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Radioactivity measurements and uncertainty evaluation

Presentation outline

1. Concept of uncertainty

2. Some useful definitions:

mean, expectation value, variance, median

3. Introduction of three important distributions

a) rectangular distribution

b) Poisson distribution

c) Gaussian distribution

4. Introduction of the Gaussian uncertainty propagation law

5. Application of the preceding concepts to radioactivity measurements

6. Treatment of correlations
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Radioactivity measurements and uncertainty evaluation

1. Concept of uncertainty

In metrology the main concern is to measure the value
of a given quantity with some appropriate tools.

For instance if someone wants to measure the mass of
an amount of substance he will use a balance. The reading
of the balance gives a representation of the actual value of
the mass in reference to a particular unit, for instance it
can be grams (g).
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Radioactivity measurements and uncertainty evaluation

The value obtained for the mass depends on several
factors - among others:

- the reproducibility of the method of measurement;
- the quality of the standards used to calibrate the

balance;
- the values and the stability of the physical conditions

under which the measurements are carried out, such
as pressure, temperature and hygrometry.

All these parameters have an influence on the final
result of the measurement so that the exact value of the
quantity cannot be predicted. Only a most probable value
can be attributed to the measurand.
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Radioactivity measurements and uncertainty evaluation

At the same time as measurements are carried out an
estimation of the limits of the domain in which the actual
value of the measurand lies should be undertaken.

The differences between the most probable value and
each of the two limits (above and below this value) are
called uncertainties. The two uncertainties do not have to
be equal but in this presentation only symmetrical
uncertainties will be considered.

To summarize, all measurement results should always
be stated with an uncertainty indicated below:

m = 100 g; u = 0.01 g.
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Radioactivity measurements and uncertainty evaluation

2. Some useful definitions

Often several measurements of the quantity under study are carried out at

the same time giving different results. These can be obtained using the same

method (replication) or different techniques which have proven to be suitable for

the purpose. (Some examples will be given later).

In this case one may wish to characterize the population defined by the

entire set of the individual results with some appropriate single figures.

This is usually achieved by means of particular statistical tools, the most

frequently used are the arithmetic mean, the median, the weighted mean and the

weighted median. Only the first two will be presented in the following.
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Radioactivity measurements and uncertainty evaluation

a) Arithmetic mean value (also called the expectation value)

Let designate one particular result set of n values with the variable
{Ai} (A standing for activity), with i = 1, . . , n .

— 1 n

The arithmetic mean is defined as A =—V A i = EA().

Because A reApresents a physical quantity it should be given with
an uncertainty.

The first idea is to take the uncertainty of one measurement as equal
to its deviation from the mean value and, as a consequence, the
uncertainty of the population as the mean of all individual deviations:

j = (Ai- A ) and
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Radioactivity measurements and uncertainty evaluation

The latter expression is by definition equal to 0 and it is not very useful.

To solve the problem an expression equal to
i=1

[t-A

could have been adopted but this is not mathematically simple.

The next possible choice is to consider the square of the deviation
instead of the single deviation to define the uncertainty. The empirical
sample variance is then taken as

s =

It follows that the standard deviation s is given by the root of the
variance.

s =

As expected s has the same dimension as Ai.
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Radioactivity measurements and uncertainty evaluation

a) Median

The median of a sample of ordered values {Ai}, with i = 1 , . . , n and
Ai > Ai+1 is the value for which one half of the data is above, one half below.
This implies that the value of the median will change depending on whether
the number of data is odd or even.

If n = 2k + 1 the median is simply the central value of the ordered data

A =
If n = 2k it is usual to define the median as the arithmetic mean of the

two central values Akand
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Uncertainty of the median

The uncertainty of the median is given by

UA = C •MAD,

with C = 1.858,

and where MAD stands for median of the absolute deviations and is
defined as

MAD = med Ai-A\\.
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3. Three important distributions for radioactivity
measurements

a) Rectangular distribution
/(*)=

(P-a)

with c =

for a < x < P,

for x < a or x > p.

1

(P-a)

a

Expectation value: E(x)=m=\- x

The origin of the x-axis can be chosen at any other convenient place:
the distribution can be made symmetrical with regard to the y-axis.
It follows that median and mean or expectation value have the same
expression.
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Variance :
p-a

12

Standard deviation : cr =
12

This distribution applies also to the case of discrete random variables.
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b) Poisson distribution

A discrete random variable x, which takes only non negative

integer values 0, 1, 2 ..., m, follows a Poisson distribution when

the probability that x takes the value m is

m

Pm =
-X where λ is a parameter characteristic of the distribution.

m!

Normalization :

Expectation value :

co ^ m co ^ m

-I

—e - e
m=0 m=0 =0 m •

_ i

m=0

"

mm
• λ .

k=0

The parameter λ is therefore the mean value of the random variable

x.
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Variance :

-A

* m co
; — = Xe xy\m
m\ m=l

! m—\ co - m—\

i m-\

(m-\)\

\m-\)\ j^

co - m-2 co n m-\

For a Poisson distribution the variance is equal to the
expectation value.

Standard deviation : Σ=

A particularly well-known example for a Poisson distribution is the decay
of a radioactive substance; the uncertainty of the measurement of the number
of disintegrations per time is simply given by the square root of the count rate.
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c) Gaussian or normal distribution

This statistical law plays an important role in experimental
science. This distribution represents a limit to which all other useful
distributions approach under specific conditions often encountered
in practical applications.

In particular, the values obtained for a quantity through
a series of experiments follows closer a Gaussian distribution
as the number of determinations becomes larger.

The p.d.f. (probability density function) of the
Gaussian distribution is symmetric:

/(*) = e 2

Normalization : r < & = j e-/dt = 1.
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co . . c o

Expectation value : jV(x>fc=—== \ xe\{^) dx=

41

Variance : (x-m)2]=JE\(x-

2V2a r 9 -t2

a

a

a
J t t e 2 dt

Standard deviation :

In the area of radioactivity measurements, the normal distribution describes
typically the lines appearing in the spectrum registered by a spectrometer
based on a hyper-pure Germanium detector placed in the field of a
radionuclide decaying by gamma emissions.
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4. Introduction of the Gaussian uncertainty propagation law

Up to now only the uncertainty of a measured quantity has been considered.

However, usually the physical laws are functions of one or even several

quantities, the value of which can be determined by appropriate measurements.

As a consequence these determinations are not exact but are obtained with

uncertainties. The question arises then of knowing how to combine these

individual uncertainties to calculate the resulting uncertainty of the physical

function. The German mathematician Gauss pioneered this field in 1794 and

developed in the following years a theoretical formalism, which is still in use at

present and is known as the Gaussian uncertainty propagation law.
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Radioactivity measurements and uncertainty evaluation

In the two following slides the outline of the theory will be presented.

Case of one variable

Consider first a physical quantity x known with an uncertainty Ax.

Ax should be taken as small (Ax « 1).

Assume that a physical law is function of the quantity x and of

some constant parameters.

So f= f(x, ai9... an).

Knowing the value of f forx, the function has to be evaluated

for x + Ax.

The function can then be developed in a Taylor series and, as Ax

is small, the higher order in Ax can be neglected.
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Therefore f becomes

f(x + Ax, ai9... an) = f(x, ai9... an) + Ax fx' (x, ai9... an) + O(Ax2)

= f+Af.

The change in f induced by the change Ax of x is

Af = Ax fx' (x, ai9... an).

As before only positive changes are considered and the variance

is taken as

(Af)2 = (Axfx ' (x,a1 , . . .an ) )2

and the standard deviation is

U /
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Some applications

For f(x, ai9... an) = x then Af= Ax

For f(x, ai9... an) = x2 then Af = 2Axx

or Af / f=2Ax /x ,

which are all well-known relationships.

Further if the function represents the decay of a radioactive source

f = e-Ln(2)t/T1/2 t h e n A f= Ln(2)tAT1/2/(T1/2)
2

or Af/f = Ln(2)t/T1/2(AT1/2/T1/2).
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Case of several variables

Often the functions encountered in measurement depend on more

than just one variable, let say for instance temperature, pressure and

hygrometry in the case of mass measurements. The question arises

then to evaluate the uncertainty of the function when the uncertainties

of all individual quantities are taken into account.

First let the function f be a function of three variables x, y and z

with respective uncertainties Ax, Ay, Az. These uncertainties are

supposed small so that the function f can be developed into a Taylor

series which can be interrupted after the first order.
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Hence
f(x + Ax, y + Ay, z + Az, av... an) = f(x, y, z , av... an) + Af

with Af = Ax— + Ay— + Az— f terms of higher order.
k 5 &

As in the case of one variable we can evaluate the variance taken as (Af )2

V

A df . df . df
Ax—+Ay—+Az—

dx y zx
+2AxAy

= ++
dx

Ay
\ ^s J

dy
Az

yz

yxzy ox dz oy dz

If the cross terms are neglected this reduces to

Ax
v dx

V

V
yz

r
Az

v
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The uncertainty is then given by
dx) I ydy) \ &.

The derivatives appearing in the preceding equation are called
sensitivity coefficients. The above expression is rigorously true if the variables
in fare independent.

Example

The ionization of an ionization chamber can be expressed by

I = CU/t. Its uncertainty becomes then uI= JAC^j +[AUjj tt 2 2

or when it is expressed with the relative uncertainties of the variables
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General formulae for the propagation of uncertainties
when some correlations between the variables exist can be obtained
in a more direct approach.

For this purpose consider a function f of i = 1, .,. , n variables, xi,
each of them having a mean value E(xi) = //, and an uncertainty u(xi).
As previously, for small deviations of the variable around its mean
value the function f can be expanded in a first-order Taylor series. All
higher orders are assumed to be negligible.

The square of the above expression is

(/-/)• •(
V i=1 J
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or after development

(f-f)2-i ^"^ ^"^ FlY r)V

It becomes after the expectation of both sides are taken

E[(f-f)2] = ±
i=l

which is the value of the variance of the function f and can be
written using the usual symbol for variance as

^

covariance
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5. Applications

a) Coincidence measurement of a β-γ emitter

60
Simplified decay scheme of 60Co

27C°33

T 1 / 2 = 5.271 a; u = 0.002 a

E

2505.74 keV

(E = 1173.24 keV)

1332.50 keV

0+ ,, 0.00 kev
6 0 N i
28 32

N i stable
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Experimental arrangement for 47ip-y coincidence counting

Owe £7*

CotnctdtiKc unii

Ti:r.c:

|p«»
1

DMr

1

—|t«m

j comp

mr

1
Mr
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INPUT
EVENTS

,2 ,3 A ft
NONEXTENDABLE I

DEAD TIME

EXTENDABLE
DEAD TIME

(a) TIME

NONEXTENDABLE
DEAD TIME

Fig. 18. Nonextendable and extendable dead times, (a) A sequence of input events
(top row) is shown with the corresponding outputs from a nonextendable dead time
(middle row) and an extendable dead time (bottom row). With the nonextendable dead
time, events 3 and 8 are lost but i survives because it is separated by more than T from
2, the last preceding event to produce an output. With the extendable dead time, event
4 is lost also because it is separated by less than T from 3 which extended the dead time
initiated by 2. Event 6 extended the dead time initiated by 5 but not by enough to block
the following event, (b) The observed output rates as functions of the input rate for the
two types of dead time are shown aa plots of rar vs Nr. (This is equivalent to plotting n
vs N both in units of r~\) Note that with an extendable dead time, the output rate »i
could be observed for two input rates, Ni or the many times larger iV8.
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11 11 111 11 1
ni l li

i i i 4_
i i i

Actual number of flashes (No)

Observer A (E A N 0 )

Observer B (£BrJ0>

Coincidences (£,£., No)

Efficiency ol observer A £ ^ — £ = 60% (A Observes 0.6 •% flashes in unit time)

Efficiency of observer B EB=__£-50% (B observes Q.5NO flashes in unit time)

On average B observes 50% of those flashes that are observed by A

(i.e. 0.3 N o flashes in unit time)

number of coincidences =0.: •^a-No

number of coincidences

Fig. 5-17 The principle of activity measurement by coincidence counting.

As was done in the early days, each observer used a low-power

telescope and recorded the occurence of a flash on the ZnS(Ag)

screen by pressing a key that caused a needle to move across a

strip of smoked paper.

1γ corγcor
(1 - Nγτγ

!
iV y iV ycor -Dy cor y

r
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for 60Co

= No£y

N''ctrue = = Nc ~ ^Tr v

which, in absence of corrections, reduces to

I I

N
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The activity of the source is then given by

Ne0 =
(1-iVprp)

-B*
Ln(2)xt

X

()CBC
xe 1/2

and the activity concentration of the source by

Ce0 =
TVp

(1-iVprp)

N

(1-NyTy)
-B, X

Ln(2)xt

m

Bureau International des Poids et Mesures
HIPM B1/51



Radioactivity measurements and uncertainty evaluation

Evaluation of uncertainties

First evaluate the sensibility coefficients for the variable

(l-NyTy) (No-Bo)
xe~

Ln(2)xf

: — x
m (1-AW

N Ln(2)xf
x

2 ,

= C0

A similar expression is found for Nγ:

= C0
1

~ By(l ~ NJTJ)) (1 - NJTJ) '
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And so on for the variables r^ rf Nc, T1/2, m

= C0

dCc

dN<

dCo

= C0

= C0 -

• x

• x

v T1/2 2

= C0

X — X
(A^c-5c) m

Ln(2)xf

T1/2

Ln(2)xf

(1-NyTy) ) (NC-BC) m [ r1/2
: \xe

Bureau International des Poids et Mesures
HIPM

B3/51



Radioactivity measurements and uncertainty evaluation

Finally the uncertainty of the activity concentration becomes

lc<

Sometimes an expression for the relative uncertainty is also useful

uC20
2

Co

(NC-Bo)
uN

Ln(2)1

1/2

2

1 1/2 m
Um-
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b) Determination of the activity of a pure γ emitter
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60Co , 1173.2 keV full energy peak

100000-

10000-

Ge(Li)

1000-
1980 2000

1000-

100-

HPGe

tiuMfflii

10-
1160 1165 1170 1175 ' 1180 1185

Bureau International des Poids et Mesures
BIPM 86/51



Radioactivity measurements and uncertainty evaluation

0.3

0.2

D.I

0 I*

1

500 1000 1500 keV 2000

Fig. 4.18. Total efficiency for a Ge(Li) del actor (er = 12.5%) with the source mounted on top of
the detector window.
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In this case the activity is given by the expression

Ln(2)t

Pi£i(Ei) j=1
1/2

where the coefficients Kj represent the possible correction factors to take into
account phenomena such as pile-up, dead-time effects and K-x-ray escape.
The expression for the activity concentration becomes

A0 (N,-BV)J-
m 1/2

x
m
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As for 4ΠΒΓ measurements the sensitivity coefficients are required to
evaluate the uncertainty.

dAo

dp.

AA00

= <
j=1

Ln(2)t

Ln(2)t

1
X

A0

p i

Ke
1/2

A

iX-e T, >x
J 1 1/2

\

\=\

J 1 1/2
X

\

Tl/2
,2
1/2 J
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For the activity concentration an additional term has to be evaluated

mm

(Ni-Byi) Ln(2)t
J Tin

1
x

m 2

Thus the uncertainty of the activity concentration becomes

U^ - Co) u
d d

Co) u Pt

2
Mm'

and immediately its relative uncertainty

UC0

2 2

Cm0
pt Pt si £' ^Ni-By, j=\Kj

Ln(2)t

T1/2
1/2

m
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If the relative uncertainties of all variables are used the preceding expression
can be written in a more condensed way :

C0

CN0
— r

Ln(2)t

T1/2
2 , 2

Y rp \ Tm'
1 1/2

r 2 2
where it was assumed that the background was negligible yNt—Byi) ~ Ni2,
and using the property that in the case of a Poisson distribution the standard
deviation of a quantity is equal to the square root of this quantity.
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c) Evaluation of the uncertainty on the Triple-to-Double Ratio (TDCR) in the
TDCR-method
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Fast A
preamplifier i -p i

Fast
preamplifi

ABj
BCI*
AC>

AB+BC+AO
A+B+C •

ABC *

•' Triple
: extended \*
deadtime :

unit I

Spectrometry

Spectrometry
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The total number of logical double coincidences is given by

logical

and the number of triple coincidences by

The number of logical coincidences can also be expressed in function of the
triple coincidences and of the three registered double coincidences as

logical

123
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The TDCR ratio can be then defined by

logical .

TDCR =
logical b,logical
D ~ /VD

or TDCR = N123

1 4, '
- I Nu-2Nn3
2i j,1,

after the numbers of counts have been corrected for the background.

Evaluate now the different sensitivity coefficients

8TDCR 1 2N123

N'23 -

Nn + #l3 +

+ •

(M2+M3+M3-2M23)2
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Because of the symmetry in the three phototubes the other required partial
derivatives have similar expressions

dTDCR TDCR TDCR

dNn

dTDCR

dN'23

N123

+ A îs + N23 -

The uncertainty of the TDCR ratio becomes then

2
UTDCR

Id TDCR \ dTDCR] 2 , I dTDCR] 2 , dTDCR] 2

\ a#12 / \ dNu ) \ $N23
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or UNNNNTDCR =

\

dTDCR\ >
21323 +

/

(8TDCR\ • ,(dTDCR\ •

\ \

when the property of a Poisson distribution is used.

Ideally the three phototubes are matched and give identical
responses and uTDCR becomes

UNNTDCR
DCRTDCR

123 )

N 123
RTDCR

N

3NN123'' ()3N'+N 123

3N-2N 123
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If the three phototubes are not exactly matched but differ slightly in
efficiency so that

with

= N'(l-e) and N'23 = N (l + s)

3N ) N') + (S~S)N'
123

UTDCR =

This expression reduces to that obtained for three identical phototubes when

{e-e) = 0.
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6. Treatment of correlations occurring when combining results of two
measurement methods

The expressions obtained for the 4πβγ coincidence method and the γ
counting depend both on the half-life and the mass of the sources used
for the measurements. The two evaluations are therefore correlated through
these two values.

The covariance associated with these two activity concentrations can be
expressed as

U (d\c o

L

) dqt dqt

u '(q), with 1 = 2.
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In a more explicit way this can be written as

u dcVl
1/2 dm dm

u\m),

Evaluating the derivatives in function of m and T1/2and replacing their
respective expressions in the above equations one then obtains

= C0

Ln(2)1t

V T 2
1/2 j

u\Tm) +
1

\m
u \m)
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Thank you for your attention!
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