequential injection system to measurement of Pu, ²¹⁰Pb and ²¹⁰Po in soil samples, App. Radia. Iso., (in press)

Outcomes during 2005 – 2007 !

International Conference

• Sequential determination of natural radionuclides for characterization of a phosphogypsum candidate IAEA reference material, International conference on Environmental Radioactivity: From measurements and assessment to regulation, Vienna, Austria, April, 2007

IAEA internal report

• Development and application of an on-line sequential injection system for separation of artificial and natural radionucldes in environmental sample, IAEA/AL/178, 2007

Development and Application of an on-line Sequential Injection System for the Separation of Artificial and Natural Radionuclides in Environmental Samples Selbersdorf, February 2007

IAEA/AL/178

Future plans

- Publish rapid method of Pu in soil by alpha-spec and review paper
- Prepare recommended procedures of rapid analysis
 Pu in soil and ²¹⁰Po analysis in water
- Rapid method of ⁹⁰Sr in milk
- Review of ²²⁶Ra procedure in environmental samples
- Prepare recommended procedures for rapid analysis of ⁹⁰Sr in milk and ²²⁶Ra in soil and water

Acknowledgement

- Research activity was financially supported under the IAEA sub-programme "Supporting Quality in the Analysis of Terrestrial Environmental sample"
- Thank C.S. Kim from KINS, M.H. Lee from KAERI and N. Vajda from Tech. Uni. Hungary for collaboration with us.

Thank you for your attention

Chang Kyu Kim c.k.kim@iaea.org

Comparison of alpha spectra obtained from direct deposition and after chemical separation

a) Alpha spectra of direct deposition source from tap water(2.5 L)

b) Alpha spectra of source prepared after chemical separation from spiked tap water (2.5 L)

